Retour Séminaire de Géométrie
Autour de la conjecture d'Hamilton-Lott en dimensions supérieures
Alix Deruelle
( (Orsay) ) Salle 2
le 05 avril 2024 à 10:45
La conjecture d’Hamilton-Lott porte sur la rigidité des métriques riemanniennes dites Ricci-pincées en dimension 3. Nous expliquerons comment le flot de Ricci permet de résoudre cette conjecture en démontrant un résultat de structure des solutions démarrant d'un cône métrique a priori non lisse. On verra que toutes ces solutions se comportent essentiellement comme des points fixes du flot, appelés également solutions auto-similaires. Cela donne une nouvelle preuve de cette conjecture en dimension 3 et permet de l'étendre en dimensions plus grandes dans un cadre non-effondré. Ce travail est le fruit d’une collaboration avec Felix Schulze et Miles Simon.