Retour Séminaire de Théorie Algorithmique des Nombres
Optimization of the scalar complexity of Chudnovsky^2 multiplication algorithms in finite fields
Stéphane Ballet
( I2M, Université Aix-Marseille ) Online
le 08 juin 2021 à 10:00
We propose several constructions for the original multiplication algorithm of D.V. and G.V. Chudnovsky in order to improve its scalar complexity. We highlight the set of generic strategies who underlay the optimization of the scalar complexity, according to parameterizable criteria. As an example, we apply this analysis to the construction of type elliptic Chudnovsky2 multiplication algorithms for small extensions. As a case study, we significantly improve the Baum-Shokrollahi construction for multiplication in F256/F4.