logo IMB
Retour

Séminaire Images Optimisation et Probabilités

(Proba-Stat) Entrelacement, simulation parfaite et diffusions dans l'espace de Wasserstein

Marc Arnaudon

( IMB )

Salle de conférénces

le 12 septembre 2024 à 11:15

La motivation principale de cet exposé est de trouver des temps forts de stationnarité pour des processus de Markov (X_t), c'est à dire des temps d'arrêt T tels que X_T soit à l'équilibre, T et X_T soient indépendants. Pour trouver des temps fort de stationnarité T, il est naturel et très facile dans certains cas d'utiliser des processus duaux (D_t), tels que T soit un temps d'atteinte d'un certain état pour le processus dual. On étudiera l'entrelacement entre (X_t) et (D_t). On donnera des exemples pour des chaînes de Markov à espace d'états finis, puis on s'intéressera au mouvement brownien avec des processus duaux à valeur ensemble. L'étonnant théorème "2M-X" de Pitman donne un exemple d'entrelacement du mouvement brownien dans le cercle. On généralisera ce théorème aux variétés riemanniennes compactes, et on construira des temps forts de stationnarité. On étudiera la transition de phase en grande dimension. Finalement, on s'intéressera à des duaux à valeur mesure."