logo IMB
Retour

Séminaire de EDP - Physique Mathématique

Quantum Confinement induced by Dirac operators with anomalous magnetic $delta$-shell interactions.

Badreddine Benhellal

Visio

le 02 mars 2021 à 11:15

Abstract: Let Ω\Omega be a bounded domain and υR\upsilon\in\mathbb{R}. I will consider the coupling Hυ=H+Vυ\mathcal{H}_{\upsilon}=\mathcal{H}+ V_\upsilon, where H\mathcal{H} is the free Dirac operator in R3\mathbb{R}^3 and Vυ=iυβ(αN)δΩV_\upsilon= i\upsilon\beta(\alpha\cdot \mathit{N})\delta_{\partial\Omega} is the anomalous magnetic δ\delta-interactions potential. In the first instance, assuming that υ24\upsilon^2 \neq 4 and under some regularity assumption on the domain Ω\Omega, we prove that Hυ\mathcal{H}_{\upsilon} is self-adjoint and its domain is included in the Sobolev space H1(R3Ω)4\mathit{H}^{1}(\mathbb{R}^3\setminus \partial\Omega)^4. Moreover, a Krein-type resolvent formula and a Birman-Schwinger principle are obtained, and several qualitative spectral properties of Hυ\mathcal{H}_{\upsilon} are given. Finally, we study the self-adjoint realization of Hυ\mathcal{H}_{\upsilon} in the case υ2=4\upsilon^2=4. In particular, if Ω\Omega is C1\mathit{C}^1-smooth, we then show that Hυ\mathcal{H}_{\upsilon} is essentially self-adjoint and the domain of the closure is not included in any Sobolev space Hs(R3Ω)4\mathit{H}^{s}(\mathbb{R}^3\setminus \partial\Omega)^4, for all s>0s>0. In addition, we show that H±2\overline{\mathcal{H}_{\pm2}} generates confinement and prove the existence of embedded eigenvalues on the essential spectrum of H±2\overline{\mathcal{H}_{\pm2}}.