Salle de Conférences
le 16 décembre 2022 à 14:00
Dans cette thèse on considère quelques problèmes provenant de la théorie des intersections improbables qui peuvent être résolus avec des méthodes principalement arithmétiques. Dans le premier chapitre, on considère un problème de type André-Oort dont la preuve non-effective a été donnée par Pila et Tsimerman. Ici on démontre le cas n=3 effectif de leur théorème en bornant les triplets de modules singuliers qui sont multiplicativement dépendants. La démonstration combine une analyse détaillée des propriétés archimédiennes du j-invariant avec des arguments galoisiens pour établir une relation linéaire entre les exposants. Dans le deuxième chapitre, on donne une borne de type Bugeaud-Corvaja-Zannier pour le groupe algébrique G_a x G_m dont la preuve est élémentaire. Dans le troisième chapitre, on continue l'étude des problèmes de PGCD pour les groupes algébriques, et on montre la propriété d'Ailon-Rudnick forte pour G_a x G_m. On considère ensuite le groupe G_a x E où E est une courbe elliptique, pour lequel on peut définir une suite de PGCD indexée par les idéaux de l'anneau de multiplication complexe. On démontre une propriété de Ailon-Rudnick analogue pour cette suite généralisée. La preuve combine des arguments élémentaires de crible avec l'étude des réductions de E.