logo IMB
Retour

Séminaire de Théorie Algorithmique des Nombres

Shifted powers in Lucas-Lehmer sequences

Vandita Patel

( University of Manchester )

Online

le 22 juin 2021 à 10:00

The explicit determination of perfect powers in (shifted) non-degenerate, integer, binary linear recurrence sequences has only been achieved in a handful of cases. In this talk, we combine bounds for linear forms in logarithms with results from the modularity of elliptic curves defined over totally real fields to explicitly determine all shifted powers by two in the Fibonacci sequence. A major obstacle that is overcome in this work is that the Hilbert newspace which we are interested in has dimension 6144. We will focus on how this space is computationally handled with respect to the underlying Diophantine equation. This is joint work with Mike Bennett (UBC) and Samir Siksek (Warwick).