[Séminaire CSM] Méthodes de propagation des incertitudes en géosciences numériques
Salle 2
le 28 janvier 2021 à 14:00
La quantification des incertitudes paramétriques est désormais incontournable en calcul scientifique pour estimer la fiabilité des prédictions issues des simulations. Les méthodes de type Monte-Carlo ont un coût de calcul prohibitif pour les modèles numériques complexes; il est alors nécessaire de construire des modèles de substitution statistiques s'appuyant sur un nombre limité de simulations. Nous présentons plusieurs approches de type polynômes de chaos pour construire des modèles de substitution de champs aléatoires et de processus stochastiques. Les méthodes de préconditionnement stochastiques sont particulièrement efficaces pour améliorer l'approximation de la quantité d'intérêt grâce à une transformation qui absorbe une large part des non-linéarités stochastiques. La décomposition sur des bases de fonctions orthogonales empiriques (associées à la variable physique) combinée à une représentation fonctionnelle des coordonnées dans cette base permet également de réduire significativement la complexité de représentation. Ces diverses approches ont été implémentées dans plusieurs applications en géosciences numériques, incluant les écoulements en milieux poreux, les écoulements océaniques et la propagation des ondes sismiques. Nous présentons en particulier l'impact de paramètres de modèles incertains sur la dynamique de fronts d'infiltration, la surcote cyclonique induite par un ouragan aux caractéristiques incertaines, et les accélérations du sol générées par un séisme se propageant dans un milieu aléatoire. Les perspectives d'extension des différentes méthodes proposées sont discutées.