Salle de conférences, Bordeaux & Zoom
le 05 mars 2024 à 11:00
The three-dimensional incompressible Euler equations under axisymmetry have been widely studied. While the “no-swirl” assumption makes the system very similar to the two-dimensional vorticity equations, it is still possible for solutions to have unbounded vortex stretching. After reviewing classical confinement results in two dimensions, we report some progress on the issue of vortex stretching for Euler equations under rotational symmetries in three and higher dimensions. (Based on joint works with Kyudong Choi and Deokwoo Lim.)