logo IMB
Retour

Séminaire de Théorie des Nombres

Les identités de Capparelli et de Primc

Jehanne Dousse

( Institut Camille Jordan )

Salle de Conférences

le 04 octobre 2019 à 14:00

Une partition d'un entier n est une suite décroissante d'entiers dont la somme est n. Une identité de partitions est un théorème de la forme "pour tout entier n, le nombre de partitions de n satisfaisant certaines conditions est égal au nombre de partitions de n satisfaisant d'autres conditions". Dans les années 80, Lepowsky et Wilson ont établi un lien entre les identités de partitions de Rogers-Ramanujan et la théorie des représentations. D'autres théoriciens des représentations ont ensuite étendu leur méthode, donnant lieu à des nouvelles identités jusqu'alors inconnues des combinatoriciens et théoriciens des nombres, telles que l'identité de Capparelli et celle de Primc. Bien que ces deux identités ne semblent pas liées du point de vue de la théorie des représentations, nous montrerons que l'identité de Capparelli peut être déduite combinatoirement de celle de Primc.