High order IMEX deferred correction residual distribution schemes for stiff kinetic problems.
Salle 2
le 26 novembre 2020 à 15:30
In this talk we study a class of kinetic models presented by Aregba-Driollet and Natalini, whose macroscopic limits are hyperbolic conservation laws. These models contain stiff relaxation terms which may produce spurious unphysical results. We present a high order scheme that can be used over the complete range of the relaxation parameter and, moreover, that can preserve the asymptotic limit of the physical model. To deal with stiff terms, it is natural to use an implicit time discretization. To get a high order scheme, we recast a (DeC) Deferred Correction approach. The spatial discretization comes from the Residual Distribution (RD) framework, a Finite Element based class of schemes that can recast many finite element, finite volume and discontinuous Galerkin schemes. Through these models, we can simulate, for instance Euler's equation, and we present an idea of an extension in the shallow water case. We have tested some example with different schemes, reaching the asymptotic preserving properties and the correct order of convergence for 1D and 2D.