Discrete logarithms in quasi-polynomial time in finite fields of small characteristic
Salle de Conférences
le 14 février 2020 à 14:00
We prove that the discrete logarithm problem can be solved in quasi-polynomial expected time in the multiplicative group of finite fields of fixed characteristic. In 1987, Pomerance proved that this problem can be solved in expected subexponential time
. The following 30 years saw a number of heuristic improvements, but no provable results. The quasi-polynomial complexity has been conjectured to be reachable since 2013, when a first heuristic algorithm was proposed by Barbulescu, Gaudry, Joux, and Thomé. We prove this conjecture, and more generally that this problem can be solved in the field of cardinality
in expected time
.