Séminaire de Géométrie
Rigidité des tores de-Sitter singuliers et bi-feuilletages du tore
Martin Mion-Mouton
( (Institut Max Planck - Leipzig) )Salle 2
le 18 octobre 2024 à 10:45
Les métriques Lorentziennes à courbure constante ayant un nombre fini de singularités coniques offrent de nouveaux exemples naturels de structures géométriques sur le tore. Des travaux de Troyanov sur leur analogue Riemannien ont montré que la donnée de la structure conforme et des angles aux singularités classifient entièrement les métriques Riemanniennes à singularités coniques. Dans cet exposé nous nous intéresserons aux tores de-Sitter singuliers, en construirons des exemples, et présenterons un phénomène de rigidité rappelant celui de Troyanov : les tores de-Sitter à une singularité d'angle fixé sont déterminés par la classe d'équivalence topologique de leur bi-feuilletage lumière. Nous verrons que cette question géométrique est intimement liée à un problème de dynamique sur les difféomorphismes par morceaux du cercles.