Salle de Conférences
le 13 janvier 2022 à 11:00
Etant donnée une suite de variables aléatoires réelles X(1), X(2), etc., sa probabilité de persistance est la probabilité que les n premières variables soient toutes positives. Intéressantes du seul point de vue mathématique, ces quantités ont aussi beaucoup d'applications en physique. Dans cet exposé nous étudierons le cas où la suite de variables est auto-regressive d'ordre 1, c'est-à-dire lorsque X(n+1)=a*X(n)+U(n+1). Dans ce contexte, a est un paramètre et les variables U(1), U(2), etc., sont appelées innovations et forment une suite de variables indépendantes et identiquement distribuées. Le plus souvent, seules des estimées asymptotiques sont obtenues sur la persistance. Dans ce travail en commun avec Gerold Alsmeyer (Münster), Alin Bostan (Inria Saclay) et Thomas Simon (Lille), nous considérons le cas particulier où les U(1), U(2), etc., suivent des lois uniformes sur un intervalle. Nous montrons un lien surprenant entre les probabilités de persistance associées et une famille de polynômes bien connue en combinatoire : les polynômes de Mallows-Riordan. De cette connexion nous déduisons un dictionnaire entre identités combinatoires sur les polynômes de Mallows-Riordan et propriétés probabilistes du modèle de persistance.