logo IMB
Retour

Séminaire de Géométrie

Variétés affines et de Stein en géométrie complexe et rigide

Marco Maculan

( IMJ )

Salle 2

le 29 novembre 2019 à 10:00

Le théorème GAGA de Serre affirme que, sur une variété algébrique complexe compacte, les objets holomorphes (les fonctions, les fibrés vectoriels, les faisceaux cohérents et leurs sections) sont algébriques. Sans hypothèse de compacité cela n'est pas vrai, mais on peut se demander si une variété qui se plonge de manière holomorphe dans un espace affine, peut y se plonger de manière algébrique. Un exemple classique de Serre montre que la réponse est négative. Dans un travail en commun avec J. Poineau, on étudie ce qui l'en est de la question analogue dans le cadre de la géométrie rigide. Malgré les similarités formelles des deux théories, les réponses auxquelles on aboutit sont quelque peu surprenantes.