logo IMB
Retour

Séminaire de Théorie des Nombres

Congruences, indépendance algébrique et Monodromie

Daniel Vargas-Montoya

( (IMPAN) )

Salle de conférences

le 17 novembre 2023 à 14:00

Récemment Adamczeswki Bell et Delaygue ont donné un critère d’indépendance algébrique pour les séries à coefficients dans Z qui vérifient certaines congruences modulo p pour une infinité de nombres premiers p. À savoir : les congruences de type «Lucas». Il s’avère que la plupart des séries qui vérifient telles congruences sont des G-functions. Dans un premier temps, nous allons donc voir comment obtenir ce type de congruences lorsque la série est une solution d’un opérateur différentiel. Les outils essentiels sont d’une part l’étude p-adique de l’opérateur différentiel, structure de Frobenius forte, et d’autre part la notion classique de monodromie unipotente maximale. Dans un deuxième temps, je vais introduire un nouvel ensemble de G-functions dénoté MF. Nous montrons donc que les éléments de MF vérifient des congruences assez convenables. Dans un troisième temps, nous verrons que pour certains éléments de MF ces congruences sont aussi pertinentes pour établir leur indépendance algébrique.