Retour Séminaire de Géométrie
Une approche valuative de la géométrie Lipschitz des singularités de surfaces complexes
Lorenzo Fantini
( Marseille ) Salle 2
le 05 avril 2019 à 10:45
La géométrie Lipschitz est une branche de la théorie des singularités qui étudie les données métriques d'un germe d'espace analytique complexe et l'invariance de celles-ci à homéomorphisme bi-Lipschitz près. Après en avoir introduit les bases, je vais parler d'une nouvelle approche de l'étude de ces invariants, et en particulier des taux de croissance Lipschitz internes, basée sur la géométrie d'un espace de valuations (l'entrelacs non archimédien ? à la Berkovich ? de la singularité). Dans le cas des singularités de surfaces, je vais décrire précisément ces taux de croissance à l'aide de la combinatoire, en montrant qu'ils déterminent et sont déterminés par la topologie du germe, ses sections hyperplanes et ses courbes polaires génériques. Je vais également mettre en relation les taux de croissance Lipschitz et des invariants classiques en géométrie birationnelle tels que la log discrépance et la discrépance de Mather, et expliquer comment nos méthodes donnent des restrictions sur l'invariant Lipschitz complet pour la métrique interne. Ceci est un travail en commun avec André Belotto et Anne Pichon.