logo IMB
Retour

Séminaire de Théorie des Nombres

On a question of Douglass and Ono

Florian Luca

( (Stellenbosch) )

Salle de conférences

le 27 septembre 2024 à 14:00

It is known that the partition function p(n)p(n) obeys Benford's law in any integer base b2b\ge 2. In a recent paper, Douglass and Ono asked for an explicit version of this result. In my talk, I will show that for any string of digits of length ff in base bb, there is nN(b,f)n\le N(b,f), where 

N(b,f):=exp(1032(f+11)2(logb)3)N(b,f):=\exp\left(10^{32} (f+11)^2(\log b)^3\right)

such that p(n)p(n) starts with the given string of digits in base bb. The proof uses a lower bound for a nonzero linear form in logarithms of algebraic numbers with algebraic coefficients due to  Philippon and Waldschmidt. A similar result holds for the plane partition function.