[Séminaire CSM] Schémas volumes finis préservant la structure pour des modèles de semi-conducteurs anisotropes
Salle 2
le 08 février 2024 à 14:00
Les modèles mathématiques des semi-conducteurs décrivent l'évolution des densités de charges électriques dans les composants électroniques. Dans l'industrie, le modèle le plus couramment utilisé est un système couplé de deux équations de convection-diffusion avec une équation de Poisson. Les méthodes numériques couramment employées sont basées sur des schémas volumes finis à deux points, robustes et garantissant la positivité des densités calculées.
Dans cet exposé, je vais m'intéresser à une situation où le semi-conducteur est plongé dans un champ magnétique externe, induisant une rotation des charges. Dans ce cas, les équations de convection-diffusion deviennent anisotropes, et les schémas à deux points ne permettent plus d'obtenir une approximation correcte.
Pour obtenir une approximation fiable, permettant de gérer à la fois l'anisotropie et des maillages polytopaux généraux, j'introduis un schéma non-linéaire basé sur la méthode des volumes finis hybrides. Le schéma est conçu pour préserver une structure d'entropie au niveau discret, assurant :
i) l'existence de solutions et la positivité des densités ;
ii) le comportement en temps long des solutions ;
iii) la robustesse du schéma par rapport aux paramètres physiques et au maillage utilisé.
Les résultats numériques obtenus corroborent ces garanties théoriques.
Dans un second temps, je discuterai de l'intérêt d'utiliser des maillages généraux pour produire des raffinements locaux. En particulier, je m'intéresserai à l'exemple fondamental du calcul de courbes courant-tension.