logo IMB
Retour

Séminaire de Théorie des Nombres

Schinzel Hypothesis with probability 1 and rational points

Efthymios Sofos

( Glasgow )

Salle de Conférence (en visio)

le 09 octobre 2020 à 14:00

Joint work with Alexei Skorobogatov, preprint: https://arxiv.org/abs/2005.02998. Schinzel's Hypothesis states that every integer polynomial satisfying certain congruence conditions represents infinitely many primes. It is one of the main problems in analytic number theory but is completely open, except for polynomials of degree 1. We describe our recent proof of the Hypothesis for 100% of polynomials (ordered by size of coefficients). We use this to prove that, with positive probability, Brauer--Manin controls the Hasse principle for Châtelet surfaces.