Retour Séminaire de Théorie des Nombres
Prolongement des torseurs via les log schéma
Salle de Conférences
le 08 avril 2022 à 14:00
"On présente ici une approche du problème de prolongement des torseurs définis sur la fibre générique d'une famille de courbes. La question est de prolonger chacun du groupe structural et de l'espace total du torseur au dessus de la famille.
L'origine de ce problème remonte au travaux de Grothendieck, qui, au début des années 1960, a donné une bonne définition du groupe fondamental de variétés algébriques, basée sur la notion de revêtements étales galoisiens.
Le problème du prolongement des torseurs sous un groupe constant, d'ordre premier à la caractéristique résiduel, a été résolu. Lorsqu'on est intéressé par les variétés algébriques d'un point de vue arithmétique, il est naturel de considérer des torseurs sous un groupe fini non nécessairement constant : on parle de torseurs fppf.
On se donne alors un torseur fppf pointé sur une courbe et on cherchera à le prolonger sur un modèle régulier de cette dernière. On sait déjà qu'un prolongement fppf n'existe pas toujours, on se placera alors dans une catégorie plus large, à savoir, celle des torseurs logarithmiques. On montrera en particulier que l'existence d'un tel prolongement revient à prolonger des schémas en groupes et des morphismes entre eux. Puis, on cherchera à calculer l'obstruction à relever le torseur log prolongé en un torseur fppf."