logo IMB
Retour

Séminaire Optimisation Mathématique Modèle Aléatoire et Statistique

Towards an exact framework for quantum state separable problem

Liding Xu

( Zuse Institute Berlin )

Online

le 28 novembre 2024 à 11:00

Separable states are multipartite quantum states that can be written as a convex combination of product states. Product states are multipartite quantum states that can be written as a tensor product of states in each space. Quantum state separable problem is an NP-hard problem but fundamental for quantum information theory. We propose two relaxation techniques for this problem. In the view of commutative optimization, we treat the states as matrices of multilinear complex polynomials. Our relaxation technique is found similar to that for complex bilinear polynomials arising in the Alternating Current Optimal Power Flow problem. In the view of non-commutative optimization, we treat the states as tensor products of bounded Positive Semi-definite variables. We propose a generalized McCormick relaxations using linear matrix inequalities. These two relaxations will be the key component to drive an exact branch-and-cut algorithm.