Salle de Conférences
le 12 octobre 2021 à 11:00
Les équations de la magnétohydrodynamique (MHD) décrivent l'évolution d'un fluide conducteur de courant. Il s'agit d'un couplage non-linéaire entre une équation cinétique (Navier-Stokes ou Euler) et une équation électromagnétique. Pendant cet exposé, nous explorerons les questions liées à l'existence et l'unicité de solutions au problème de Cauchy en deux dimensions d'espace. Dans un premier temps, nous chercherons à mettre en évidence les difficultés du problème en abordant des modèles de difficulté croissante. Nous partirons d'un modèle de type ``Navier-Stokes généralisé'' complètement parabolique et enlèverons les termes de dissipation les uns après les autres en expliquant comment cela affecte la résolution du problème de Cauchy. Dans un deuxième temps, nous nous concentrerons sur le modèle complètement hyperbolique de la MHD idéale. Nous verrons en particulier que le temps de vie des solutions peut être pris arbitrairement grand dans le régime des champs magnétiques faibles. Ce résultat a été obtenu en collaboration avec Francesco Fanelli.