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0 Introduction

In this manuscript we introduce a new method to study ideals generated by
exponential polynomials, inspired by the theory of D-modules [17, 18, 19].
Let us recall that an exponential polynomial f of n complex variables with
frequencies in a finitely generated subgroup Γ of Cn is a function of the form

f(z1, . . . , zn) = f(z) =
∑

γ∈Γ

pγ(z)exp(γ · z),

where the sum is finite, the pγ are polynomials, and γ · z = γ1z1 + · · ·+ γnzn.
Such a function belongs to the algebra Aφ(C

n) of entire functions F satisfying
the growth condition:

∃C > 0 |F (z)| ≤ Cexp(Cφ(z)),

where the weight φ can be taken as | z |, the Euclidean norm of z, or, more
precisely, if we choose a system γ1, . . . , γN , of Q-linearly independent gener-
ators of Γ, as

φ(z) = max(| <(γj · z) |: j = 1, · · · , N) + log(1 + | z |2),
where <z denotes the real part of the complex number z.

In the case that Γ ⊂ iRn, the exponential polynomials are just the Fourier
transforms of distributions supported by finitely many points in the lattice

−iΓ, and Aφ is a subalgebra of the Paley-Wiener algebra ̂E ′(Rn) of Fourier
transforms of distributions of compact support. It is well-known that the
spectral synthesis does not hold for arbitrary systems of convolution equa-
tions as soon as n ≥ 2, equivalently, not all ideals in the Paley-Wiener algebra
are localizable [23]. If an ideal is generated by polynomials then, it has been
proved by Ehrenpreis and Malgrange, that it is always localizable [21, 27].
The only fairly general criterion to ensure localizability of a finitely gener-
ated ideal I is to verify that the generators form a slowly decreasing sequence
in the sense of [6]. Among other requirements, the generators must define
a complete intersection. The slowly decreasing condition is not too easy to
check, especially when the variety V of common zeros of the generators is
not discrete. The only general example given in [6] of a slowly decreasing
sequence of exponential polynomials is the following. Let P1, . . . , Pn be poly-
nomials defining a discrete (hence, finite) variety in Cn and k ≤ n, then the
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sequence of functions

fj(z) = Pj(e
iz1 , . . . , eizk , zk+1, . . . , zn) (1)

is slowly decreasing.
For these reasons, in our previous paper [9] we had considered the case

of finitely generated ideals of exponential polynomials with frequencies in a
group Γ of rank n and V discrete. Even when Γ = iZn, we could not find
a general criterion for localizability of the ideals generated by such exponen-
tial polynomials. Part of the problem was of an arithmetic nature, namely
localizability may depend not only on the geometry of V and Γ, but also on
the diophantine approximations of the coefficients of the generators of I. For
example, the ideal generated by cos(z1), cos(z2), z2−αz1 is localizable if and
only if α is not a Liouville number. As we pointed out in [10], there is a deep
relationship between the localizability issue and a conjecture of Ehrenpreis
on the zeros of exponential polynomials of a single variable with algebraic
coefficients and frequencies.

In this paper we consider a situation that is fairly different from that of
[9]. Namely, the group Γ has very low rank, either one or two, and the variety
V might not be discrete or complete intersection. We have obtained some
results very simple to state. For instance, if rank(Γ) = 1, any system of ex-
ponential polynomials defining a complete intersection generates a localizable
ideal in the space Aφ. Another example of localizability is that where the
generators are of the type (1) and define a non-discrete complete intersection.
We have also studied problems related to global versions of the Nullstellen-
satz and of the Briançon-Skoda theorem, which could be useful when solving
the ubiquitous Bezout identity for exponential polynomials without common
zeros. The solution of the Ehrenpreis conjecture, as mentioned in [10], is
precisely equivalent to solving in general the Bezout identity.

The leitmotiv of our approach is to relate the division problems implicit in
the previous questions, to the study of the analytic continuation in λ1, . . . , λm

of the distribution
z 7→ |f1(z)|λ1 · · · |fm(z)|λm ,

for exponential polynomials fj and the residues of this distribution-valued
meromorphic function. This idea originated in our previous work about
residue currents [3] and their applications to the effective solvability of the
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polynomial membership problem [12, 13]. The theory of D-modules, as in-
troduced by J. Bernstein [17], was precisely formulated to obtain an explicit
form of the analytic continuation in λ of the distribution |P (z)|λ when P is a
polynomial. Bernstein’s results were extended by Björk to the holomorphic
setting in [18].

Finally, we should mention that our results can be interpreted in har-
monic analysis as providing a representation of all the solutions of certain
homogeneous systems of linear partial differential equations with time lags,
for instance, in Theorem 3.4 below.

The authors would like to thank Jan-Erik Björk for several estimulating
conversations.

1 D-modules

The ideas we develop in this section are clearly related to those about the
Weyl algebra found in [18, Chapter 1], to which we refer for further develop-
ments.

We denote by N the set of non-negative integers. For an index α ∈ Nn,
its length |α| = α1 + · · ·+ αn. We also let K be a field of characteristic zero,
n and m two positive integers, we define an extension En,m(K) of the Weyl
algebra An(K). It is realized as an algebra of operators acting on the algebra
of polynomials in n + m variables over K as follows.

Consider the polynomial algebra K[x1, . . . , xn, y1, . . . , ym] and derivations
D1, . . . , Dn on this algebra such that

Dixj = δij (i, j = 1, . . . , n)

Diyj = δijyj (i = 1, . . . , n; j = 1, . . . , m.)

The algebra En,m(K) is the algebra of operators on K[x1, . . . , xn, y1, . . . , ym]
generated by X1, . . . , Xn, Y1, . . . , Ym, D1, . . . , Dn, where Xi (resp. Yj) is the
operator of multiplication by xi (resp. yj). It is a Lie algebra, with the usual
definition of the Lie bracket [. , .] in terms of the composition of operators,
i.e.,

[P, Q] = P ◦Q−Q ◦ P.

The Lie bracket satisfies the following commutator relations

[Xi, Xj] = [Yi, Yj] = [Xi, Yj] = [Di, Dj] = 0 ;
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[Xi, Dj] = −δij ; [Xi, Dj] = −δijYi.

We note that for m = 0 our algebra coincides with the Weyl algebra. It is
evident that every element P of En,m(K) can be written in the form of a
finite sum

P =
∑

α,β,γ

cα,β,γX
αY βDγ, (2)

cα,β,γ ∈ K, α, γ ∈ Nn, β ∈ Nm. We want to prove the uniqueness of the rep-
resentation (2). For that purpose it is convenient to introduce the operators
ad(Q) acting on En,m(K) by ad(Q)(P ) := [P, Q]. Once the uniqueness is
proven, the integer max(|α|+ |β|+ |γ| : cα,β,γ 6= 0) will be denoted degP .

Lemma 1.1 Every element of En,m(K) can be written in a unique way as
in (2).

Proof. Let us assume we have an expression

P =
∑

α,β,γ

cα,β,γX
αY βDγ = 0,

as an operator on K[x1, . . . , xn, y1, . . . , ym]. We rewrite P as

P =
∑
γ

PγD
γ, Pγ :=

∑

α,β

cα,β,γX
αY β.

Observe that if γ = (γ1, . . . , γn) = (γ1, γ
′) then

ad(X1)(D
γ) := [X1, D

γ] = −γ1D
γ1−1Dγ′ ,

which vanishes if γ1 = 0. Hence

ad(Xn)γn ◦ · · · ◦ ad(X1)
γ1(Dγ) = (−1)|γ|γ!.

Moreover, for any other index γ we have

ad(Xn)γn ◦ · · · ◦ ad(X1)
γ1(Dγ) = 0,

if some γi < γi, in particular, if |γ| < |γ|. It follows, using the lexicographical
ordering, that for all γ

(−1)|γ|γ!Pγ = 0.
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Since char(K) = 0, we have Pγ = 0. As Pγ is the operator acting on
K[x1, . . . , xn, y1, . . . , ym] by multiplication with a polynomial all the coef-
ficients of Pγ are zero.

2

We shall need the following simple calculus rules.

Lemma 1.2 For any integers a, b ≥ 0, 1 ≤ k ≤ n, we have

[Dk, X
a
kY b

k ] = aXa−1
k Y b

k + bXa
kY b

k .

Corollary 1.1 Let P (X, Y ) =
∑M

k=0 Xk
1 Pk(X

′, Y ) =
∑N

l=0 Y l
1Ql(X, Y ′),

where X = (X1, X
′), Y = (Y1, Y

′). Then

[D1, P ] =
N∑

l=0

Y l
1 (

∂Ql

∂X1

+lQl) = XM
1 Y1

∂PM

∂Y1

+
M−1∑

k=0

Xk
1

{
(k + 1)Pk+1 + Y1

∂Pk

∂Y1

}
.

Let us define the natural filtration Ev on En,m(K) by

Ev := {P ∈ En,m(K) : degP ≤ v} .

It is a K-vector space of dimension
(

2n+m+v
v

)
≈ v2n+m. We can define the

graded algebra gr(En,m(K)) as

gr(En,m(K)) := E0

⊕ E1/E0

⊕ · · ·
As always (cf. [18]), it is necessary to show that this is a commutative
algebra. The only thing to show is that

[Eu, Ev] ⊆ Eu+v−1.

This is a consequence of the fact that deg[Xi, Dj] ≤ 0, deg[Yi, Dj] ≤ 1.
Finally, we want to show that gr(En,m(K)) is isomorphic to a polynomial

ring in 2n + m variables. As in [18] all we need to demonstrate is that if X i

(resp., Y i, Di) denotes the class of Xi (resp., Yi, Di) and

∑
cα,β,γX

α
Y

β
D

γ
= 0,

in gr(En,m(K)), then all coefficients cα,β,γ = 0. Assume this is not true and
let

v := max {|α|+ |β|+ |γ| : cα,β,γ 6= 0} .
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We have that

∑

|α|+|β|+|γ|=v

cα,β,γX
α
Y

β
D

γ
= 0 in E(v),

where E(v) := Ev/Ev−1. Thus, its representative
∑
|α|+|β|+|γ|=v cα,β,γX

αY βDγ

belongs necessarily to Ev−1. Since the degree is v, this is clearly a contradic-
tion to the uniqueness of the representation proved earlier, so we are done.

Let M be a (left) En,m(K)-module and Γv a filtration of M , i.e., an
increasing family of finite dimensional K-vector spaces Γv such that

(i)
⋃

v≥0 Γv = M ;

(ii) XiΓv ⊆ Γv+1, YiΓv ⊆ Γv+1, and DiΓv ⊆ Γv+1.

Let Γ(v) := Γv/Γv−1 and define gr(M) by

gr(M) := Γ0

⊕
Γ1/Γ0

⊕ · · · = Γ(0)
⊕

Γ(1)
⊕ · · ·

Due to property (ii), this graded module is a module over gr(En,m(K)).
One says the filtration is a good filtration if gr(M) is of finite type over
gr(En,m(K)). For instance, if M is finitely generated over En,m(K) by
a1, . . . , ar and we choose Γv := Eva1 + · · · + Evar, then we have a good
filtration.

As in [18, Lemma 3.4], one can prove the following lemma.

Lemma 1.3 Let (Γv)v, (Ωv)v be two filtrations of a En,m(K) module M , and
assume that (Γv)v is a good filtration. Then there is an integer w such that
Γv ⊆ Ωv+w for all v ≥ 0.

If gr(M) is of finite type over gr(En,m(K)), there is a Hilbert polynomial
H ∈ Q[t] such that for all v À 1

H(v) = dimKΓv

(see [18, Theorem 3.1]). As a consequence of Lemma 1.3, the degree and the
leading coefficient of H do not depend on the choice of the good filtration
(Γv)v. The degree d of H is called the dimension d(M) of gr(M) and the
multiplicity e(M) of gr(M) is the leading term of H times d!.
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In the case m = 0, i.e., for the Weyl algebra An(K) one has the funda-
mental theorem of J. Bernstein that asserts that, for any non-trivial An(K)-
module M so that gr(M) is of finite type,

d(M) ≥ n.

An An(K)-module M such that d(M) = n is said to be holonomic.
One of the applications of the concept of holonomic modules is the ex-

istence of the Bernstein-Sato functional equations [18, 31, 29], i.e., given
polynomials f1, . . . , fq in K[x1, . . . , xn] there are differential operators Qj in
An(K[λ]), with λ = (λ1, · · · , λq), and a non-zero polynomial b ∈ K[λ] such
that the formal relations

Qj(f
λ1
1 · · · fλj+1

j · · · fλq) = b(λ)fλ1
1 · · · fλq (j = 1, . . . , q)

hold.
One of the most interesting examples, for us, of En,m(K)-modules, m ≤ n,

is the following. Consider exponential polynomials P1, . . . , Pq of n variables
with positive integral frequencies and coefficients in a subfield K of C, that
is, finite sums

Pj(x) =
∑

k∈Nm

cj,k(x)ek·x,

with cj,k ∈ K[x], j = 1, . . . , q. We consider a new field K(λ) = K(λ1, . . . , λq)
obtained from K by adjoining q indeterminates, and define the module M
freely generated by a single generator denoted Pλ = Pλ1

1 · · · Pλq
q , namely,

M = M(P1, . . . , Pq) := K(λ)[x1, . . . , xn, ex1 , . . . , exm ][
1

P1

, . . . ,
1

Pq

]Pλ, (3)

where, to pick up the earlier notation, Xi (resp., Yj) operates as multiplica-
tion by xi (resp., by exj) and Dj acts as the differential operator 5j, defined
by

5j(APλ) :=

(
∂A

∂xj

+ A
q∑

k=1

λk

Pk

∂Pk

∂xj

)
Pλ.

The natural filtration of M is

Γv :=

{
R(λ, x, ex)

(P1 · · ·Pq)v
Pλ : R ∈ K(λ)[x, ex], degx,exR ≤ vd0

}
,
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where d0 := 1 + degx,ex(P1 · · ·Pq). This is a good filtration and

dimK(λ)Γv =

(
n + m + vd0

vd0

)
.

Hence,
d(M) = n + m, e(M) = dn+m

0 .

It is natural to ask whether for every non-trivial En,m(K)-module (or
En,m(K(λ))-module) with m ≤ n, one has d(M) ≥ n + m. Or, at least, to
give conditions that ensure this inequality occurs.

Let us start with the following simple examples where n = m = 1. Let
α ∈ R (or even α ∈ C) and denote by δα the Dirac mass at the point α.
Consider K a subfield of C, and the E1,1(K)-module Mα, generated by δα.
Mα is a family of distributions with support at the point α. When α = 0 we
have

xδ0 = 0, exδ0 = δ0,
d

dx
δ0 = δ′0,

so that
M0 = {∑ ckδ

(k)
0 } ∼= K[x],

and hence,
d(M0) = 1.

On the other hand, when α 6= 0, we have

xδα = αδα, exδα = eαδα,
d

dx
δα = δ′α,

so that this time
Mα

∼= K[α, eα][x].

Hence,
d(Mα) = 1 + transcdeg(K[α, eα]),

that is, it depends on the degree of transcendency of the extension of K by α
and eα. For instance, if K = Q, α 6= 0 is algebraic, then d(Mα) = 2. In every
case in which K = Q, α 6= 0, d(Mα) ≤ 3. If K = R or C, then d(Mα) = 1.

What this example shows is that the choice of the field may play a crucial
role in deciding whether an En,m(K)-module M verifies or d(M) ≥ n + m
or not. On the other hand, we are mainly interested in modules of the form
M(P1, . . . , Pq), their submodules, and quotient modules.

Let us now consider the case m = 1.
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Proposition 1.1 Let M be a finitely generated En,1(K)-module, then, either
d(M) ≥ n + 1 or for every element m0 ∈ M \ {0} there exist two non-zero
polynomials A,B ∈ K[s], and t ∈ N such that

Y t
1 A(X1)m0 = B(Y1)m0 = 0.

Proof. Let us assume that d(M) ≤ n and let m0 ∈ M \ {0}. We complete
m0 to a system of En,1(K)-generators of M and denote by Γ0 the K-vector
space spanned by this system of generators. We define for v ∈ N

Γv := {P (X,Y1, D)Γ0 : degP ≤ v} .

This is a good filtration.
We claim that the map

Ev −→ HomK(Γv, Γ2v)

P 7→ {m ∈ Γv 7→ Pm ∈ Γ2v}
cannot be injective for any sufficiently large v. If it were injective, we would
have the inequality

const.v2n+1 ≈ dimKEv ≤ dimKHomK(Γv, Γ2v) ≈ const.v2d(M),

which implies 2n+1 ≤ 2d(M), in other words, d(M) ≥ n+ 1
2
. This contradicts

the fact that we have assumed d(M) ≤ n.
Hence, for all large v there are differential operators Pv = P ∈ Ev \ {0}

such that P · Γv = 0. In other words,

Pm = 0 ∀m ∈ Γv .

Let us write P =
∑

cα,β,γX
αY β

1 Dγ, |α| + β + |γ| ≤ v. Let γ0 be the largest
power of D, in the lexicographical order, that appears in P . Then, as in
Lemma 1.1, we have

P1 := ad(X)γ0(P ) = (−1)|γ0|γ0!
∑

cα,β,γ0X
αY β

1 6= 0.

On the other hand, since P · Γv = 0, we have for any 1 ≤ k ≤ n

ad(Xk)P · Γv−1 = 0
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because
ad(Xk)P · Γv−1 = XkP · Γv−1 − PXk · Γv−1

and Xk · Γv−1 ⊆ Γv, Γv−1 ⊆ Γv. Therefore,

P1 · Γv−|γ0| = ad(X)γ0(P ) · Γv−|γ0| = 0,

and
degP1 + |γ0| ≤ degP ≤ v.

Let us rewrite P1 as a polynomial in X ′ = (X2, . . . , Xn),

P1 =
∑

bα,β,δX
α
1 Y β

1 (X ′)δ.

¿From Lemma 1.2, with D′ = (D2, . . . , Dn), we obtain

ad(D′)δ(X ′)δ = δ!

and, if for some i, δi < δi,

ad(D′)δ(X ′)δ = 0.

Therefore, if δ0 is the largest power of X ′ in the lexicographic order, we have

P2 := ad(D′)δ0P1 = δ0!
∑

bα,β,δ0X
α
1 Y β

1 6= 0,

degP2 + |δ0| ≤ degP1,

P2 · Γv−|γ0|−|δ0| = 0.

Clearly, v− |γ0| − |δ0| ≥ degP2 > 0, if not, P2 would be a non-zero constant,
which contradicts the last identity.

Thus, we have reduced ourselves to the following situation. We have a
non-zero polynomial P of the variables X1, Y1, 1 ≤ degP ≤ v, and P ·Γv = 0.
Let us write it in the form

P (X1, Y1) =
N∑

l=0

Y l
1Ql(X1).

Observe that if P (X1, Y1) = Y N
1 QN(X1, Y1) then

Y N
1 QN(X1, Y1)m0 ∈ Y N

1 QN(X1, Y1)Γv = 0.
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and we would already have proved the first part of the proposition, so that we
can assume that there is more than one index l such that Ql 6= 0. Obviously,
we want to reduce ourselves to the case of a single Ql 6= 0. Let us apply
Corollary 1.1, then

ad(D1)P =
N∑

l=0

Y l
1 (Q′

l(X1) + lQl(X1)),

where Q′
l = dQl

dX1
. We let

P̃ := [QNad(D1)P − (Q′
N + NQN)P ] ,

so that we still have
P̃ · Γv−1 = 0.

Let L be the largest index such that L < N and QL 6= 0, then the leading
coefficient of P̃ as a polynomial in Y1 is

QN(Q′
L + LQL)−QL(Q′

N + NQN) = (L−N)QNQL + (QNQ′
L −QLQ′

N),

which is the sum of two polynomials of different degrees. The one of highest
degree is (L −N)QNQL, which is evidently different from zero. This shows
that P̃ 6= 0, degY1P̃ = L, and P̃ · Γv−1 = 0, so that we can repeat the
procedure, and in at most N − 1 steps arrive to a non-zero polynomial of
the form Y t

1 A(X1), which annihilates Γv−N+1. This makes sense because
N ≤ degP ≤ v. This proves the first part of the proposition.

To prove the second part, we rewrite the original polynomial P (X1, Y1)
in the form

P =
M∑

k=0

Xk
1 Pk(Y1),

and assume M ≥ 1, otherwise we are done. Hence, by Corollary 1.1 we have

ad(D1)P = XM
1 Y1P

′
M(Y1) +

M−1∑

k=0

X1
k((k + 1)Pk+1 + Y1P

′
k),

which again kills Γv−1. We consider

P̃ := Y1P
′
M(Y1)P − PM(Y1)ad(D1)P. (4)
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We claim that degX1P̃ = M − 1. In fact, the leading coefficient of P̃ is

Y1P
′
M(Y1)PM−1(Y1)−M(PM(Y1))

2 − Y1PM(Y1)P
′
M−1(Y1), (5)

which we have to show is not identically zero. For that purpose, we prove
the following lemma.

Lemma 1.4 Let R, S ∈ K[ξ], R 6= 0, and a ∈ K∗, then, the polynomial

aR2(ξ)− ξ(R′(ξ)S(ξ)−R(ξ)S ′(ξ)) 6≡ 0.

Proof. We want to reduce ourselves to the case where the coefficients are
complex numbers. For that purpose we consider the collection of a and all
the non-zero coefficients of R and S, say {α1, . . . , αs}. Then Q(α1, . . . , αs)
is a subfield of K, since charK = 0, and, on the other hand it is a finitely
generated extension of Q, which we can decompose as a finite transcendental
extension followed by a finite algebraic extension. The first extension can be
embedded as a subfield of R, and its algebraic extension as a subfield k of
C.

Therefore, we really have two polynomials R, S ∈ C[ξ], R 6= 0, and a ∈
C∗, and we need to show that the identity

aR2 = ξ(R′S −RS ′)

is impossible. Namely, we would have the equation

−a

ξ
=

RS ′ −R′S
S2

=
d

dξ

(
S

R

)

The function f(ξ) := S(ξ)
R(ξ)

is rational, hence it is single valued and holomor-
phic outside the set of its poles. On the other hand, the differential equation

−a

ξ
= f ′(ξ) (6)

has only the solutions −a log ξ + c, c ∈ C, which are neither single valued
nor rational. This concludes the proof of Lemma 1.4.

2

Let us return to the proof of the Proposition 1.1. We have just seen that
degX1P̃ = M−1, where P̃ is defined by ( 4 ). We also have that P̃ ·Γv−1 = 0.
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Repeating this procedure a total of M times, we obtain a non-zero polynomial
B(Y1), i.e, a polynomial of degree zero in X1, such that B(Y1) · Γv−M = 0.
This is possible because M ≤ degP ≤ v. This concludes the proof of the
second part of the proposition.

2

Let us give an application of Proposition 1.1 to the module

M(P1, . . . , Pq) = K(λ)[x1, . . . , xn, e
x1 ][1/P1, . . . , 1/Pq]Pλ

defined by equation (2), where Pj ∈ K[x1, . . . , xn, e
x1 ], K a subfield of C.

Proposition 1.2 There are two non-zero polynomials A1, A2 of a single
variable s, with coefficients in K[λ], λ = (λ1, . . . , λq), and 2q linear dif-
ferential operators, Qi,j (i = 1, 2; j = 1, . . . , q), with coefficients belonging
K[λ, x, ex1 , e−x1 ], such that for every j

A1(λ, x1)Pλ = Q1,j(λ, x, ex1 , e−x1 ,
∂

∂x
)PjPλ, (7)

A2(λ, ex1)Pλ = Q2,j(λ, x, ex1 , e−x1 ,
∂

∂x
)PjPλ. (8)

(To simplify the notation we have written ∂
∂x

to denote ( ∂
∂x1

, . . . , ∂
∂xn

).)

Proof. We follow an idea of Lichtin [29]. The module M ,

M = M(P1, . . . , Pq) = K(λ)[x1, . . . , xn, e
x1 ][1/P1, . . . , 1/Pq]Pλ

is an En,1(K(λ)-module of finite type and d(M) = n + 1, as stated earlier.
Introduce the new En,1(K(λ))-module N defined by

N := M
⊕ · · ·⊕ M (q terms),

consider the elements el ∈ N , l ∈ N∗,

el = (P1
l−1P2

l · · ·Pq
lPλ, . . . , P1

l · · ·Pq−1
lPq

l−1Pλ),

and denote N (l) the submodule of N generated by el.
We have that

d(N ) = n + 1,

13



since it is a direct sum [18]. Hence (cf. [18]),

d(N (l)) ≤ n + 1.

Moreover,
N (l + 1) ⊆ N (l), (l ∈ N∗).

On the other hand, we can apply Proposition 1.1 to conclude that d(N (l)) =
n + 1 for every l. If not true, there would be a non-zero polynomial B ∈
K[λ, s], such that

B(λ, ex1)el = 0.

This is impossible, since we are just multiplying exponential polynomials.
Furthermore, for every l [18],

d(N (l)/N (l + 1)) ≤ n + 1.

Thus, either for every l we achieve this upper bound or there is a smallest
index l0 such that

d(N (l0)/N (l0 + 1)) ≤ n. (9)

Let us show the first case cannot occur. If it did, consider the sequence of
modules

0 −→ N (l + 1) −→ N (l) −→ N (l)/N (l + 1) −→ 0,

which is clearly exact for every l. Since the dimensions of all the terms coin-
cide and it is possible to apply the proof of [18, Proposition 3.6], with An(K)
replaced by En,1(K(λ)), we conclude that their multiplicities are related by

e(N (l)) = e(N (l + 1)) + e(N (l)/N (l + 1)),

which implies that for all l ≥ 1

1 ≤ e(N (l)) < e(N (l + 1)).

This is obviously impossible. Hence, the equation (9) holds for some minimal
value of l0.

It could occur that N (l0)/N (l0 + 1) = 0, then el0 ∈ N (l0 + 1). In this
case there is a differential operator R = R(λ, x, ex1 , ∂

∂x
) ∈ En,1(K(λ)) such

that
el0 = Rel0+1.

14



Consider the jth entry. We have

P1
l0 · · ·Pj

l0−1 · · ·Pq
l0Pλ = R

(
P1

l0+1 · · ·Pj
l0 · · ·Pq

l0+1Pλ
)

= R
((

P1 · · · P̂j · · ·Pq

) (
P1

l0 · · ·Pq
l0Pλ

))

= Rj

(
P1

l0 · · ·Pq
l0Pλ

)
,

where Rj is another differential operator in En,1(K(λ)) obtained applying
Leibniz’s rules. Since λ1, . . . , λq are transcendental over K, this last formal
identity is equivalent to a true identity involving only P1, . . . , Pq, and their
derivatives, instead of Pλ. We can therefore change variables λ1 7→ λ1 +
l0, . . . , λj 7→ λj + l0 − 1, . . . , λq 7→ λq + l0, and obtain

Pλ = Rj(PjPλ).

Finally, we can clear the denominators from K[λ] in Rj and conclude that
there is some b ∈ K[λ]\{0}, independent of j, and corresponding differential
operators Qj with coefficients in K[λ, x, ex1 ] so that

b(λ)Pλ = Qj(PjPλ). (10)

If N (l0)/N (l0 + 1) 6= 0, we can apply Proposition 1.1 to this En,1(K(λ))-
module and find two non-zero polynomials A,B ∈ K[λ, s] and an integer
t ∈ N such that

etx1A(λ, x1)el0 ∈ N (l0 + 1)

and
B(λ, ex1)el0 ∈ N (l0 + 1).

We can divide out by etx1 the first relation and apply the earlier reason-
ing to conclude there are non-zero polynomials A1, A2 ∈ K[λ, s] and linear
differential operators Qi,j with coefficients in K[λ, x, ex1 , e−x1 ] so that

A1(λ, x1)Pλ = Q1,jPjPλ

A2(λ, ex1)Pλ = Q2,jPjPλ

for j = 1, . . . , q.
This concludes the proof of the functional equation in every case.

2
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Let us denote by A the ring of all entire functions f in Cn+q satisfying
the growth condition

|f(λ, x)| ≤ κ(1 + |λ|+ |x|)NeD|<x1| (11)

for some κ,N, D > 0.
If we knew that Aj(λ, s) = bj(λ)Bj(s), j = 1, 2, then we could simplify

the equations (7) and (8) when K ⊆ Q, as follows. The only possible solution
s ∈ C of the pair of equations

B1(s) = B2(e
s) = 0

is s = 0, by the Gelfond-Schneider theorem [2]. Let us denote m ∈ N is the
multiplicity of this solution. Then, appealing to [10] we know there are two
entire functions C1, C2 satisfying the growth conditions

|Cj(s)| = O((1 + |s|)NeN |<s|) (s ∈ C), (12)

for some N ∈ N, j = 1, 2, and

C1(s)B1(s) + C2(s)B2(e
s) = sm. (13)

We could then conclude that there would be a non-zero polynomial b(λ) and
linear differential operators Q̃j with coefficients in A such that

b(λ)x1
mPλ = Q̃j(PjPλ), j = 1, . . . , q.

Namely, multiply (7) by b2(λ)C2(x1), (8) by b1(λ)C1(x1), and add.
In general, we do not have such a factorization of A1 and A2. The idea

will be to use an approximate factorization. We discuss this point in the
following section.

To conclude this introductory section, let us make some remarks about
generalizations of the previous results. First, it is convenient to observe that
the algebra A is a subalgebra of the weighted Fréchet algebra usually denoted
Aρ(C

n), ρ(x) = log(1 + |x|) + |<x|, where

Aρ(C
n) = {f entire : ∃c > 0 |f(x)| ≤ cecρ(x) ∀x ∈ Cn}.

The spaces En,m we are considering, are subalgebras of this weighted algebra.
In this paper we will essentially consider only this weight ρ.
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Let us now see how to apply the previous reasonings to the algebra of
polynomials in ez1 , eαz1 , z2, . . . , zn with coefficients in Q, where we assume α ∈
Q \ Q and z1, . . . , zn are n complex variables. For this purpose, we introduce
the algebra K = K < Y1, Z1, X2, . . . , Xn, D1, . . . , Dn > of operators acting
on the polynomial algebra K[Y1, Z1, X2, . . . , Xn], K a field of characteristic
zero. The differential operators Dj obey Leibniz’s rule, the Xj, Y1, Z1 act by
multiplication, and we define

D1Y1 = Y1, D1Z1 = αZ1, D1Xj = 0,

DjY1 = DjZ1 = 0 (j ≥ 2), DjXk = δjk.

As a consequence, we have the conmutation rules

[Dj, Y1] = [Dj, Z1] = 0 (j ≥ 2), [Dj, Xk] = δjk,

[Y1, Z1] = [Y1, Xj] = [Z1, Xj] = [Xk, Xj] = 0,

[D1, Y1
kZ1

l] = (k + αl)Y1
kZ1

l (14)

[Y1, D1
k] = −Y1D1

k−1 + D1([Y1, D1
k−1]) = −kY1D1

k−1 + p(Y1, D1), (15)

where p(Y1, D1) is a polynomial of degree ≤ k − 2 in D1.
We remark that the algebra of exponential polynomials in the variables

ez1 , eαz1 , z2, . . . , zn, cannot be isomorphic to the polynomial algebra in Y1, Z1,
X2, . . . , Xn, unless α 6∈ Q. Recall that the field K always contains a copy of
Q.

Lemma 1.5 Every element P of K can be written in a unique way as

P =
∑

cijklX
iY1

jZ1
kDl.

Proof. Denote degP = |i| + j + k + |l|. Suppose P = 0, as operators, we
need to verify that all the coefficients cijkl = 0. As in Lemma 1.1, we can
reduce ourselves to the case P is a polynomial in Y1, Z1, D1. We use (13) to
diminish the degree of P in D1, by commutations with Y1, and conclude we
can assume there is no D1. But, as a multiplication operator, a polynomial
in Y1, Z1 cannot vanish unless its coefficients are zero.

2

We define the filtration Kv of K, by degrees, and the corresponding graded
ring gr(K) = K0

⊕K1/K0
⊕ · · · We conclude, as before, that gr(K) is con-

mutative and isomorphic to the polynomial ring in 2n + 1 variables over K.
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The concept of good filtrations is the same as earlier and Lemma 1.4 and its
consequences hold.

We need to prove the analogue of Proposition 1.2.

Proposition 1.3 Let M be a finitely generated K-module. Then, either
d(M) ≥ n + 1 or for every element m0 ∈ M \ {0} there are two non-zero
polynomials A,B ∈ K[s] and two non-negative integers a, b such that

Z1
aA(Y1)m0 = Y1

bB(Z1)m0 = 0.

Proof. We use the same filtration Γv as in the proof of the Proposition 1.2,
so that m0 ∈ Γ0. Thus, if d(M) ≤ n, for all large v there is P ∈ Kv \ {0},
such that P · Γv = 0. By the argument we have used in Proposition 1.2, we
can assume that P depends only on the variables Y1, Z1, D1, 1 ≤ degP ≤ v.
Using the relation (13), we can even eliminate D1. We just observe that
ad(Y1)P · Γv−1 = 0, and ad(Y1)P is a non-zero polynomial whose degree
in D1 strictly smaller than that of P . This is verbatim the procedure in
Proposition 1.2 to eliminate D1. So that, from the start we could assume
that 1 ≤ degP ≤ v, P · Γv = 0, and P ∈ K[Y1, Z1].

If P were independent of Z1, then, either P (Y1) = cY1
d, c 6= 0, d = degP ,

and we can take a = 0, b = d, A(Y1) = P (Y1), B(Z1) = c, or P has at least
two terms. In the latter case, the polynomial ad(D1)P (Y1)− (degP )P (Y1) 6=
0, it annihilates Γv−1, and it has degree < degP . Iterating this procedure we
would be done. Thus, let us assume that P depends both on Y1 and on Z1.
Consider

P =
l∑

j=0

Qj(Y1)Z1
j,

and assume there are at least two non-zero terms in this representation.
(Otherwise, we let A(Y1) = Ql(Y1) and a = l.) Then,

[D1, P ] =
l∑

j=0

(Y1Q
′
j(Y1) + αjQj(Y1))Z1

j

kills Γv−1, and so does

P1 := Ql[D1, P ]− (Y1Q
′
l(Y1) + αlQl(Y1))P,
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which has degree in Z1 < l. The only problem is to show that P1 6= 0. Since
there is an index j < l such that Qj 6= 0, if P1 = 0 we would have that

Y1(QlQ
′
j −QjQ

′
l) = α(l − j)QjQl.

This leads to the formal differential equation

Q′
l

Ql

− Q′
j

Qj

=
α(l − j)

Y1

6= 0,

which, by an argument similar to that used in (5), can be shown to be
impossible. This concludes the proof of the existence of an a ∈ N and
an A ∈ K[Y1] \ {0} with the required properties. The other part of the
proposition is proved similarly.

2

As pointed out above, the algebra generated over K by ex1 , eαx1 , x2, . . . , xn,
∂

∂x1
, . . . , ∂

∂xn
, when K is a subfield of C and α ∈ K \Q, is isomorphic to the

algebra K = Kα we have considered above ( Y1 = ex1 , Z1 = eαx1). There-
fore, we can consider a family P1, . . . , Pq of exponential polynomials in K,
K(λ) = K(λ1, . . . , λq), and the module

M = M(P1, . . . , Pq) = K(λ)[ex1 , eαx1 , x2, . . . , xn][1/P1, . . . , 1/Pq]Pλ,

which is the module generated by the action of K on the formal generator
Pλ = P1

λ1 · · ·Pq
λq . So that we obtain the following result, corresponding to

Proposition 1.2.

Proposition 1.4 There are two non-zero polynomials A1, A2 of a single
variable s, with coefficients in K[λ], λ = (λ1, . . . , λq), and 2q linear dif-
ferential operators, Qi,j (1 ≤ i ≤ 2; 1 ≤ j ≤ q), whose coefficients belong
to K[λ, ex1 , e−x1 , eαx1 , e−αx1 , x2, . . . , xn] , such that for every j = 1, . . . , q we
have

A1(λ, ex1)Pλ = Q1,jPjPλ, (16)

A2(λ, eαx1)Pλ = Q2,jPjPλ. (17)
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2 Functional equations and analytic

continuation

In the applications we have in mind, e.g., Bezout identities, division prob-
lems, and the like, one needs to determine the principal part of the Laurent
development of |f |2λ for λ = −k, k ∈ N, where f is an exponential polyno-
mial. The reason for this need will become clear later on. Meanwhile, we are
going to explain how to obtain sufficient knowledge of the coefficients of the
principal parts, even if we do not have the factorization of the polynomials
A1, A2 mentioned at the end of the last section.

Lemma 2.1 Let f be an exponential polynomial in En,1(K), k ∈ N, there is
an integer q ∈ N such that for any N ∈ N one can find a non-zero polynomial
RN ∈ K[x1] and a functional equation of the form

(λ + k)qRN |f |2λ = Qk,N(|f |2λfk+1) + (λ + k)q+NvN |f |2λ, (18)

where vN ∈ K[λ, x1] and Qk,N is a linear differential operator with coefficients
in K[λ, x, ex1 , e−x1 ].

Proof. From Proposition 1.2 we know the existence of a non-zero polynomial
A ∈ K[λ, x1] and a differential operator Q with polynomial coefficients such
that one has the formal identity

A(λ, x1)f
λ = Q(λ, x, ex1 , e−x1 ,

∂

∂x
)fλ+1 = Q(λ)fλ+1.

We would like to iterate this identity, except that contrary to the usual
Bernstein-Sato functional equations, the coefficients of A(λ, x1) depend on
x1. We factor A into two coprime polynomials

A(λ, x1) = p1(λ)A1(λ, x1).

In particular, for every fixed λ the map x1 7→ A1(λ, x1) is not identically
zero, and hence we deduce the formal identity

p1(λ + 1)A(λ, x1)f
λ = Q(λ)

{
A(λ + 1, x1)f

λ+1

A1(λ + 1, x1)

}

= Q(λ)

{
Q(λ + 1)fλ+2

A1(λ + 1, x1)

}
.

20



Applying Leibniz’s rules one obtains

p1(λ + 1)A(λ, x1)f
λ =

Q̃1(λ)fλ+2

A1(λ + 1, x1)
m1

,

for some m1 ∈ N, and Q̃1 a new differential operator with coefficients in
K[λ, x, ex1 , e−x1 ]. Thus, we find

Ã1(λ, x1)f
λ := p1(λ + 1)A1(λ + 1, x1)

m1A(λ, x1)f
λ = Q̃1(λ)fλ+2.

Iterating this procedure, for every k ∈ N we find a non-zero polynomial
Ak(λ, x1) and a differential operator Qk with coefficients in the same ring as
above, so that

Akf
λ = Qkf

λ+2k+1. (19)

Since multiplication by the formal antiholomorphic function f
λ

commutes
with the operators ∂

∂xj
, then

Ak|f |2λ = Qk(λ)(|f |2λf 2k+1).

Note that this formal identity can also be interpreted as an identity among
distributions. It is convenient to factor Ak into coprime polynomials as fol-
lows

Ak(λ, x1) = (λ + k)qBk(λ, x1),

which allows us to write

(λ + k)qBk(λ, x1)|f |2λ = Qk(λ)(|f |2λf 2k+1) (20)

Since Bk is coprime with λ+k, for any N ∈ N∗ we have a polynomial Bezout
identity

RN(x1) = uN(λ, x1)Bk(λ, x1) + vN(λ, x1)(λ + k)N , (21)

for some polynomials uN , vN ∈ K[λ, x1] and RN ∈ K[x1], RN 6= 0. (It is
clear that uN , vN , RN , and q depend also on k. We suppress this index to
simplify the notation.) Therefore, we have

(λ + k)qRN(x1)|f |2λ = (λ + k)quNBk|f |2λ + (λ + k)q+NvN |f |2λ

= uNQk(λ)(|f |2λf 2k+1) + (λ + k)q+NvN |f |2λ

= Qk,N(|f |2λf 2k+1) + (λ + k)q+NvN |f |2λ,
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with Qk,N := uNQk, which concludes the proof of the lemma.
2

The same proof yields relations of the form

(λ + k)q̃SN(ex1)|f |2λ = Q̃k,N(|f |2λf 2k+1) + (λ + k)q̃+N ṽN |f |2λ, (22)

where ṽN ∈ K[λ, ex1 ], SN(t) = SN,k(t) ∈ K[t], and Q̃k,N is a differential
operator with the same properties as Qk,N .

We know a priori [1] that, in a neighborhood of λ = −k, the distribution-
valued meromorphic function |f |2λ has the Laurent expansion

|f |2λ =
∞∑

j=−2n

ak,j(λ + k)j, (23)

with ak,j ∈ D′(Cn). The previous lemma allows us to compute explicitly
the products RN(x1)ak,j, SN(ex1)ak,j, for −2n ≤ j ≤ 0, as soon as we take
N ≥ 2n + 1. Namely, the polynomial vN in (21) can be expanded in powers
of λ + k, i.e.,

vN(λ, x1) =
m∑

l=0

vN,l(x1)(λ + k)l. (24)

Let ϕ ∈ D′(Cn), then

(λ + k)q < |f |2λ, RN(x1)ϕ > =
∞∑

j=−2n

< ak,j, RNϕ > (λ + k)q+j

= < Qk,N(λ)(|f |2λf 2k+1), ϕ >

+
∞∑

j=−2n

< ak,j, vNϕ > (λ + k)q+N+j

= < |f |2λf 2k+1, Q′
k,N(λ)ϕ >

+
∑

j,l

< ak,j, vN,lϕ > (λ + k)q+N+j+l,

(25)
where Q′

k,N is the adjoint operator of Qk,N (obtained by integration by parts).
The first term of the last sum is holomorphic at λ = −k, and the series

only contains powers of λ + k bigger or equal to q + 1, due to the choice
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N ≥ 2n + 1. Thus, the distribution-valued function (λ + k)qRN(x1)|f |2λ is
holomorphic in a neighboorhood of λ = −k. Moreover, if we denote

(λ + k)qRN(x1)|f |2λ =
∞∑

h=0

bk,h(λ + k)h (26)

its Taylor development, then, for 0 ≤ h ≤ q, the distributions bk,h are given
by

< bk,h, ϕ >=
1

2πi

∫

|λ+k|=ε

∫

Cn
|f(x)|2λf(x)2k+1Q′

k,N(λ)(ϕ(x))dx
dλ

(λ + k)h+1
,

(27)
where ε > 0 is chosen sufficiently small so that on a neighborhood of supp(ϕ),
the function x 7→ |f(x)|−2ε is integrable.

We can rewrite the last integral as

1

2πi

∫

|λ+k|=ε

∫

Cn
|f(x)|2(λ+k)f(x)(f(x)/f(x))kQ′

k,N(λ)(ϕ(x))dx
dλ

(λ + k)h+1

=
∞∑

j=0

1

j!

1

2πi

∫

|λ+k|=ε

∫

Cn
(log |f |2)jf(f/f)kQ′

k,N(λ)(ϕ(x))dx (λ + k)j−h−1dλ ,

which shows that the terms < bk,h, ϕ > are linear combinations of integrals
of the form ∫

Cn
(log |f |2)jf(f/f)kQι(ϕ)dx, (28)

where j ∈ N (in fact, 0 ≤ j ≤ h + 1) and the Qι are differential operators
with coefficients in K[x, ex1 , e−x1 ]. Note that the term (f/f)k is bounded,
and the same holds locally for f(log |f |2)j.

Let us take, once for all, N = 2n + 1 and, since RN really depends also
on k we shall denote it Rk from now on. Therefore, from (23) and (26) we
obtain

Rk(x1)ak,j = 0 if q + j < 0 (29)

Rk(x1)ak,j = bk,q+j if 0 ≤ q + j ≤ q (30)

Moreover, if we introduce the polynomials Sk in a similar way, the same
procedure leads to an explicit computation of Sk(e

x1)ak,j for the same values
of j, −2n ≤ j ≤ 0. We summarize these remarks in the following statement.
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Proposition 2.1 Let f ∈ En,1(K) and k ∈ N, there exist non-zero polyno-
mials Rk,Sk of a single variable, with coefficients in K, Nk ∈ N, and positive
constants Ck, Dk such that the distributions ak,j, −2n ≤ j ≤ 0, defined by
the Laurent development

|f |2λ =
∞∑

j=−2n

ak,j(λ + k)j

satisfy the estimates

| < Rk(x1)ak,j, ϕ > |+ | < Sk(e
x1)ak,j, ϕ > | ≤ Ck‖ϕ‖Nk

max
x∈supp(ϕ)

e(Dkρ(x)),

(31)
where ϕ ∈ D(Cn), ρ(x) = log(1 + |x|) + |<x1|.

Corollary 2.1 If K ⊆ Q, there are integers mk ∈ N, and two constants
C ′

k, D
′
k > 0 such that the estimate (31) implies

| < xmk
1 ak,j, ϕ > | ≤ C ′

k‖ϕ‖Nk
max

x∈supp(ϕ)
e(D′kρ(x))

Proof. We return to the argument at the end of the preceding section. For
each k ∈ N we can find two entire functions ϕk, ψk in the Paley-Wiener class
of functions, i.e., O((1+ |x1|)BeA|<x1|), and an integer m = mk ≥ 0 such that

Rk(x1)ϕk(x1) + Sk(e
x1)ψk(x1) = xm

1 . (32)

Thus, we can get estimates for the distributions xm
1 ak,j, using (28), (30), and

(32).
2

In the following section, we shall use these estimates for the distributions
involved in the analytic continuation of distribution-valued holomorphic func-
tions of the form |f1|2λ1 · · · |fp|2λp/(|f1|2 + · · ·+ |fp|2)m. These functions have
already appeared in our previous work [12, 3]. The existence of an analytic
continuation as a meromorphic function of λ1, . . . , λp follows from Hironaka’s
resolution of singularities, but since we want to control the distributions that
appear as coefficients in the Laurent developments about some pole, that
is, we would like to obtain estimates similar to those of Proposition 2.1 and
Corollary 2.1, we need to find some kind of functional equation that provides
the analytic continuation. Since it is easier to provide functional equations
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for |f1|2λ1 · · · |fp|2λp , we need a technical trick to reduce this kind of quo-
tients of functions to products. It is based on a simple lemma about the
inverse Mellin transform. In order to simplify its writing let us introduce the
following notation.

For t1, . . . , tp > 0, µ1, . . . , µp ∈ C, we let

tµ := tµ1
1 · · · tµp

p .

Given s1, . . . , sp−1, β ∈ C, let

ds := ds1 · · · dsp−1, sp := β − s1 − · · · − sp−1, µ̃j := µj − sj (1 ≤ j ≤ p).

We also let s := (s1, . . . , sp−1), s
∗ := (s1, . . . , sp), with sp as previously de-

fined. Recall also the somewhat standard notation,

Γ[a] := Γ[a1, · · · , ak] := Γ(a1) · · ·Γ(ak),

for complex values aj such that the Euler Gamma function is defined. Finally,
as long as there is no possibility of confusion, we shall use the following
abbreviated notation for multiple integrals on lines parallel to the imaginary
axes. Let γ = (γ1, . . . , γp−1) be a vector of real components, then, for any
integrable function F

∫ γ+i∞

γ−i∞
F (s)ds :=

∫ γ1+i∞

γ1−i∞
· · ·

∫ γp−1+i∞

γp−1−i∞
F (s)ds1 · · · dsp−1

Lemma 2.2 Let t1, . . . , tp > 0, µ1, . . . , µp ∈ C, <β > 1, P ∈ C[µ1, . . . , µp],
then, with the previous notation,

P (µ)
tµ

(t1 + · · ·+ tp)β
=

1

(2πi)p−1Γ(β)

∫ γ+i∞

γ−i∞
Γ[s∗]P (µ̃)tµ̃ds (33)

for any γj > 0 such that γ1 + · · ·+ γp−1 < <β − 1.

Proof. We start from a known formula about the inverse Mellin transform
[24, 6.422.3,p.657], for 0 < γ < <(β − 1), t > 0, one has

1

(1 + t)β
=

1

2πiΓ(β)

∫ γ+i∞

γ−i∞
Γ(s)Γ(β − s)t−sds, (34)
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This integral is absolutely convergent because of the rapid decrease of Γ(s)
along verical lines in the right-hand plane. (In fact, (34) follows inmediately
from the definition of Euler’s Beta function and the Mellin inversion formula.)
Thus, when p ≥ 2 we let τ = t2 + · · · + tp, and then, if 0 < γ1 < <(β − 1),
we have

1

(t1 + · · ·+ tp)β
=

1

τβ

1

(1 + (t1/τ))β

=
1

2πiΓ(β)τβ

∫ γ1+i∞

γ1−i∞
Γ(s1)Γ(β − s1)(t1/τ)−s1ds1

=
1

2πiΓ(β)

∫ γ1+i∞

γ1−i∞
Γ(s1)Γ(β − s1)t1

−s1τ−β−s1ds1.

Since <(β−s1) > 1, we can use a recurrence argument when p ≥ 3, which
will become clear after we write down the next step. We rewrite τ = t2 + σ,
so that

1

τβ−s1
=

1

σβ−s1

1

(1 + (t2/σ))β−s1

=
1

2πiΓ(β − s1)

∫ γ2+i∞

γ2−i∞
Γ(s2)Γ(β − s1 − s2)t

−s2σ−(β−s1−s2)ds2,

as long as 0 < γ2 < <(β − s1 − 1), i.e., γ1 + γ2 < <β − 1. Therefore, with
T = t1 + · · ·+ tp, we have

1

T β
=

1

(2πi)2Γ(β)

∫ γ1+i∞

γ1−i∞

∫ γ2+i∞

γ2−i∞
Γ[s1, s2, β−s1−s2]t

−s1t−s2σ−(β−s1−s2)ds1ds2,

which shows, by induction on p, that the formula (33) is correct when P ≡
1, µj = 1(j = 1, . . . , p). In other words, with the notation introduced above,
we have proved that

1

T β
=

1

(2πi)p−1Γ(β)

∫ γ+i∞

γ−i∞
Γ[s∗]t−s∗ds. (35)

Multiplying (35) by tµ = tµ1
1 · · · tµp

p , we obtain the formula (33) in the case
P ≡ 1:

tµ

T β
=

1

(2πi)p−1Γ(β)

∫ γ+i∞

γ−i∞
Γ[s∗]tµ̃ds. (36)
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To obtain the general case, let us rewrite (36) by choosing new variables
r1, . . . , rp defined by

rj :=
tj
T

=
tj

t1 + · · ·+ tp
(1 ≤ j ≤ p).

It follows that for any rj > 0, µj ∈ C,

rµ =
1

(2πi)p−1Γ(β)

∫ γ+i∞

γ−i∞
Γ[s∗]rµ̃ds. (37)

If we now apply the differential operator rj
∂

∂rj
to both sides of (37) we find

µjr
µ =

1

(2πi)p−1Γ(β)

∫ γ+i∞

γ−i∞
Γ[s∗]µ̃jr

µ̃ds.

It is clear now that for any polynomial P ,

P (µ)rµ =
1

(2πi)p−1Γ(β)

∫ γ+i∞

γ−i∞
Γ[s∗]P (µ̃)rµ̃ds.

Replacing rj by their values in terms of the tk, we obtain the expression (33).
2

Let us now apply this lemma to the study of the coefficients in the Laurent
expansion about µ = 0 of the analytic continuation of

µ 7→ |f |2(µt−k)

‖f‖2m
, (38)

where t ∈]0,∞[p is a vector to be chosen below, µ ∈ C, k ∈ Z, k is the
p-dimensional vector (k, . . . , k), m ∈ N∗, fj ∈ En,1(K), ‖f‖2m = (|f1|2 +
· · · + |fp|2)m, and, keeping with the previous notation |f |r = |f1|r1 · · · |fp|rp

for any vector r = (r1, . . . , rp) (Similar meaning for f r). From Proposition
1.2 we conclude that there is a polynomial A(λ1, . . . , λp, x1) and differential
operators Q1,j(λ, x, ex1 , e−x1 , ∂

∂x
) such that

A(λ, x1)f1
λ1 · · · fp

λpQ1,j(λ)(f1
λ1 · · · fj

λj+1 · · · fp
λp).

As we have done in the proof of Lemma 2.1, for any k ∈ Z, l ∈ N there is
a polynomial Al ∈ K[λ, x1] and a functional equation (in which we use the
abbreviated notation introduced earlier)

Alf
λ−k = Q1;l(λ)(fλ−k+l).
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The polynomial Al and the new differential operator Q1;l depend also on

k. Multiplying this equation by f1
λ1−k · · · fp

λp−k
, we obtain a functional

equation that has also meaning in the sense of distributions

Al|f |2(λ−k) = Q1;l(λ)(|f |2(λ−k) f l). (39)

As a consequence of Lemma 2.2, and using the same notation, for any point
x such that f1(x) · · · fp(x) 6= 0 we have

Al(λ, x1)
|f(x)|2(λ−k)

‖f(x)‖2m =
1

(2πi)p−1Γ(m)

∫ γ+i∞

γ−i∞
Γ[s∗]Al(λ̃, x1)|f(x)|2(λ̃−k)ds.

(40)
Let us fix l = 2m + 2k + 1 and choose a vector t ∈]0,∞[p such that the

one variable polynomial µ 7→ Al(µt, x1) is not identically zero. Almost every
choice of t works for all k and m. To emphasize the dependence on k, we
now denote Ak(µ, x1) := Al(µt, x1). Factor Ak into two coprime terms,

Ak(µ, x1) = µqBk(µ, x1), (q = q(k)).

Therefore, there are polynomials Rk(x1) 6= 0, uk(µ, x1), and vk(µ, x1), with
the property that

Rk(x1) = uk(µ, x1)Bk(µ, x1) + µ2n+1vk(µ, x1).

Consider from now on λ = µt. For <µ À 1 and ϕ ∈ D(Cn) we can
integrate ϕ against (40) to obtain

1

(2πi)p−1Γ(m)

∫ γ+i∞

γ−i∞

∫

Cn
Γ[s∗]ukAl(λ̃, x1)|f(x)|2(λ̃−k)ϕdxds

=
∫

Cn
uk(µ, x1)Ak(µ, x1)

|f(x)|2(λ−k)

‖f(x)‖2m ϕ(x)dx

= µq
∫

Cn
Rk(x1)

|f(x)|2(λ−k)

‖f(x)‖2m ϕdx− µq+2n+1
∫

Cn
vk
|f(x)|2(λ−k)

‖f(x)‖2m ϕdx

We remind the reader that Al(λ̃, x1) is really a polynomial in µ, s1, . . . , sp−1,
and x1. For s fixed we apply the functional equation (39) and integration by
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parts, to conclude that
∫

Cn
Γ[s∗]ukAl(λ̃, x1)|f |2(λ̃−k)ϕdx =

∫

Cn
Q1;l(λ̃)(|f |2(λ̃−k)f l)ukϕdx

=
∫

Cn
|f |2(λ̃−k)f l Q′

1;l(λ̃)(ukϕ)dx,

where Q′
1;l represents the adjoint operator. Using Fubini’s theorem we get

µq
∫

Cn
Rk
|f |2(λ−k)

‖f‖2m ϕdx =

1

(2πi)p−1Γ(m)

∫

Cn

∫ γ+i∞

γ−i∞
Γ[s∗]|f |2(λ̃−k)f l Q′

1;l(λ̃)(ukϕ)dxds

+µq+2n+1
∫

Cn
vk
|f |2(λ−k)

‖f‖2m ϕdx (41)

= I1(µ) + I2(µ)

Similarly to the case of a single equation considered earlier, we have that
in a neighborhood of µ = 0, the distribution-valued function (38) has the
Laurent development

|f |2(µt−k)

‖f‖2m =
∞∑

j=−2n

ak,jµ
j, ak,j ∈ D′(Cn). (42)

The choice l = 2m + 2k + 1, ensures that the distribution valued function

µ 7→ |f(x)|2(λ̃−k)(f1(x) · · · fp(x))l

is holomorphic in a neighborhood W of µ = 0, uniformly with respect to
s , and independent of x as long as x is near supp(ϕ). Thus, the Taylor
coefficients of I1(µ) about µ = 0 are linear combinations of expressions of
the form

∫ γ+i∞

γ−i∞

∫

Cn
Γ[s∗]F (s∗)(log |f |)α|f |−2(s∗+k)f lE(x, ex1 , e−x1)ϕ(β)dxds,

where E, F are polymonials, α ∈ Np, β ∈ Nn, and we have written (log |f |)α =
(log |f1|)α1 · · · (log |fp|)αp . Altogether, due to the choice of l and the con-
straints on the γj, there are constants κα and N ∈ N such that these integrals
can be estimated by

καmax{|f1(x) · · · fp(x)E(x, ex1 , e−x1)| : x ∈ supp(ϕ)}‖ϕ‖N ,
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with ‖ϕ‖N denoting a Sobolev norm of ϕ. It is clear that there are distribu-
tions bk,h ∈ D′(Cn) such that

I1(µ) =
∞∑

h=0

< bk,h, ϕ > µh.

On the other hand, if vk(µ, x1) =
∑d

i=0 vk,i(x1)µ
i, then

I2(µ) =
∞∑

j=−2n

d∑

i=0

< ak,j, vk,i(x1)ϕ > µi+j+q+2n+1

Summarizing,

∞∑

j=−2n

< Rk(x1)ak,j, ϕ > µj+q

=
∞∑

h=0

< bk,h, ϕ > µh +
∑

i,j

< ak,j, vk,i(x1)ϕ > µi+j+q+2n+1.

The second series on the right hand side does not contain any power of
µ smaller than q + 1. This allows us to identify the coefficients on the left
hand side with indices −2n ≤ j ≤ 0. Namely,

Rk(x1)ak,j = 0 if q + j < 0
Rk(x1)ak,j = bk,q+j if 0 ≤ q + j ≤ q

(43)

Note that if the fj are polynomials (no exponentials) then the polynomial
factor can be taken to be Rk ≡ 1 for any k. This follows from the fact that
En,0(K) is holonomic and, hence, there are always functional equations (7)
with A1 independent of x and Q1,j with coefficients in K[λ, x].

The same reasoning holds when we start with the system of formal iden-
tities (8), and the only thing to remark is that we can choose the vector
t ∈]0,∞[p so that for every k,m the corresponding exponential polynomials
in K[λ, ex1 ] are not identically zero on the complex line λ = µt. Correspond-
ingly, we obtain Sk ∈ K[ex1 ], q̃ = q̃(k) ∈ N, and distributions ck,j, with the
same properties as the bk,j such that

Sk(e
x1)bk,j = 0 if q̃ + j < 0

Sk(e
x1)bk,j = bk,q̃+j if 0 ≤ q̃ + j ≤ q̃.

In other words, we have proved entirely the following proposition.
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Proposition 2.2 Let f1, . . . , fp ∈ En,1(K), then, for any t ∈]0, 1[p (outside
a countable union of K-algebraic hypersurfaces, which depend on the fj) and
any k ∈ Z,m ∈ N∗, there are polynomials Rk and Sk in K[u] and constants
Ck, Dk > 0, Nk ∈ N such that if ak,j ∈ D′(Cn) denote the coefficients of the
Laurent expansion

|f |2(µt−k)

‖f‖2m =
∞∑

j=−2n

ak,jµ
j,

then, for −2n ≤ j ≤ 0, ϕ ∈ D(Cn),

| < Rk(x1)ak,j, ϕ > |+ | < Sk(e
x1)ak,j, ϕ > | ≤ Ck‖ϕ‖Nk

max
x∈supp(ϕ)

e(Dkρ(x)),

where ρ(x) = log(1 + |x|) + |<x1|.
Note that in this proposition, Rk,Sk, Ck, Dk depend also on m and t, while
Nk depends on k,m.

Corollary 2.2 If K ⊆ Q, there is an integer νk ∈ N, and positive constants
C ′

k, D
′
k such that

| < xνk
1 ak,j, ϕ > | ≤ C ′

k‖ϕ‖Nk
max

x∈supp(ϕ)
e(D′kρ(x))

Proof. It is the same as that of Corollary 2.1.
2

Let us examine now the situation where f1, . . . , fp are polynomials in
ex1 , eαx1 , x2, . . . , xn, with coefficients in Q, α ∈ Q \Q. The same procedure
as earlier shows there are polynomials of a single variable A,B ∈ Q[s] \ {0}
such that if ak,j denote the distributions that appear in (42), then A(ex1)ak,j

and B(eαx1)ak,j have good estimates for −2n ≤ j ≤ 0. In this case the
two entire functions A(ex1) and B(eαx1) can only have x1 = 0 as a common
zero. In fact, if x1 = ζ is a common zero, then ω = eζ satisfies the algebraic
equation A(ω) = 0, so that ω ∈ Q. For the same reason ωα ∈ Q. Gelfond’s
theorem [2] implies that ζ = 0. Let us factor

A(s) = (s− 1)ν1

l1∏

j=1

(s− ξj),

B(s) = (s− 1)ν2

l2∏

j=1

(s− ηj),

where ξj, ηj ∈ Q \ {1}.
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Lemma 2.3 Let A(ex1) = xν
1A1(x1), B(eαx1) = xν

1B1(x1), where ν ∈ N,
and A1, B1 are entire functions without any common zeros. Then there are
constants c1, c2, ε, κ > 0 such that

ε exp(−κρ(x)) ≤ |A1(x1)|+ |B1(x1)| ≤ c1 exp(c2ρ(x)).

Proof. Clearly ν = inf(ν1, ν2). For the sake of definiteness, let us assume
ν = ν1. The proof now follows from the fact that if |A1(x1)| + |B1(x1)| is
small, then, either |ex1−ξj|+|eαx1−ηl| is small for some pair of indices j, l, or
|ex1−ξj|+|αx1−2mπi| is small for some index j and some integer m. Baker’s
theorem [2] on lower bounds for linear combinations over Q of logarithms of
algebraic numbers yields the lower bound of the lemma. (Otherwise, either
|x1 − log ξj| + |αx1 − log ηl| is too small or |x1 − log ξj| + |αx1 − 2mπi| is
too small. Since α ∈ Q \Q these two simultaneous estimates are impossible
[2, 10].) The upper bound is clear.

2

As a consequence of this lemma, we conclude that xν
1ak,j can be estimated

as in Corollary 2.2. For future use, we state this in the form of a proposition.

Proposition 2.3 Let f1, . . . , fp are polynomials in ex1 , eαx1, x2, . . . , xn, with
coefficients in Q, α ∈ Q \ Q and t ∈]0, 1[p (outside a countable union of
K-algebraic hypersurfaces, which depend only on the fj) and any k ∈ Z,m ∈
N∗, there are an integer νk ∈ N and positive constants Ck, Dk such that if
ak,j ∈ D′(Cn) denote the coefficients of the Laurent expansion

|f |2(µt−k)

‖f‖2m =
∞∑

j=−2n

ak,jµ
j,

then, for −2n ≤ j ≤ 0, ϕ ∈ D(Cn), we have the estimate

| < xνk
1 ak,j, ϕ > | ≤ C ′

k‖ϕ‖Nk
max

x∈supp(ϕ)
e(D′kρ(x)),

where ρ(x) = log(1 + |x|) + |<x1|.

3 Division formulas and representation

theorems

In [9] we gave some sufficient conditions, albeit sometimes hard to verify,
so that if f1, . . . , fn are exponential polynomials in n variables with integral
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frequencies whose variety of common zeros V = {z ∈ Cn : f1(z) = · · · =
fn(z) = 0} is discrete or empty, then the ideal I generated by them in the
space Aρ(C

n), ρ(z) = log(1 + |z|) + |<z| coincides with Iloc the ideal of those
functions in Aρ(C

n) which can locally be obtained as linear combinations of
the fj with holomorphic coefficients. In particular, I is closed and localizable
(i.e., I = I = Iloc). In fact, the conditions given in [9] implied that the n-tuple
f1, . . . , fn was slowly decreasing in the sense of [6]. This has a certain number
of interesting consequences for the harmonic analysis of the solutions of the
system of difference-differential equations in Rn with symbol given by the fj.
In [8] we had proved that in case n = 2, the discreteness of V was enough to
ensure that the pair f1, f2 is slowly decreasing. This led to the conjecture in
[9] that if the coefficients of the fj are algebraic numbers, the discreteness of
V should be enough to prove that f1, . . . , fn is slowly decreasing or, at least,
that I is closed and localizable. Examples were given showing that this last
statement could fail if the algebraicity of the coefficients was not true. On
the other hand, we show in this section that if f1, . . . , fp ∈ En,1(C) define
a complete intersection variety, that is dimV ≤ n− p, then I is closed and,
moreover, I = Iloc. In the case V is not a complete intersection we show that
the local algebraic closure Î and the radical

√
I are closed. That is, these

theorems are valid without any restrictions on the coefficients, whereas to
extend them to exponential polynomials with two main frequencies one needs
to impose arithmetic restrictions both on the frequencies and the coefficients.

The section ends with some representation theorems for the solutions
of systems of difference-differential equations corresponding to exponential
polynomials f1, . . . , fp ∈ En,1(C), which define a complete intersection, as an
illustration of the applications of the previous results to harmonic analysis.

Theorem 3.1 Let f1, . . . , fp ∈ En,1(C) define a complete intersection vari-
ety V . The ideal I generated by them in Aρ(C

n), ρ(z) = log(1 + |z|) + |<z1|
is localizable.

Proof. The first thing to do is to replace f1, . . . , fp by some linear combi-
nations of them, g1, . . . , gp, that have the additional property that for any
sequence of indices 1 ≤ i1 < i2 < · · · < ik ≤ p,

dim{z ∈ Cn : gi1(z) = · · · = gik(z) = 0} ≤ n− k.

We say that the sequence g1, . . . , gp is a normal sequence. The existence of
such a normal sequence is guaranteed by the following lemma.
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Lemma 3.1 Given any collection of entire functions f1, . . . , fp such that

dim{z ∈ Cn : f1(z) = · · · = fp(z) = 0} ≤ n− p.

There exist ζij ∈ C such that the functions defined by

gi :=
p∑

j=1

ζijfj (1 ≤ i ≤ p)

form a normal sequence. Moreover det(ζij) 6= 0.

Proof of Lemma 3.1. Let g1 = f1 and V1;i denote the irreducible compo-
nents of V (g1) = {z ∈ Cn : g1(z) = 0}. Pick a regular point z′1;i in each V1;i.
Since dimV ≤ n− p and we can assume p ≥ 2, for each z′1;i there is a nearby
regular point z1;i ∈ V1;i and some 2 ≤ k ≤ p such that fk(z1;i) 6= 0. Consider
now the system of linear equations

p∑

k=2

ckfk(z1;i) = 0.

Since the number of equations is countable, the Baire category theorem en-
sures there is a complex vector (c2, . . . , cp) such that g2 := c2f2 + · · · + cpfp

does not vanish at any of the points z1;i. It is clear that the two vectors
ζ1 = (1, 0, . . . , 0) and ζ2 = (0, c2, . . . , cp) are linearly independent. We claim
that dimV (g1, g2) ≤ n−2. If not, g2 would be identically zero on a component
of V (g1), which is impossible.

Assume now that p ≥ 3. By the previous reasoning we can choose regular
points z′2;j ∈ V (g2) (resp., z′1,2;h ∈ V (g1, g2)), one for each component, such
that for some index 1 ≤ k ≤ p, fk(z

′
2;j) 6= 0 (resp. fk(z

′
1,2;h) 6= 0). The index

k clearly depends on the point. Let us denote now {z2;l}l the collection of
all the points z1;i, z2;j, z1,2;h. Then we consider the countable family of linear
equations in Cp

p∑

k=1

ζ3,kfk(z2;l) = 0,

augmented by the linear equation in ζ3 = (ζ3,1, . . . , ζ3,p)

rank[ζ1, ζ2, ζ3] = 2.
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The earlier considerations imply the existence of a point ζ3 not satisfying any
of the equations. We define g3 :=

∑p
k=1 ζ3,kfk for this choice. It is clear now

that also dimV (g1, g3) ≤ n−2, dimV (g2, g3) ≤ n−2, and dimV (g1, g2, g3) ≤
n − 3. If p > 3 it is easy to continue this process. This way we obtain a
normal sequence with the desired properties.

2

Let us return to the proof of Theorem 3.1. We assume henceforth that
f1, . . . , fp is a normal sequence. We recall from the proof of Proposition
2.1, applied to the function f := fm1

1 · · · fmp
p , mj ∈ N, the existence of

polynomials R1,m(x1) such that the coefficients am;1,j, −2n ≤ j ≤ 0, of
the Laurent development of |f |2λ at λ = −1, have the property that the
distributions R1,m(x1)am;1,j are linear combinations of distributions of the
form

ϕ 7→
∫

Cn
f(f/f)(log |f |2)lQκ(ϕ)dx, (ϕ ∈ D(Cn)) (44)

where l ∈ N and Qκ are differential operators in ∂
∂x

with coefficients that are
polynomials in x, ex1 , e−x1 . (See equation (28), note that k = 1 in this case.)

For simplicity, we define R to be the product of R1,m for all the choices
of indices m with length |m| ≤ p. This choice allows us to control all the
coefficients am;1,j simultaneously.

Let α1, . . . , αk be the distinct roots of the polynomialR(x1) and ν1, . . . , νk

their respective multiplicities. Fix one such root αl. Then each function fj

can be considered as a power series in x1 − αl, with coefficients that are
polynomials in x′ = (x2, . . . , xn). It is clear that when we truncate this series
at the term (x1−αl)

νl , we obtain a polynomial Pj,l. Moreover, if a function is
locally in the ideal generated by f1, . . . , fp, (x1−αl)

νl , then, it is also locally in
the ideal generated by P1,l, . . . , Pp,l, (x1−αl)

νl . Let F ∈ Aρ(C
n) belong to Iloc,

then, for each l it is locally in the ideal generated by P1,l, . . . , Pp,l, (x1−αl)
νl .

We can apply Ehrenpreis’ Fundamental Principle to obtain a representation

F =
p∑

j=1

Gj,lPj,l + (x1 − αl)
νlGp+1,l,

with functions Gj,l ∈ Aρ(C
n) (cf. [21, 18, 26]). If we write

fj = Pj,l + (x1 − αl)
νlQj,l,
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then Qj,l ∈ Aρ(C
n) and F can be expressed as

F =
p∑

j=1

Gj,lfj + (x1 − αl)
νlG̃p+1,l, (45)

where G̃p+1,l := Gp+1,l − ∑p
j=1 Qj,lPj,l, so that this function also belongs to

Aρ(C
n).

We claim that there are functions Gj ∈ Aρ(C
n) such that

F =
p∑

j=1

Gjfj +R(x1)Gp+1. (46)

In fact, for x′ fixed, we apply the Lagrange interpolation formula to the points
α1, . . . , αk, with multiplicities ν1, . . . , νk, so that we construct functions Gj(x)
with the property that for each l

Gj(x1, x
′)−Gj,l(x1, x

′) = O((x1 − αl)
νl). (47)

The Lagrange interpolation formula guarantees that Gj ∈ Aρ(C
n), and

(45),(47) imply that

F −
p∑

j=1

Gjfj = F −∑p
j=1 Gj,lfj +

∑p
j=1(Gj,l −Gj)fj

= O((x1 − αl)
νl).

Hence, F −∑p
j=1 Gjfj is divisible by the polynomial R, and the entire func-

tion Gp+1 defined by (46) also belongs to Aρ(C
n) by the Pólya-Ehrenpreis-

Malgrange division lemma [21, 27].
Note that the remainder term in (46), namely H := R(x1)Gp+1 ∈ Iloc,

since F ∈ Iloc and
∑p

j=1 Gjfj ∈ I. The idea of the rest of the proof of
Theorem 3.1 is to show that, thanks to the fact that H is also divisible by
R, we have H ∈ I, using the explicit division formulas considered in [3].

Let us recall the construction from [3, 14], except that here we will need
three weights as in [14]. Let N be a sufficiently large integer and κ À 1 (both
shall be chosen below.) Let θ ∈ C∞

0 (R2n), non-negative, radial, θ(x) = 0 for
|x| > 1,

∫
θ dx = 1. The weights we consider are constructed starting with

an auxiliary entire function Γ(t) of a single variable, Γ(1) = 1, and a smooth
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(1, 0)-differential form Q in C2n. In fact, we take three such pairs, the first
one depends on λ and it is

Q1(x, ξ, λ) :=
1

p

p∑

j=1

|fj(ξ)|2λ gj(x, ξ)

fj(ξ)
, <λ À 1.

Γ1(t) :=
1

p!

p−1∏

j=0

(pt− j).

(48)

The gj(x, ξ) are differential forms given by

gj(x, ξ) =
n∑

k=1

gjk(x, ξ) dξk,

where the entire functions gjk ∈ Aρ⊗ρ(C
2n), with (ρ⊗ ρ)(x, ξ) = ρ(x) + ρ(ξ),

and satisfy the identities
n∑

k=1

(xk − ξk)gjk(x, ξ) = fj(x)− fj(ξ) (1 ≤ j ≤ p).

The existence of such functions is well-known [27, 6]. The second pair is
given by

Q2(x, ξ) := ∂ log(1 + |ξ|)2

Γ2(t) := tN .
(49)

Finally,
Q3(x, ξ) := κ∂(|<ξ1| ∗ θ)

Γ3(t) := exp(t− 1).
(50)

To every pair we associate a function

Φj(x, ξ) := 1+ < Qj, x− ξ >:= 1 +
n∑

k=1

Qjk(x, ξ)(xk − ξk),

where Qj(x, ξ) :=
∑n

k=1 Qjk(x, ξ)dξk. A simple computation shows that

Φ1(x, ξ, λ) =
1

p

p∑

j=1

|fj(ξ)|2(λ−1)fj(ξ)fj(x) +
1

p

p∑

j=1

(1− |fj(ξ)|)2λ

Φ2(x, ξ) =
1 + x · ξ
1 + |ξ|2

Φ3(x, ξ) = κ(|<ξ1| ∗ ∂ξθ) · (x1 − ξ1) + 1.

(51)
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Here x · ξ = x1ξ1 + · · ·+ xnξn. We also need a few extra auxiliary functions

Γ
(α)
j = Γ

(α)
j (x, ξ) :=

dα

dtα
Γj(t)|t=Φj(x,ξ), α ∈ N.

Γ(α) := Γ
(α1)
1 Γ

(α2)
2 Γ

(α3)
3 , αj ∈ N, α = (α1, α2, α3).

Following Henkin’s ideas [11, 5, 25, 16], we can represent an arbitrary function
u in C∞

0 (Cn) by the formula

u(x) =
1

(2πi)n

∫

Cn
u(ξ)P (x, ξ)−

∫

Cn
∂u(ξ) ∧K(x, ξ), (52)

where

P (x, ξ) = P (x, ξ, λ) :=
∑

|α|=n

1

α!
Γ(α)(∂Q)α,

(∂Q)α := (∂ξQ1(x, ξ))α1 ∧ (∂ξQ2(x, ξ))α2 ∧ (∂ξQ3(x, ξ))α3 ,

K(x, ξ) = K(x, ξ, λ) :=
∑

α0+|α|=n−1

1

α!
Γ(α)S ∧ (∂S)α0 ∧ (∂Q)α

|x− ξ|2α0+2
,

S = S(x, ξ) :=
n∑

j=1

(xj − ξj)dξj,

∂S = ∂ξS =
n∑

j=1

dξj ∧ dξj.

Let us now apply (52) to prove that H ∈ I. We choose a radial function
χ ∈ C∞

0 (Cn), χ ≡ 1 for |ξ| ≤ 1, χ ≡ 0 for |ξ| ≥ 2, 0 ≤ χ ≤ 1. For a
fixed R > 1, apply the representation formula (52) to the function u(ξ) :=
χ(ξ/R)H(ξ) = χ(ξ/R)R(ξ1)Gp+1(ξ). Note that (52) is a priori defined only
when the parameter λ satisfies <λ À 1, and we apply it to a fixed x, |x| <
R/2. The two integrals in (52) admit an analytic continuation to the whole
complex plane as meromorphic functions of λ. We are going to identify the
zeroth coefficient of their Laurent development at λ = 0, which will provide
a representation for H(x).
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Following the computations in [3, p.42-43], we can conclude that because
H ∈ Iloc, the first integral in (52) represents an element of the ideal generated
by I in C∞

0 (Cn). (It is here that one uses the fact that f1, . . . , fp is a normal
sequence, a point left implicit in [3].) More precisely, if we consider

Γ
(α1)
1 (x, ξ, λ)− dα1Γ1

dtα1
(t =

1

p

p∑

j=1

(1− |fj(ξ)|2λ)) =
p∑

j=1

fj(x)γα1,j(x, ξ, λ), (53)

it is possible to show (cf. [3]) that to compute the zeroth coefficient of the

first integral in (52) at λ = 0, we can replace everywhere in P , Γ
(α1)
1 by∑p

j=1 fj(x)γα1,j(x, ξ, λ).

The other important terms where λ appears are (∂Q1)
α1 , α1 ∈ N. We

have

(∂Q1)
α1 = (

λ

p

p∑

j=1

|fj(ξ)|2(λ−1)∂fj(ξ) ∧ gj(x, ξ))α1 , (54)

which is a linear combination of terms of the form

λα1|fi1(ξ) · · · fiα1
(ξ)|2(λ−1)

α1∧

l=1

∂fil(ξ) ∧ gil(x, ξ). (55)

A typical term in Γ
(α1)
1 is





p∑

j=1

|fj(ξ)|2(λ−1)fj(ξ)fj(x) +
p∑

j=1

(1− |fj(ξ)|2λ)





q

, 0 ≤ q ≤ p− α1. (56)

So that
∫

Cn
u(ξ)Γ(α)(∂Q)α =

∫

Cn
H(ξ)χ(ξ/R)Γ

(α1)
1 (∂Q1)

α1 ∧Ψα, (57)

for some differential form Ψα, independent of λ.
Similarly, for the second integral in (52)

∫

Cn
∂u(ξ) ∧ Γ(α)S ∧ (∂S)α ∧ (∂Q)α

|x− ξ|2α0+2

=
1

R

∫

Cn
H(ξ)(∂χ)(

ξ

R
) ∧ Γ

(α1)
1 (∂Q1)

α1 ∧Θα, (58)
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Θα a form independent of λ, smooth on supp((∂χ)(ξ/R)). Finally, (57) and
(58) are both linear combinations of expressions of the following type

λα1

Ri

∫

Cn
|fm1

1 · · · fmp
p |2(λ−1)|fn1

1 · · · fnp
p |2H(ξ)χ(i)(ξ/R)Ω(x, ξ), (59)

where mj ∈ N,
∑p

j=1 mj ≤ p, nj ∈ N, χ(i), the ith derivative of χ, i = 0, 1, Ω

is a form of degree (n, n), smooth on the support of χ(i)(ξ/R). The form Ω
involves the coefficients of the second and third pairs. It is this formula (59)
that will eventually allow us to let R →∞.

Let us recall that H(ξ) = R(ξ1)Gp+1(ξ), Gp+1 ∈ Aρ(C
n). Each expression

of the form (59), when analytically continued to λ = 0, contributes one term
to the zeroth term of the Laurent expansion of (52), namely that correspond-
ing to the coefficient am;1,−α1 of the Laurent expansion of |fm1

1 · · · fmp
p |2λ at

λ = −1. Therefore, the contribution of (59) is given by terms of the form

< R(ξ1)am;1,−α1 ,
1

Ri
Gp+1|fn1

1 · · · fnp
p |2χ(i)(ξ/R)ω(x, ξ) >, (60)

where ω(x, ξ) is one of the coefficients of Ω(x, ξ). We know from (44) how
the distributions R(ξ1)am;1,−α1 act on test functions, which shows that their
limit exist when R → ∞ and, in fact, are zero for i = 1 (i.e., the terms
corresponding to the kernel K), while that for i = 0 (i.e., those corresponding
to the kernel P ) they are entire functions of x, with the correct growth
conditions, that is, they belong to Aρ(C

n). All these estimates are achieved
thanks to the previous choices of Q2, Γ2, Q3, Γ3 for sufficiently large constants
N , κ. (We dot really need to use the exact form (44) of the distributions
R(ξ1)am;1,−α1 , it is enough to apply the estimates of the Proposition 2.1.)
This is similar to what we have done elsewhere, [3], in the algebraic case,
and [14], in the analytic case. In other words, we have shown that H ∈ I.

2

Let us consider now the case where we do not assume the ideal is either
complete intersection or its variety is discrete. We shall study several ideals
containing I = I(f1, . . . , fp). First, let us recall that

√
I, the radical of I, is

the set of all elements F ∈ Aρ(C
n) such that F k ∈ I for some k ∈ N. Second,

let Î, the local integral closure of I, be the set of all elements F ∈ Aρ(C
n)

such that for every point x0 ∈ Cn there is a neighborhood U and a constant

40



Cx0 > 0 such that

|F (x)| ≤ Cx0‖f(x)‖ = Cx0(
p∑

j=1

|fj(x)|2)1/2, ∀x ∈ U.

For W open in Cn, let IW denote the ideal generated by f1, . . . , fp in H(W ).

It follows from [28] that F ∈ Î if and only if for every x0 ∈ Cn there is an
open neighborhood W , a positive integer N , and functions ϕ1, . . . , ϕN such
that

FN + ϕ1F
N−1 + · · ·+ ϕN = 0 in W , and ϕj ∈ Ij

W .

Finally, let I(V ) = {F ∈ Aρ(C
n) : F | V = 0}. Note that for a function F

to belong to Iloc means that it vanishes on the points of the variety V with
some multiplicity, whereas in I(V ) the common multiplicities of f1, . . . , fp

are disregarded. It is obvious that I(V ) is a closed ideal, and we recall that
the same is true for Iloc. Some inclusions between these ideals are clear

I ⊆ Iloc ⊆ Î ⊆ I(V ),
√

I ⊆ I(V ).

It is also clear that, in general, we do not have Iloc = I(V ). We are now
ready to state two important results.

Theorem 3.2 Let I be the ideal in Aρ(C
n) generated by f1, . . . , fp ∈ En,1(C),

V = {x ∈ Cn : f1(x) = · · · = fp(x) = 0}. Then
√

I = I(V ).

Theorem 3.3 Let I be the ideal of the previous theorem and let m be given
by m = inf(p + 1, n), then Î2m ⊆ I.

The crucial step in the proof of these two theorems is the following propo-
sition. We state it in a slightly more general form that actually needed for
future reference.

Proposition 3.1 Let ϕ be a convex, non negative function in Cn, satisfying
the inequality

ϕ(x) ≤ K0ϕ(y) + K1 if |x− y| ≤ 1, (61)

for some constants K0, K1 > 0. Let A be the space of entire functions given
by

A := {g ∈ H(Cn) : ∃A > 0 log |g(x)| ≤ A(log(2 + |x|) + ϕ(x))}.
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Let f1, . . . , fp,R ∈ A, m = inf(p, n), and assume there are t ∈]0,∞[p,
B > 0, N ∈ N such that the coefficients aj, −2n ≤ j ≤ 0, of the Laurent
expansion

|f |2(µt−1)

‖f‖2m
=

∞∑

j=−2n

ajµ
j (62)

satisfy for any ψ ∈ D(Cn) the estimates

| < Raj, ψ > | ≤ B exp(Bmax{log(2 + |x|) + ϕ(x) : x ∈ supp(ψ)})‖ψ‖N .
(63)

Then

(i) If F ∈ A and F (x) = 0 whenever f1(x) = · · · = fp(x) = 0, then

RFN+1 ∈ f1A+ · · ·+ fpA.

(ii) If F ∈ A is such that every x0 ∈ Cn has a neighborhood Ux0 in which

|F (x)| ≤ Cx0‖f(x)‖ ∀x ∈ Ux0

for some constant Cx0 > 0, then

RFm ∈ f1A+ · · ·+ fpA.

Proof. The proof is based on the representation formula (52) with

u(ξ) := χ(ξ/R)R(ξ)F (ξ)k, (64)

for some R > 0, k ∈ N, χ a plateau function as in the proof of Theorem 3.1.
We need to make explicit the three pairs Qj, Γj that appear in the kernels P
and K. First, for <µ À 1,

Q1(x, ξ; µ) :=
|f |2µt

‖f‖2

p∑

j=1

fjgj(x, ξ)

Γ1(s) := sq, q = min(p, n + 1),

(65)

where we have left implicit the variable ξ of fj in the definition of Q1, as we
shall do elsewhere. The differential forms gj are defined exactly as in (48),
for the present growth conditions.
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As before, for some N À 1 to be chosen later

Q2(x, ξ) := ∂ log(1 + |ξ|2), Γ2(s) := sN . (66)

Finally, for some κ À 1 and θ ∈ C∞, non-negative and radial, supp(θ) ⊆
{ξ : |ξ| ≤ 1}, ∫

θdξ = 1,

Q3(x, ξ) := κ∂(ϕ ∗ θ)(ξ), Γ3(s) := es−1. (67)

When the corresponding functions Φj are defined as before, the function Φ2

is the same as in (51). The function Φ3 is given by

Φ(x, ξ) = κ
n∑

j=1

(ϕ ∗ ∂θ

∂ξj

(ξ)(xj − ξj)) + 1.

We remark that the function ϕ ∗ θ and all its partial derivatives of order α
can be estimated by

|Dα(ϕ ∗ θ)(ξ)| ≤ C ′
α(ϕ(ξ) + 1) ≤ Cαeϕ(ξ)

and, since the function ϕ ∗ θ is also convex,

| exp Φ(x, ξ)| = e exp{κ<(∂(ϕ ∗ θ) · (x− ξ)}
≤ e exp{κ

2
(ϕ ∗ θ(x)− ϕ ∗ θ(ξ))}.

On the other hand, not only

(ϕ ∗ θ)(x) ≤ K0ϕ(x) + K1,

by the hypothesis (61), but moreover,

K0(ϕ∗θ)(ξ) =
∫

|η|≤1
K0ϕ(ξ−η)θ(η)dη ≤

∫

|η|≤1
(ϕ(ξ)−K1)θ(η)dη ≤ ϕ(ξ)−K1.

It follows that, for some C > 0,

| exp Φ(x, ξ)| ≤ C exp{κ

2
(K0ϕ(x)− 1

K0

ϕ(ξ))}.

The function Φ1, here, is really different from that in the proof of Theorem
3.1. Namely,

Φ1(x, ξ; µ) = (1− |f |2µt) + |f |2µt
p∑

j=1

fjfj(x)

‖f‖2
. (68)
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Moreover, it will turn out to be important to make the expression of (∂Q1)
α1

explicit. We have

∂Q1(x, ξ; µ) = |f |2µt


(µ

p∑

j=1

tj
∂fj

fj

) ∧ (

∑p
i=1 figi(x, ξ)

‖f‖2
) +

p∑

i=1

∂(
fi

‖f‖2
) ∧ gi(x, ξ)


 .

(69)
For α1 ∈ N, (∂Q1)

α1 is a linear combination of terms of the form

µl|f |2µα1t

(
fi1

‖f‖2
. . .

fil

‖f‖2

) (
∂fj1

fj1

∧ . . . ∧ ∂fjl

fjl

)

∧

∂(

fh1

‖f‖2
) ∧ . . . ∧ ∂(

fhα1−l

‖f‖2
)


 ∧ γ(x, ξ), (70)

where 0 ≤ l ≤ α1 ≤ p, i1 < · · · < il, j1 < · · · < jl, h1 < · · · < hα1−l, and
γ is an (α1, 0)-form with holomorphic coefficients, obtained from the wedge
product of several gi. It is clear that, for α1 > m, (∂Q1)

α1 = 0, since there
are either too many dξi or too many gi. For α1 = p, the expression of (∂Q1)

p

is particularly simple, namely

(∂Q1)
p = µp!(−1)p(p−1)/2(t1+· · ·+tp)

|f |2pµt

‖f‖2p
∂f1∧. . .∧∂fp∧g1(x, ξ)∧. . .∧gp(x, ξ).

(71)
In fact, from (69) we see that ∂Q1 has the form

∂Q1 = |f |2µt(A ∧B + C),

where A and B are 1-forms and C is a 2-form. Since 2-forms commute for
the wedge product,

(∂Q1)
p = |f |2pµt

p∑

j=0

(
p
j

)
(A ∧B)j ∧ Cp−j = |f |2pµt(Cp + p(A ∧B) ∧ Cp−1),

since clearly (A ∧ B)j = 0 for j ≥ 2. In [11, p.61-62] we have shown that
Cp = 0 (just set ε = 0 in the expression obtained there.) Hence,

(∂Q1)
p = µp|f |2pµt(

∑

j

tj∂fj/fj)∧ (
∑

i

(fi/‖f‖2)gi)∧ (
∑

k

∂(fk/‖f‖2)∧ gk)
p−1,

which yields the identity (71) after an easy computation.
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With these simplifications at hand, let us return to the analysis of the
kernel P that appears in (52). The following computations are all made for
<µ À 1, modulo the ideal I generated by f1, . . . , fp in C∞(Cn). Every term
in P contains some Γ(α1) as a factor, 0 ≤ α1 ≤ n, then it contains Φq−α1

1

when α1 ≤ q (and vanishes when α1 > q), thus the terms that do not belong
to I are of the form

(1− |f |2µt)q−α1(∂Q1)
α1 ∧ ϑα1 ,

ϑα1 = ϑα1(x, ξ) is a C∞ form, which we do not make explicit for the time
being. From (70) we conclude that, modulo I, we need to consider the
analytic continuation of integrals of the form

µl
∫

Cn
u(1− |f |2µt)q−α1|f |2µα1thI

∂fJ

fJ

∧ ∂kM ∧Θ(x, ξ), (72)

where

hI :=
fi1 · · · fil

‖f‖2l
,

∂fJ

fJ

:=
∂fj1

fj1

∧ · · · ∧ ∂fjl

fjl

,

∂kM := ∂(fm1/‖f‖2) ∧ · · · ∧ ∂(fmα1−l
/‖f‖2),

Θ is a C∞ form, and u is given by (64), so that it has compact support.
Let us distinguish two cases, p ≤ n and p > n. If p > n, then q = n + 1,

and q − α1 > 0 always. If p ≤ n, (∂Q1)
α1 = 0 once α1 > p. On the other

hand, when α1 = p, (71) shows that the only possible non-trivial value for l
is l = 1. Hence, in every case, either l > 0 or q − α1 > 0 in (72).

We are now going to consider the case l = 0 in (72). Recall that we are
only interested in the zeroth term in the Laurent development of the analytic
continuation of (72) at µ = 0. As a function of µ, (72) can be written as

q−α1∑

j=0

(
q−α1

j

)
(−1)j

∫

Cn
|f |2µ(α1+j)tuhI

∂fJ

fJ

∧ ∂kM ∧Θ(x, ξ), (73)

where we have absorbed all other terms into Θ. Even though the powers
|f |2µ(α1+j)t are different, their contributions to the zeroth term at µ = 0 coin-
cide. (This is evident by considering the variable λ = µ(α1 + j).) Therefore,
the total contribution of (73) is zero.
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Consider now the case l > 0. As in [3, Proposition 2.3] we can use
Hironaka’s resolution of singularities to study the current defined by the
zeroth term of the analytic continuation at µ = 0 acting on test forms Θ,

µl
∫

Cn
R|f |2µβthI

∂fJ

fJ

∧ ∂kM ∧Θ, (74)

where β = α1 + j, for some j, and we have absorbed χ(ξ/R)F (ξ)k into
Θ. The first thing to observe is that these currents are supported by the
variety V of common zeros of f1, . . . , fp. Moreover, we shall show that these
currents are also annihilated by multiplication by the functions fj, as well as
multiplication by fn1

1 · · · fnp
p , whenever n1 + · · ·+ np exceeds the order of the

current. The order of these currents will be estimated using hypothesis (63).
Recall that, after using a partition of unity and resolving the singularities
as in [3, p.33-34], we can reduce ourselves to the case where all the fi are
invertible holomorphic functions multiplied by monomials mj, all the mj are
multiples are m1, that is, π∗fi(w) = ui(w)mi(w) = ui(w)m′

i(w)m1(w), m′
1 ≡

1, where π is the blowdown of the desingularized variety. Hence,

π∗ki = π∗(fi/‖f‖2) =
uimi∑p

j=1 |ujmj|2 =
uim′

im1

|m1|2 ∑p
j=1 |ujm′

j|2

=
uim′

i

m1(|u1|2 +
∑p

j=2 |ujm′
j|2)

=
vi

m1

,

with vi ∈ C∞. Thus,

π∗(∂kM) = ∂π∗(kM) =
ωM

mα1−l
1

,

for some smooth ωM . Similarly,

π∗(hI) =
υI

ml
1

.

Finally,

π∗(
∂fJ

fJ

) = (
∂uj1

uj1

+
∂mj1

mj1

) ∧ · · · ∧ (
∂ujl

ujl

+
∂mjl

mjl

)

=
∑

|δ|≤l

Ψδ ∧ dwδ

wδ

,
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where, as above, w1, . . . , wn are local coordinates in the desingularized vari-
ety, Ψδ are smooth forms, δ := (δ1, . . . , δr), 1 ≤ δ1 < · · · < δr ≤ n, |δ| := r ≤
l, and dwδ

wδ
:=

dwδ1

wδ1
∧ · · · ∧ dwδr

wδr
. Hence, in the coordinates w the integral in

(74) is a linear combination of

µl
∫
|u|2µβt|m|2µβt 1

mα1
1

dwδ

wδ

∧ ηδ ∧ π∗(RΘ), (75)

for some smooth form ηδ. Recall we are assuming that l > 0 and note
that when α1 = 0 the integrand in (75) is integrable up to µ = 0, thus it
contributes nothing to the zeroth term of the Laurent development. We can
therefore assume that α1 > 0 in what follows.

Let us assume now that Θ is a smooth multiple of some fj, then ηδ ∧
π∗(RΘ) = m1Θ

′, Θ′ a smooth form in the w-coordinates (it depends on x
also, but that is irrelevant at this moment.) In this case we can integrate by
parts (75) and obtain

µl
∫
|u|2µβt|m|2µβt m1

mα1
1

dwδ

wδ

∧Θ′

=
µl

P (µ)

∫
|m|2µβt m1

m1

dwδ

wδ

∧Θ′′.

Here Θ′′ = Θ′′(x,w, µ) such that µ 7→ Θ′′ is holomorphic at µ = 0 and P is a
polynomial which does not vanish at µ = 0 (cf. [3, eqns.(1.20)-(1.22)] for the
details.) It is now clear that the integrand is integrable for µ = 0, so that this
term cannot contribute to the zeroth term of the Laurent expansion. This
is equivalent to say that the currents we are computing are annhilated by
f1C

∞+ · · ·+fpC
∞, which implies that their support lies in

⋂
j{fj = 0} = V .

Remark that if F satisfies the local estimates in part (ii) of the state-
ment of this proposition and k ≥ m = min(p, n) ≥ α1, then (π∗F )k/mα1

1 is
bounded, so that again the integral (75) will not contribute to the currents
we are looking for, because everything is integrable up to µ = 0. We will use
this remark in the proof of part (ii) of the proposition.

We are now ready to conclude the proof of statement (i) in the proposi-
tion. We observe that the integrand in (74) is a linear combination of terms
of the form

R|f |
2(µβt−1)

‖f‖2m
Θ′′′,

47



where Θ′′′ is smooth and has absorbed some factors |fj|2 and ‖f‖2. This
expression is obtained by using the definitions of hI , fJ , kM . The hypothesis
(63) of the proposition ensures that the orders of the currents that appear
in (74) are at most N (plus giving some precision in the estimates in terms
of x.) As these currents are supported by V , it follows that if the power k
of F is N + 1 or larger, then these integrals do not contribute to the zeroth
Laurent coefficient at µ = 0.

We can summarize these statements in the observation that, for |x| ≤
R/2, we need only to consider the zeroth term of the Laurent expansion of
(52) at µ = 0 and obtain

R(x)F (x)N+1 =
∑p

j=1 fj(x) < Tj(x, ξ),R(ξ)F (ξ)N+1χ(ξ/R) >

+
1

(2πi)nR

∫

Cn
R(ξ)F (ξ)N+1(∂χ)(ξ/R) ∧K(x, ξ; λ = 0)

(76)
where the distributions Tj are holomorphic in the variable x and the kernel
K(x, ξ; λ = 0) involves the distributions aj,−2n ≤ j ≤ 0, from (62), so that,
as we did in the proof of Theorem 3.1, we can choose the constants N , κ in
(66) and (67) to ensure that all the limits exist when R → ∞ and that the
last term of (76) vanishes for R = ∞. It follows that the coefficients of the
fj(x) in (76) belong to the space A. This concludes the proof of part (i) of
the Proposition 3.5.

Because of the earlier remark, the same representation (76) is valid for
R(x)F (x)m,m = inf(p, n), and the conclusion of part (ii) follows. This ends
the proof of the proposition.

2

Remarks
1. We have pointed out, in the proof of Proposition 3.1, the remarkable

fact that the currents involved in the remainder terms of the division formulas
we have used, are annihilated by the conjugates fj of the generators of the
ideal. In the case of a complete intersection, there is only one remainder term,
given by the residue current, and hence the remainder is also annhilated by
the generators fj. The fact that we do not know that the remainder terms
are killed by the fj in the case of not complete intersection, is what prevents
us from obtaining holomorphic division theorems.

2. In the algebraic case, that is, all the fj are polynomials, we know from
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the Bernstein-Sato functional equations that hypothesis (63) is valid taking
R ≡ 1 and a convenient choice of t.

Proof of Theorem 3.2. Let F ∈ I(V ), we need to show the existence
of k ∈ N such that F k ∈ I. We follow the lines of the proof of Theorem 3.1.

¿From Proposition 2.2 of the previous section we conclude there are t ∈
]0,∞[p and a polynomial R(x1) so that the Laurent coefficients aj := a1,j,
−2n ≤ j ≤ 0, of the expansion

|f |2(µt−1)

‖f‖2n
=

∞∑

j=0

ajµ
j (77)

have the property

| < R(x1)aj, ϕ > | ≤ C exp(Dmax{ρ(x) : x ∈ supp(ϕ)})‖f‖N0 (78)

for some positive constants C, D,N0, and any ϕ ∈ D(Cn).
Let α1, . . . , αk be the zeros of R, with respective multiplicities ν1, . . . , νk.

Consider Il, the ideal generated by f1, . . . , fp, (x1 − αl)
νl . This ideal is gen-

erated by polynomials P1,l, . . . , Pp,l, (x1 − αl)
νl , as observed in the proof of

Theorem 3.1. Since F vanishes on the set V of common zeros of I, it also van-
ishes on the set Vl of common zeros of Il. We can therefore apply Proposition
3.1, and obtain a decomposition

FNl =
p∑

j=1

Gj,lPj,l + (x1 − αl)
νlGp+1,l (79)

for some Nl ∈ N, Gj,l ∈ Aρ(C
n). (There is no factor in front of FNl since

we are considering a polynomial ideal.) Let N = max(Nl : 1 ≤ l ≤ k),
then, as done in the proof of Theorem 3.1, we conclude there are functions
G1, . . . , Gp+1 ∈ Aρ(C

n) such that

FN =
p∑

j=1

Gjfj + Gp+1R. (80)

We can apply again Proposition 3.1 to F , this time with f1, . . . , fp as gener-
ators and R = R(x1) as in (78), to obtain

RFN0+1 ∈ I,
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so that
FN+N0+1 ∈ I,

which concludes the proof of Theorem 3.2.
2

Proof of Theorem 3.3. Let F ∈ Î. We follow the proof of the previous
theorem and introduce a polynomial R as in (78), polynomials P1,l, . . . , Pp,l,
associated to f1, . . . , fp and a root αl of R. For any x0 ∈ Cn we have

|F (x)| ≤ Cx0‖f(x)‖ for x ∈ Ux0 ,

where Ux0 is a neighborhood of x0, which we can assume is bounded, and
Cx0 > 0. Hence, for x ∈ Ux0 ,

|fj(x)| ≤ |Pj,l(x)|+ C ′
x0
|(x1 − αl)

νl |,
for some constant C ′

x0
> 0. It follows that for another constant C ′′

x0
> 0,

|F (x)| ≤ C ′′
x0

(
p∑

j=1

|Pj,l(x)|2 + |(x1 − αl)
νl |2)1/2

We can apply now Proposition 3.1 to the polynomials P1,l, . . . , Pp,l, (x1−αl)
νl ,

and conclude that

Fm =
p∑

j=1

Gj,lPj,l + (x1 − αl)
νlGp+1,l,

for some Gj,l ∈ Aρ(C
n), m = min(p + 1, n). As earlier, we conclude that

Fm =
p∑

j=1

Gjfj + Gp+1R,

Gj ∈ Aρ(C
n). Let m′ = min(p, n), once more Proposition 3.1 ensures that

RFm′ ∈ I.

Hence Fm+m′ ∈ I. Since m + m′ ≤ 2m, the theorem has been proved.
2

As a corollary of the last two proofs we can obtain a theorem about
representation of entire functions in Aρ(C

n), modulo an ideal I, which defines
a zero-dimensional, complete intersection variety.
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Proposition 3.2 Let f1, . . . , fn ∈ En,1(Q) be such that dimV = 0. As-
sume further that the algebraic variety in Cn−1 defined by f1(0, x

′) = · · · =
fn(0, x′) = 0, (x = (x1, x

′)), is empty. Then, there are constants N ∈ N and
κ > 0 such that any entire function satisfying the estimates

|F (x)| ≤ A(1 + |x|)B exp(C|<x|),
can be represented (modulo the ideal I) as

F (x) =< ∂
1

f1

∧ · · · ∧ ∂
1

fn

(ξ), F (ξ)Ψ(x, ξ)g1(x, ξ) ∧ · · · ∧ gn(x, ξ) >, (81)

where

Ψ(x, ξ) =

(
1 + x · ξ
1 + |ξ|2

)B+N

exp(2C∂(|<ξ|∗θ0)·(x−ξ)+κ∂(|<ξ1|∗θ1)(x1−ξ1)),

(82)
θ0 is a smooth non-negative radial function in Cn, supp(θ0) contained in the
ball {|ξ| ≤ 1}, ∫

Cn θ0 = 1, θ1 is an even non-negative function in C, supp(θ1)
is contained in the disk {|ξ1| ≤ 1}, ∫

C θ1 = 1, and ∂ 1
f1
∧ · · · ∧ ∂ 1

fn
is the

residue current associated to f1, . . . , fn.

Proof. Before we start the proof we should remark that the residue current
∂ 1

f1
∧ · · · ∧ ∂ 1

fn
has been defined in [3] and the proof we give here follows the

ideas in [14]. Moreover, the theorem is valid for other growth conditions than
|<x|+log(1+ |x|), all we need is to work with a weight ≥ |<x1|+log(1+ |x|).
This is done by changing the form Q3 to incorporate the new weight function,
as in Proposition 3.1.

Let us recall from Section 2 that, due to the arithmetic hypothesis on
the coefficients of f1, . . . , fn, there is an integer m ≥ 0 such that the distri-
butions xm

1 ak,j appearing in the division formula (52) have estimates of the
type (63), with ϕ(x) = |<x1|. On the other hand, as we already have seen,
the ideal generated by f1, . . . , fn, xm

1 in Aρ(C
n) is also generated by polyno-

mials P1, . . . , Pn, x
m
1 . Our extra hypothesis on the zeros of fj(0, x

′) translates
exactly into the fact that these polynomials have no common zeros. Thus,
for any F ∈ Aρ(C

n) we have

F =
n∑

j=1

G′
jPj + xm

1 G′
n+1,

51



with G′
j entire functions satisfying

|G′
j(x)| ≤ A1(1 + |x|)B+N1 exp(C|<x|),

for some A1, N1 > 0. This is clear since, for some ε > 0, N0 > 0,

|P1(x)|2 + · · ·+ |Pn(x)|2 + |xm
1 |2 ≥ ε(1 + |x|)−N0 .

Writing Pj = fj + xm
1 hj, we obtain

F =
n∑

j=1

Gjfj + xm
1 Gn+1, (83)

with the estimates

|Gj(x)| ≤ AA2(1 + |x|)B+N2 exp(C|<x|+ κ0|<x1|),

for some A2, N2, κ0 > 0.
We apply to xm

1 Gn+1 the division procedure described in the proof of
Theorem 3.1, the only changes are in the more precise choice of the weight
Q3 and the fact that xm

1 Gn+1 is not in the ideal Iloc, hence there is a remainder
term coming from the kernel K in (52). We set

Q3 = 2C∂(|<ξ| ∗ θ0) + κ∂(|<ξ1| ∗ θ1),

with κ > 0 to be chosen conveniently.
In [3, Theorem 3.2] the explicit form of the remainder is given as

S(x) =< (∂
1

f1

∧ · · · ∧ ∂
1

fn

)(ξ), ξm
1 Gn+1(ξ)Ψ(x, ξ)g1(x, ξ) ∧ · · · ∧ gn(x, ξ) >,

(84)
where Ψ is given by (82), with N, κ are chosen so that all the integrals
appearing in the representation (52) for u(ξ) = χ(ξ/R)ξm

1 Gn+1(ξ) converge.
This expression shows that

xm
1 Gn+1(x) ≡ S(x) (mod I).

On the other hand, one of the properties of the residue current in (84) is to
kill all the functions in Iloc. This shows that, with the help of (83), we can
replace in (84), ξm

1 Gn+1(ξ) by F (ξ). This proves the proposition.
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2

In the particular case when the set of common zeros of f1, . . . , fn is dis-
crete and the zeros are simple, we can obtain that V is an interpolation
variety for the weight |<x1|+ log(2 + |x|), thus also for the space Aρ(C

n) for
any weight ρ ≥ |<x1| + log(2 + |x|). This follows from [7] and the following
proposition.

Proposition 3.3 Let f1, . . . , fn ∈ En,1(C) be such that dimV = 0 and
J(x) 6= 0 for every x ∈ V , where J is the Jacobian determinant of the
fj. Then there is a constant C > 0 such that

|J(x)| ≥ exp(−C(|<x1|+ log(2 + |x|))) ∀x ∈ V. (85)

Proof. We only need to apply Theorem 3.3 to the ideal I0 generated by

f1, . . . , fn, J , with weight |<x1| + log(2 + |x|) instead of ρ. Then Î0
2m ⊆ I0.

Since V (I0) = ∅, then 1 ∈ Î0, so that 1 ∈ I0. It follows that there are
g1, . . . , gn+1, entire functions, satisfying the inequalities

|gj(x)| ≤ exp(C(|<x1|+ log(2 + |x|))),
for some C > 0, and also the Bezout identity

f1(x)g1(x) + · · ·+ fn(x)gn(x) + J(x)gn+1(x) = 1 ∀x ∈ Cn.

Considering a point x ∈ V , we obtain the inequality (85) from the earlier
estimate of gn+1.

2

Remark. In fact, one has a stronger result. Let f1, . . . , fp ∈ En,1(C) be
such that dimV = k and assume that, at every point x ∈ V , there is a k× k
minor of the Jacobian matrix Df of f1, . . . , fp, which does not vanish. Then,
the variety V is an interpolation variety for any weight ≥ |<x1|+log(2+ |x|).
Namely, if we let J1, . . . , Jl denote all the k× k minors of Df , then the ideal
I0 generated by f1, . . . , fp, J1, . . . , Jl does not have any common zeros, and
the previous proof applies, allowing us to conclude that for x ∈ V

|J1(x)|+ · · ·+ |Jl(x)| ≥ exp(−C(|<x1|+ log(2 + |x|))).
¿From [7, Theorem 1], one obtains that V is an interpolating variety.

Let us now observe that essentially all the previous results of this section
are valid for exponential-polynomials fj(e

x1 , eαx1 , x2, . . . , xn), α ∈ Q \Q, fj ∈
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Q[y1, z1, x2, . . . , xn]. As before, one could replace the weight ρ by |<x1| +
log(2 + |x|), if necessary for the applications.

Lemma 3.2 Let f1, . . . , fp be polynomials in ex1 , eαx1 , x2, . . . , xn, with coef-
ficients in Q, and α ∈ Q \Q. Assume dimV ≤ n−p. Then, there are linear
combinations ϕ1, . . . , ϕp of fj with integral coefficients such that the fj are
also linear combinations of the ϕj, and, moreover, ϕ1, . . . , ϕp form a normal
sequence.

Proof. We follow the procedure of Lemma 3.2. We can assume that f1 6≡ 0,
and choose ϕ1 = f1. Assume that we have already found a normal se-
quence ϕ1, . . . , ϕk, k < p, such that ϕj =

∑p
i=1 cj,ifi, cj,i ∈ Z, 1 ≤ j ≤ k,

and rank(cj,i) = k. We need to choose ϕk+1 so that for any subfamily
ϕj1 , . . . , ϕjl

of {ϕ1, . . . , ϕk}, we have dimV (ϕj1 , . . . , ϕjl
, ϕk+1) ≤ n− (l + 1).

To simplify the notation consider ϕ1, . . . , ϕl, then V (ϕ1, . . . , ϕl) is a count-
able union of irreducible varieties of dimension n − l. There are two kinds
of components, those contained in some hyperplane {x1 = const}, say {Ui},
and those that are not, say {Vh}. Let Q1, . . . , Qp, P1, . . . , Pk be the polyno-
mials in Q[y1, z1, x2, . . . , xn] such that fj(x) = Qj(e

x1 , eαx1 , x2, . . . , xn), ϕj =
Pj(e

x1 , eαx1 , x2, . . . , xn) and consider the finitely many irreducible compo-
nents Wr of the algebraic variety P1 = · · · = Pl = 0 in Cn+1. Each of the
varieties Vh is contained in some Wr. We have that

Wr

⋂{y1 = ex1 , z1 = eαx1} ⊇ Vh.

Locally, near a point in Vh, {y1 = ex1 , z1 = eαx1} is the analytic variety
z1 = yα

1 , so that either (locally) Wr ⊆ {z1 = yα
1 } or n + 1 − l ≥ dimWr ≥

1 + dimVh = n − l + 1. If y1 is not constant on Wr, we can fix generic
x2, . . . , xn, so that near a point in Vh we have that z1 is an algebraic function
of y1. Considering the Puiseux development of z1 we see that only rational
powers of y1 can appear in it, which contradicts the fact that z1 = yα

1 (since
α 6∈ Q. On the other hand, if y1 is locally constant, then x1 is constant in
Vh, which is impossible by the definition of Vh. Hence

dimWr = n− l + 1.

Assume all the polynomials Q1, . . . , Qp vanish identically on Wr, then the
functions f1, . . . , fp vanish identically on Vh, which contradicts the hypothesis
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dimV ≤ n− p. Thus, for λ ∈ Cp outside a hyperplane, we have λ1Q1 + · · ·+
λpQp 6≡ 0 on Wr. We claim that

∑p
j=1 λjfj(x) 6≡ 0 on Vh. If this were not

the case, let

W̃r = Wr

⋂{
p∑

j=1

λjQj = 0}.

Then
W̃r

⋂{y1 = ex1 , z1 = eαx1} ⊇ Vh

and dimW̃r ≤ n − l. This implies that W̃r ⊆ {y1 = ex1 , z1 = eαx1}, which,
as we have just seen, leads to contradiction. So that for λ outside a finite
union of hyperplanes, we have

∑p
j=1 λjfj 6≡ 0 on any Vh. In particular, one

can always choose all the λj ∈ Z.
There are also finitely many components Ui contained in the hyperplane

{x1 = 0}. This is the case for those that are components of the algebraic
variety P1(1, 1, x2, . . . , xn) = · · · = Pl(1, 1, x2, . . . , xn) = 0. The previous
reasoning shows that we can choose integers λ1, . . . , λp such that

∑
λjfj 6≡ 0

in any Vh, that
∑

λjQj 6≡ 0 on any Wr, which contains points of V (ϕ1, . . . , ϕl)
and has dimension dimWr = n−l+1, and that

∑
λjfj 6≡ 0 on those Ui which

lie in {x1 = 0}. If we run over all possible families ϕj1 , . . . , ϕjl
, 1 ≤ l ≤ k,

we can obtain the λj simultaneously satisfying these conditions, not only for
ϕ1, . . . , ϕl, but also for all such families. Moreover, we can also assume that
the rank of the matrix of coefficients of ϕ1, . . . , ϕk,

∑
λjfj in terms of all fj

is exactly k + 1. We claim that this is a good choice of λj.
Consider now whether there are any Ui not contained in {x1 = 0}. For

such Ui we would have a unique Wr such that Ui ⊆ Wr
⋂{y1 = ex1 , z1 = eαx1}.

If Wr ⊆ {y1 = ex1 , z1 = eαx1}, we have already seen that y1 and z1 are
constant on Wr. Let us denote these constants by y1 = η, z1 = ζ, and let x1 =
ξ be such that η = eξ and ζ = eαξ. Now, Noether’s Normalization Theorem
allows us to choose, near a regular point, n− l(= dimWr) coordinates, which
parametrize Wr by algebraic functions with algebraic coefficients. Choosing
a point with algebraic coordinates shows that η and ζ are algebraic numbers.
Since they are related by η = eξ, ζ = eαξ, it follows from Gelfond’s theorem
that ξ = 0 and η = ζ = 1. This implies that Ui is contained in {x1 = 0},
a contradiction. The only possibility left is that Wr is not contained in
{y1 = ex1 , z1 = eαx1}. In this case dimWr = n − l + 1. Then, by the earlier
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choice of λj,
∑

λjQj 6≡ 0 on Wr, thus

Ui ⊆ Wr

⋂{∑ λjQj = 0}.

Since both sides have the same dimension n − l, Ui is a component of the
algebraic variety Wr

⋂{∑ λjQj = 0}. On this component y1 = η, z1 = ζ. For
the same reasons as above, the constants η, ζ are algebraic, so that x1 = 0
on Ui. Again a contradiction.

This proves that the choice ϕk+1 =
∑

λjfj, defines a normal system
ϕ1, . . . , ϕk+1 such that the rank of the integral matrix (cj,i)1≤j≤k+1,1≤i≤p is
exactly k + 1. Iterating this procedure we conclude the proof of the lemma.

2

With the help of this lemma and Proposition 2.3, we can repeat the proofs
of the previous results of this section and obtain the following statements.

Proposition 3.4 Let α ∈ Q \Q and f1, . . . , fp be polynomials in ex1 , eαx1,
x2, . . . , xn, with coefficients in Q. Assume that the exponential polynomi-
als f1, . . . , fp define a complete intersection variety. Let I be the ideal they
generate in the space Aρ(C

n). Then I = Iloc.

Proposition 3.5 Let α ∈ Q \Q and let I be the ideal in Aρ(C
n) generated

by f1, . . . , fp, polynomials in ex1 , eαx1 , x2, . . . , xn, with coefficients in Q. De-
note V = {x ∈ Cn : f1(x) = · · · = fp(x) = 0}. Then

√
I = I(V ) and

Î2m ⊆ I, where m = min(p + 1, n).

Proposition 3.6 Let α ∈ Q \Q, let f1, . . . , fp be polynomials in ex1 , eαx1,
x2, . . . , xn, with coefficients in Q, and let the variety of common zeros be
V = {x ∈ Cn : f1(x) = · · · = fp(x) = 0}. If V is discrete and all the zeros
are simple (or if the fj define a manifold), then V is an interpolation variety
for Aρ(C

n).

We conclude this manuscript with an indication of some simple applica-
tions to harmonic analysis that can be obtained from the earlier results and
the methods of [6]. For that purpose, let us recall that a linear differential
operator P (D) with constant coefficients and commensurable time lags is a
finite sum of the form

(P (D)ϕ)(t, x) =
∑

pjk(D
jϕ)(t− kT, x), (86)
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t ∈ R, x ∈ Rn, (n ≥ 0), D = ( ∂
∂t

, ∂
∂x1

, . . . , ∂
∂xn

), j ∈ Nn+1, k ∈ Z, T > 0, and
pjk ∈ C. The symbol of this operator P (τ, ξ) is the element of En+1,1(C)
given by

P (τ, ξ) := ei(tτ+x·ξ)P (D)e−i(tτ+x·ξ)

(87)

=
∑

pjk(−iζ)jeikTτ ,

with ζ = (τ, ξ). (By the introduction of the new coordinate ξ0 = iT τ , we are
in the case of exponential polynomials considered at the beginning of this
section.)

Theorem 3.4 Let P1(D), . . . , Pn+1(D) be differential operators with time
lags as in (86), with the property that the characteristic variety

V := {ζ ∈ Cn+1 : Pl(ζ) = 0, 1 ≤ l ≤ n + 1}

is discrete and all the points of V are simple. Then, every solution ϕ ∈
E(Rn+1) (resp., ϕ ∈ D′(Rn+1)) of the overdetermined system

P1(D)ϕ = · · · = Pn+1(D)ϕ = 0, (88)

can be represented in a unique way in the form of a series of exponential
solutions of the system (88), namely,

ϕ(t, x) =
∑

ζ∈V

cζe
i(tτ+x·ξ) .

This series is convergent in the topology of E(Rn+1) (resp., D′(Rn+1)).

Similarly, if we allow two non-commensurable time lags, but we assume
that: (i) their ratio is algebraic, (ii) there are no derivatives in the time
variable, and (iii) the coefficients of the operators are algebraic, then we can
prove the same representation theorem for the solutions of a corresponding
system.

We shall present the applications of this type of result to Control Theory
elsewhere. Meanwhile, we refer the reader to [20, 22, 30] for some results
in that direction, and to [32, 4] for related applications to deconvolution
problems.
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