Retour Séminaire de Théorie des Nombres
Théorie d'Iwasawa pour les graphes et mesures de Mahler p-adiques
Riccardo Pengo
( (Leibniz Universität Hannover) ) Salle de conférences
le 13 octobre 2023 à 14:00
La théorie d'Iwasawa étudie l'évolution de certains invariants, comme le nombres des classes d'idéaux d'un corps de nombres, dans une tour d'objets, donnée par exemple par la tour des corps cyclotomiques. En regardant les analogies entre corps de nombres, corps de fonctions des courbes sur les corps finis, nœuds et graphes, la théorie d'Iwasawa a été étendue à ces types d'objets. Pour le cas des graphes, plusieurs auteurs ont montré que les valuations p-adiques des nombres d'arbres couvrants dans une tour l-adique des graphs, qui est l'invariant analogue au nombre des classes d'idéaux, satisfait des analogues des théorèmes classiques de Iwasawa (quand l et p coincident) et Washington (quand l est différent de p), et d'une conjecture de Greenberg. Dans cet exposé, basé sur un travail en commun avec Daniel Vallières, nous montrerons comment ces résultats se globalisent, en considérant une tour des graphs dont le groupe de Galois est isomorphe aux entiers. En particulier, nous montrerons que dans ce cas les invariants d'Iwasawa peuvent être calculés grâce à un polynôme associé à la tour, et à ses mesures de Mahler p-adiques, qui mesurent la distribution p-adique des racines du polynôme en question. Enfin, nous montrerons comment ce théorème peut être utilisé pour récupérer des résultats antécédents autours des asymptotiques des nombres d'arbres couvrants de certains types de graphes, qui généralisent les graphes de Petersen, et pour montrer une formule explicite pour les valuations p-adiques des nombres de Fibonacci, due à Lengyel.