logo IMB
Retour

Séminaire de Calcul Scientifique et Modélisation

[Seminaire CSM] Une méthode quasi-Newton pour le calcul de carènes optimales basée sur la formule de Michell pour des vitesses aléatoires

Salah-Eddine ZERROUQ

( Ensam )

Salle 2

le 07 mars 2024 à 14:00

Dans cet exposé on propose une discrétisation de la méthode de Newton pour l’optimisation de forme de carènes de bateaux, partie du navire sous l’eau, basé sur la résistance de Michell avec une vitesse "aléatoire". La théorie de Michell pour les bateaux à coque fine donne une formule explicite pour la résistance des vagues pour une vitesse donnée du navire. La question de trouver la carène optimale qui minimise la résistance des vagues de Mitchell pour une vitesse donnée a été examinée dans ref{2} pour un support fixe, et ensuite dans ref{1} pour un support variable. Suite au succès des résultats numériques, qui se rapprochent des formes utilisées dans l’industrie. il est naturel de se poser la question sur la forme de carène optimale pour des vitesses aléatoires. L’idée, donc, est de calculer la forme optimale qui minimise l’espérance de la résistance de Michell pour une distribution de vitesse donnée. Pour ce faire, le problème est réécrit comme un problème d’optimisation de forme : trouver le domaine optimal pour minimiser l’énérgie de Dirichlet avec un terme source f considéré comme l’éspérance du noyau de la résistance de Michell. Ce problème est bien étudié dans la littérature, et on dispose de nombreux résultats sur l’existence de solutions, sur les dérivées de forme ainsi que leur régularité qu’on peut exploiter pour effectuer une méthode de descente en faisant varier le domaine. Ces méthodes de variation du domaine, nécéssitent en général un nombre élevé d’itérations pour converger, ce problème, coupler avec le fait qu’on doit à chaque itération calculer une approximation de l’espérance du noyau de la résistance de Michell, dont la qualité dépendra de notre échantillonage des vitesses, fait qu’on se retrouve avec des temps de calcul trop élevé pour trouver une solution. D’où notre interêt à utiliser une méthode de Newton pour minimiser le nombre d’itérations de notre algorithme. Cette méthode a été étudiée dans ref{3}, et il est connu que beaucoup d’obstacle empêchent son utilisation pour l’optimisation de forme :
1. Les formules pour la deuxième dérivée de forme d’une fonctionnelle J(Ω) sont complexes et nécessitent souvent la résolution de problèmes adjoints.
2. Avoir une expression de cette dérivée sur le bord du domaine nécessitent une grande régularité du domaine considéré.
3. À priori La matrice Hessienne n’a aucune raison d’être inversible.
Dans ce travail on propose une discrétisation qui permet de contourner ces problèmes de régularité du bord et des dérivées de forme, et donc permet de trouver une solution avec, ou sans contrainte, même dans des situations où la deuxième dérivée n’est pas bien définie.

- ref{1}: J. Dambrine, M. Pierre. Continuity with respect to the speed for optimal ship forms based on
michell’s formula. Mathematical Control Related Fields, 0, –, 2021.
- ref{2}: D. J., P. M., R. G. A theoretical and numerical determination of optimal ship forms based on michell’s wave resistance. ESAIM - Control, Optimisation and Calculus of Variations, 22(1), 88 – 111, 2016.
- ref{3}: J.-L. Vie. Second-order derivatives for shape optimization with a level-set method. Ph.D. thesis, 2016. Thèse de doctorat dirigée par Cancès, Eric et Allaire, Grégoire Mathématiques Paris Est 2016.