logo IMB
Retour

Séminaire de Géométrie

The realization problem for Veech groups

Anja Randecker

( (Heidelberg) )

Salle 2

le 14 juin 2024 à 09:30

Translation surfaces arise naturally in many different contexts, for example when unfolding billard trajectories or when equipping a Riemann surface with an abelian differential. Most visually, they can be described by (finitely or infinitely many) polygons that are glued along edges which are parallel and have the same length.

In this talk, we will be interested in the Veech groups of translation surfaces, that is, the stabilizer of the natural GL(2,R) action on the moduli space for a given translation surface. Although Veech groups have been studied for several decades, they are in itself not fully understood yet. In particular, it is not known in general whether a given abstract group can be realized as the Veech group of a translation surface.

After introducing the realization problem for Veech groups, I will speak about some recent progress in this direction for infinite translation surfaces. This is joint work with Mauro Artigiani, Chandrika Sadanand, Ferrán Valdez, and Gabriela Weitze-Schmithuesen.