LOGDET DE MATRICES ALÉATOIRES

Soit \mathbb{X}_n une matrice aléatoire rectangulaire de dimension $p \times n$ avec $1 \leqslant p \leqslant n$, dont les vecteurs colonnes X_1, \ldots, X_n sont indépendants et de même loi $\mathcal{N}_p(0, \Gamma)$, où Γ est une matrice de covariance définie positive. La matrice $\mathbb{X}_n\mathbb{X}'_n$ est une matrice de Wishart $\mathcal{W}_p(n,\Gamma)$ pour laquelle n est son degré de liberté, p est sa dimension, et Γ est sa matrice de covariance. La loi de Wishart est une généralisation de la loi du chi-deux car si p=1 et $\Gamma=1$, la loi $\mathcal{W}_1(n,1)$ correspond à la loi $\chi^2(n)$.

On s'intéresse au comportement asymptotique du logarithme du déterminant de la matrice aléatoire

$$\widehat{\Gamma}_n = \frac{1}{n} \mathbb{X}_n \mathbb{X}'_n.$$

Si la dimension p est fixée et n tend vers l'infini, on peut montrer que

$$\sqrt{n} \frac{(\log \widehat{D}_n - \log(D))}{\sqrt{2p}} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$$

où \widehat{D}_n et D sont les déterminants de $\widehat{\Gamma}_n$ et Γ , respectivement. De plus, si la dimension p tend vers l'infini avec $1 \leq p < n$ et p/n converge vers γ où $0 < \gamma < 1$, on a

$$\frac{\log \widehat{D}_n - L_n - \log(D)}{\sqrt{-2\log(1-\gamma)}} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$$

avec

$$L_n = \sum_{k=1}^p \log\left(1 - \frac{k}{n}\right).$$

Enfin, à la frontière p = n, on peut montrer que

$$\frac{\log \widehat{D}_n + n \log n - \log(n-1)! - \log(D)}{\sqrt{2 \log n}} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$$

Créer un code Scilab permettant de visualiser les lois fortes des grands nombres et les normalités asymptotiques dans les trois situations décrites ci-dessus. Que se passe-t-il sur vos simulations si les vecteurs X_1, \ldots, X_n ne sont plus indépendants? On se placera dans la situation où X_1, \ldots, X_n sont corrélés et de même loi $\mathcal{N}_p(0, I_p)$ en concaténant les vecteurs colonnes X_1, \ldots, X_n et en ajoutant un profil de covariance très simple associé à un coefficient de corrélation ρ avec $|\rho| < 1$.