logo IMB
Retour

Séminaire Images Optimisation et Probabilités

Un candidat pour la carte Brownienne en dimension supérieure : les feuilletages aléatoires

Jean François Marckert

Salle 1

le 13 janvier 2022 à 14:00

La recherche d'un analogue de la carte Brownienne en dimension supérieure (pour des motivations physiques, notamment) passe souvent par la recherche d'un modèle analogue aux cartes combinatoires faisant intervenir des briquesde bases ayant elles mêmes une dimension >2: par exemple, modèle de "collages de polyhèdres", modèles de tenseurs, etc. Pour l'instant ces méthodes marchent mal, dans le sens où les limites d'échelle de ces modèles discrets n'ont pas les propriétés espérées. On introduit une façon de procéder totalement différente: le feuilletage. Il s'agit, de produire une suite d'objets ( A_k, k geq 0) (cette construction étant similaire en discret et en continu), où A_{k+1} est obtenu depuis A_k en identifiant des points aléatoires de A_k. La construction, dans le cadre continu, est paramétrée de sorte qu'A_0, A_1, A_2 sont 3 objets importants: le cercle déterministe, l'arbre continu d'Aldous, la carte Brownienne. On discutera de la construction et des A_i suivant. Il s'agit d'un exposé consistant à davantage présenter des principes que des détails, et il devrait être accessible au plus grand nombre. Travail commun avec Luca Lionni