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0 Introduction

In this manuscript we introduce a new method to study ideals generated by
exponential polynomials, inspired by the theory of D-modules [17, 18, 19].
Let us recall that an exponential polynomial f of n complex variables with
frequencies in a finitely generated subgroup I' of C™ is a function of the form

fzyosz) = f(2) = D py(2)eap(y - 2),

vyel

where the sum is finite, the p, are polynomials, and v-2z = y121 + - - - + V2.
Such a function belongs to the algebra A,(C™) of entire functions F' satisfying
the growth condition:

3C >0 |F(2)| < Cexp(Co(z)),

where the weight ¢ can be taken as | z |, the Euclidean norm of z, or, more
precisely, if we choose a system 7!, ..., 7", of Q-linearly independent gener-
ators of I, as

¢(2) = maz(|R(Y - 2) [: j=1,---,N) +log(L +]| = [*),

where Rz denotes the real part of the complex number z.

In the case that I' C tR", the exponential polynomials are just the Fourier
transforms of distributions supported by finitely many points in the lattice
—iI', and A, is a subalgebra of the Paley-Wiener algebra £(R") of Fourier
transforms of distributions of compact support. It is well-known that the
spectral synthesis does not hold for arbitrary systems of convolution equa-
tions as soon as n > 2, equivalently, not all ideals in the Paley-Wiener algebra
are localizable [23]. If an ideal is generated by polynomials then, it has been
proved by Ehrenpreis and Malgrange, that it is always localizable [21, 27].
The only fairly general criterion to ensure localizability of a finitely gener-
ated ideal [ is to verify that the generators form a slowly decreasing sequence
in the sense of [6]. Among other requirements, the generators must define
a complete intersection. The slowly decreasing condition is not too easy to
check, especially when the variety V' of common zeros of the generators is
not discrete. The only general example given in [6] of a slowly decreasing
sequence of exponential polynomials is the following. Let Py, ..., P, be poly-
nomials defining a discrete (hence, finite) variety in C™ and k < n, then the
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sequence of functions

fi(2) :Pj(eizl,...,eiz’“,zkﬂ,...,zn) (1)

is slowly decreasing.

For these reasons, in our previous paper [9] we had considered the case
of finitely generated ideals of exponential polynomials with frequencies in a
group I' of rank n and V discrete. Even when I' = ¢Z", we could not find
a general criterion for localizability of the ideals generated by such exponen-
tial polynomials. Part of the problem was of an arithmetic nature, namely
localizability may depend not only on the geometry of V and I', but also on
the diophantine approximations of the coefficients of the generators of I. For
example, the ideal generated by cos(z1), cos(zq), 22 — aizy is localizable if and
only if «v is not a Liouville number. As we pointed out in [10], there is a deep
relationship between the localizability issue and a conjecture of Ehrenpreis
on the zeros of exponential polynomials of a single variable with algebraic
coefficients and frequencies.

In this paper we consider a situation that is fairly different from that of
[9]. Namely, the group I" has very low rank, either one or two, and the variety
V' might not be discrete or complete intersection. We have obtained some
results very simple to state. For instance, if rank(I') = 1, any system of ex-
ponential polynomials defining a complete intersection generates a localizable
ideal in the space A4. Another example of localizability is that where the
generators are of the type (1) and define a non-discrete complete intersection.
We have also studied problems related to global versions of the Nullstellen-
satz and of the Briancon-Skoda theorem, which could be useful when solving
the ubiquitous Bezout identity for exponential polynomials without common
zeros. The solution of the Ehrenpreis conjecture, as mentioned in [10], is
precisely equivalent to solving in general the Bezout identity.

The leitmotiv of our approach is to relate the division problems implicit in
the previous questions, to the study of the analytic continuation in Ay, ..., A,

of the distribution
>\77L

Y

2= A | fn(2)

for exponential polynomials f; and the residues of this distribution-valued
meromorphic function. This idea originated in our previous work about
residue currents [3] and their applications to the effective solvability of the




polynomial membership problem [12, 13]. The theory of D-modules, as in-
troduced by J. Bernstein [17], was precisely formulated to obtain an explicit
form of the analytic continuation in A of the distribution |P(2)|* when P is a
polynomial. Bernstein’s results were extended by Bjork to the holomorphic
setting in [18].

Finally, we should mention that our results can be interpreted in har-
monic analysis as providing a representation of all the solutions of certain
homogeneous systems of linear partial differential equations with time lags,
for instance, in Theorem 3.4 below.

The authors would like to thank Jan-Erik Bjork for several estimulating
conversations.

1 D-modules

The ideas we develop in this section are clearly related to those about the
Weyl algebra found in [18, Chapter 1], to which we refer for further develop-
ments.

We denote by N the set of non-negative integers. For an index a € N,
its length |a| = a1 + - -+ + a,,. We also let K be a field of characteristic zero,
n and m two positive integers, we define an extension £, ,,(K) of the Weyl
algebra A, (K). It is realized as an algebra of operators acting on the algebra
of polynomials in n + m variables over K as follows.

Consider the polynomial algebra K[z1, ..., 2y, ¥1, ..., Y] and derivations
Dy, ..., D, on this algebra such that

DZ'.’L‘]‘ :52']' (Z,j = 1,...,%)
Diyj:(;ijyj (2:1,,n,j:1,,m)

The algebra E,, ,,,(K) is the algebra of operators on K[z1, ..., Zn, Y1, ..., Ym]
generated by Xi,...,X,,,Y1,..., Y, Dy,...,D,, where X; (resp. Y;) is the
operator of multiplication by x; (resp. y;). It is a Lie algebra, with the usual
definition of the Lie bracket [.,.] in terms of the composition of operators,
ie.,

[P,Ql=PoQ—QoP.

The Lie bracket satisfies the following commutator relations

[Xi, Xj] = [Yo, V)] = [X,, Y] = [Dy, D] = 0 ;
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[XiaDj] = —5ij )

[Xi, Dj] = —6;;Y;.

We note that for m = 0 our algebra coincides with the Weyl algebra. It is
evident that every element P of E, ,,(K) can be written in the form of a
finite sum
P=>" cup,XYPD, (2)
By

capy € K o,y € N", 3 € N”. We want to prove the uniqueness of the rep-
resentation (2). For that purpose it is convenient to introduce the operators
ad(Q) acting on E, ,,(K) by ad(Q)(P) := [P,Q]. Once the uniqueness is
proven, the integer max(|a| + |B| + || : cap # 0) will be denoted degP.

Lemma 1.1 Every element of E, .,(K) can be written in a unique way as

Proof. Let us assume we have an expression

P=> c,p, XYD" =0,
a8y

as an operator on K[z1,..., 2y, y1, ..., Ym]. We rewrite P as

P=Y"PD" P, :=> c,5, XY’
Y a,fB

Observe that if v = (y1,...,7) = (7,7) then
ad(X,)(D") := [X,,D"] = =y, D" 1D
which vanishes if 73 = 0. Hence
ad(X,)"™ o -+ o ad(X,)" (DY) = (=1)14.
Moreover, for any other index 7 we have
ad(X,)™ o---oad(X,)"(D7) =0,
if some 7; < 7, in particular, if [7] < |v|. It follows, using the lexicographical

ordering, that for all ~
(=D)MyP, = 0.



Since char(K) = 0, we have P, = 0. As P, is the operator acting on
K[z1,..., 20, y1,...,Ym] by multiplication with a polynomial all the coef-
ficients of P, are zero.

(I

We shall need the following simple calculus rules.
Lemma 1.2 For any integers a,b >0, 1 < k < n, we have
[Dy, XpYY] = aXZ Y +bX2YY

Corollary 1.1 Let P(X,Y) = SX XFP(X,Y) = SY,YIQ(X,Y),
where X = (X1, X"),Y = (Y1,Y"). Then
oQ, oPy { 6P}

Dy, Pl =Y Y241 XMy, Xk 1P \%
(D1, P] = lZ (3X1+Ql) 1 18Y1+Z )P + 5y,

Let us define the natural filtration &, on E,, ,,(K) by
Ey={P € E,n(K):degP <wv}.

It is a K-vector space of dimension (2"+;”+”) ~ v?"* We can define the
graded algebra gr(E, ,(K)) as

gr(Enm(K)) =EPE/E P -

As always (cf. [18]), it is necessary to show that this is a commutative
algebra. The only thing to show is that

[gua gv] g gu—i-v—l-

This is a consequence of the fact that deg[X;, D;] <0, deg[Y;, D;] < 1.

Finally, we want to show that gr(E, ,,(K)) is isomorphic to a polynomial
ring in 2n + m variables. As in [18] all we need to demonstrate is that if X;
(resp., Y5, D;) denotes the class of X; (resp., Y;, D;) and

S Cap, X YD =0,

in gr(E,,(K)), then all coefficients ¢, g, = 0. Assume this is not true and
let

v :=mazx {|a| + |B] + |7| : capr # 0}.

5



We have that

caﬂﬁYOC?ﬁﬁ =01in &(v),
||+ 18] +]y|=v
where £(v) 1= &,/€, 1. Thus, its representative 3,4 |g)+ =0 Capr XY PDY
belongs necessarily to &£,_1. Since the degree is v, this is clearly a contradic-
tion to the uniqueness of the representation proved earlier, so we are done.
Let M be a (left) E,,,(K)-module and I', a filtration of M, i.e., an
increasing family of finite dimensional K-vector spaces I', such that

(1) Upsol'w = M;
(11> erv g Fv-{—la Y;Fv g F’U-i—la and Dzrv g FU+1‘

Let I'(v) :=T',/T',_1 and define gr(M) by

gr(M) :=To@PT1/To@P---=T0)Pra)p---

Due to property (ii), this graded module is a module over gr(E,,,(K)).
One says the filtration is a good filtration if gr(M) is of finite type over
gr(E,m(K)). For instance, if M is finitely generated over E, ,,(K) by
ai,...,a, and we choose I'y, := &,a1 + -+ + &,a,, then we have a good
filtration.

As in [18, Lemma 3.4], one can prove the following lemma.

Lemma 1.3 Let (T'y),, (£2,), be two filtrations of a E,, ,,(K) module M, and
assume that ('), is a good filtration. Then there is an integer w such that
I, C Qi for allv > 0.

If gr(M) is of finite type over gr(E, (K)), there is a Hilbert polynomial
H € Q[t] such that for all v > 1

H(v) = dimk[,

(see [18, Theorem 3.1]). As a consequence of Lemma 1.3, the degree and the
leading coefficient of H do not depend on the choice of the good filtration
(I'y)y. The degree d of H is called the dimension d(M) of gr(M) and the
multiplicity e(M) of gr(M) is the leading term of H times d!.



In the case m = 0, i.e., for the Weyl algebra A, (K) one has the funda-
mental theorem of J. Bernstein that asserts that, for any non-trivial A,,(K)-
module M so that gr(M) is of finite type,

d(M) > n.

An A, (K)-module M such that d(M) = n is said to be holonomic.

One of the applications of the concept of holonomic modules is the ex-
istence of the Bernstein-Sato functional equations [18, 31, 29], i.e., given
polynomials fi,..., f; in K[z1,...,x,] there are differential operators @); in
A, (K[N]), with A = (Ay,---,\;), and a non-zero polynomial b € K[A] such
that the formal relations

Qi(f - [ Py = b (=1,.,0)

hold.
One of the most interesting examples, for us, of E,, ,,,(K)-modules, m < n,
is the following. Consider exponential polynomials P, ..., P, of n variables

with positive integral frequencies and coefficients in a subfield K of C, that

is, finite sums
Pi(x) = > cin(a)e,
keN™
with ¢ € K[z],j =1,...,q. We consider a new field K(\) = K(A,..., ;)
obtained from K by adjoining ¢ indeterminates, and define the module M
freely generated by a single generator denoted P* = Pt - -77;\4, namely,

M= M(Py,...,P) :=K\[x1,...,2,e", ... "] 1PY, (3)

Fl’ ceey Fq
where, to pick up the earlier notation, X; (resp., Y;) operates as multiplica-
tion by ; (resp., by €™) and D; acts as the differential operator v/, defined
by

A, OP,
A\ L k k
v, (APY) = (aj AZ&@@)

The natural filtration of M is

R(\, z,e%) A }
I, =¢——-P*":Re K(\ e’l,degyex R < vdgp,
{(Pl---P) ( )[ ] Gz, 0
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where dy := 1+ degy e« (P - - - P,;). This is a good filtration and

d
dimg Ty — <n—|—m+v o) '

Ud()

Hence,
d(M)=n+m, e(M) = dyg*t".

It is natural to ask whether for every non-trivial E,, ,,(K)-module (or
E, n(K(X))-module) with m < n, one has d(M) > n+ m. Or, at least, to
give conditions that ensure this inequality occurs.

Let us start with the following simple examples where n = m = 1. Let
a € R (or even a € C) and denote by d, the Dirac mass at the point «.
Consider K a subfield of C, and the E;;(K)-module M, generated by d,.
M, is a family of distributions with support at the point a. When a = 0 we
have

d
0g = T80 = 0y, — 0o = 0y
xog = 0, e"dg 05 .00 0
so that
M, = {Z ckéék)} ~ K|z],
and hence,
On the other hand, when « # 0, we have
d
L0y = Ay, €704 = €04, —04 = 0.,
dx

so that this time
M, = K|a, e][z].

Hence,
d(M,) = 1+ transcdeg(K]a, ),

that is, it depends on the degree of transcendency of the extension of K by «
and e®. For instance, if K = Q, a # 0 is algebraic, then d(M,,) = 2. In every
case in which K = Q, a # 0, d(M,) < 3. If K=R or C, then d(M,) = 1.

What this example shows is that the choice of the field may play a crucial
role in deciding whether an E,, ,,,(K)-module M verifies or d(M) > n+m
or not. On the other hand, we are mainly interested in modules of the form
M(Py,...,P,), their submodules, and quotient modules.

Let us now consider the case m = 1.



Proposition 1.1 Let M be a finitely generated E,, 1(K)-module, then, either
d(M) > n+1 or for every element mo € M \ {0} there exist two non-zero
polynomials A, B € K[s|, and t € N such that

Yf’A(Xl)mo = B(Yl)mo =0.

Proof. Let us assume that d(M) < n and let mg € M \ {0}. We complete
mg to a system of E, ;(K)-generators of M and denote by I'y the K-vector
space spanned by this system of generators. We define for v € N

T, = {P(X,Y;,D)Ty : degP < v}.

This is a good filtration.
We claim that the map

Ey — Homk (T, Tgy)

P—{meTl,— PmeTy}

cannot be injective for any sufficiently large v. If it were injective, we would
have the inequality

2n+1 2d(M)

const.v ~ dimk&, < dimxHomxy (T, T'a,) & const.v ,

which implies 2n+1 < 2d(M), in other words, d(M) > n+ 3. This contradicts
the fact that we have assumed d(M) < n.

Hence, for all large v there are differential operators P, = P € &, \ {0}
such that P -I', = 0. In other words,

Pm=0VmerTl,.

Let us write P = Y ¢a 5, XY D7, || + 8+ |7| < v. Let v, be the largest
power of D, in the lexicographical order, that appears in P. Then, as in
Lemma 1.1, we have

Py = ad(X)"*(P) = (—1)holy! an,ﬁﬁoX"‘Yf} # 0.
On the other hand, since P -I', = 0, we have for any 1 < k <n

ad(Xk)P . Fv—l =0
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because
ad(Xp)P Ty 1 =XpP-Ty 1 — PXy-T\ 4

and X, -I'y,_1 C Ty, I'y,_1 CT',. Therefore,
Py Tojy = ad(X)(P) - Ty = 0,

and
degPr + || < degP < wv.

Let us rewrite P; as a polynomial in X’ = (X, ..., X)),
Py = baps X7V (X').

;From Lemma 1.2, with D’ = (D, ..., D,), we obtain

ad(D")°(X")° = 6!
and, if for some i, §; < 9,

ad(D')*(X")? = 0.
Therefore, if dq is the largest power of X’ in the lexicographic order, we have

Py :=ad(D)* Py = 8> baps XYY #0,

degPs + |0g| < degPy,
P - Tompol-150) = 0-

Clearly, v — |yo| — [0o] > degP> > 0, if not, P» would be a non-zero constant,
which contradicts the last identity.

Thus, we have reduced ourselves to the following situation. We have a
non-zero polynomial P of the variables X7, Y;, 1 < degP <wv, and P-T', = 0.
Let us write it in the form

N
P(Xh}q) = ZY’llQl(Xl)
=0

Observe that if P(X1,Y)) =Y YQn(X1,Y1) then

YVQn (X1, Y1)mo € YV Qn (X1, Y1), = 0.
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and we would already have proved the first part of the proposition, so that we
can assume that there is more than one index [ such that @; # 0. Obviously,
we want to reduce ourselves to the case of a single @; # 0. Let us apply
Corollary 1.1, then

ad(Dy)P = VI (QUX0) +1Qu(X0),

where Q] = dQl . We let

= [@nad(D)P — (Qy + NQn)P],

so that we still have .
P : val - O

Let L be the largest index such that L < N and @ # 0, then the leading
coefficient of P as a polynomial in Y] is

Qn(QL +LQL) — QL(Qy + NQn) = (L — N)QnQL + (QnQ}, — QLQY),

which is the sum of two polynomials of different degrees. The one of highest
degree is (L — N)QnQ 1, which is evidently different from zero. This shows
that P #+ 0, degylp = L, and P-T,_; = 0, so that we can repeat the
procedure, and in at most N — 1 steps arrive to a non-zero polynomial of
the form Y{/A(X;), which annihilates I',_n;;. This makes sense because
N < degP < w. This proves the first part of the proposition.
To prove the second part, we rewrite the original polynomial P(Xy,Y])

in the form

M

P =73 X{PR(Y),

k=0

and assume M > 1, otherwise we are done. Hence, by Corollary 1.1 we have

ad(D,)P = XMy, Py, (Y1) + Z X *((k +1)Peyy +Y1P)),

which again kills I",_;. We consider

P = YiP}y(Y1)P — Py (Y1)ad(D:)P. (4)
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We claim that degx, P = M — 1. In fact, the leading coefficient of P is
Y1 Py (Y1) Pas 1 (Y1) = M(Pa(Y1))? = Y1 Par (Y1) Py (Y1), (5)

which we have to show is not identically zero. For that purpose, we prove
the following lemma.

Lemma 1.4 Let R, S € K[{], R # 0, and a € K*, then, the polynomial

aR*(€) — £(R'(§)S(€) — R(§)S'(€)) # 0.

Proof. We want to reduce ourselves to the case where the coefficients are
complex numbers. For that purpose we consider the collection of a and all
the non-zero coefficients of R and S, say {aq,...,as}. Then Q(ay, ..., ay)
is a subfield of K, since charK = 0, and, on the other hand it is a finitely
generated extension of Q, which we can decompose as a finite transcendental
extension followed by a finite algebraic extension. The first extension can be
embedded as a subfield of R, and its algebraic extension as a subfield k of
C.

Therefore, we really have two polynomials R, S € C[¢], R # 0, and a €
C*, and we need to show that the identity

aR®* = ¢(R'S — RS')
is impossible. Namely, we would have the equation

_a_RS’—R’S_d(S>
£ 52 dE\R

The function f(§) := ;(—? is rational, hence it is single valued and holomor-

phic outside the set of its poles. On the other hand, the differential equation
- =) (6)

has only the solutions —alog¢ + ¢, ¢ € C, which are neither single valued
nor rational. This concludes the proof of Lemma 1.4.
([

Let us return to the proof of the Proposition 1.1. We have just seen that
degx, P = M —1, where P is defined by ( 4 ). We also have that P-I",_; = 0.
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Repeating this procedure a total of M times, we obtain a non-zero polynomial
B(Y1), i.e, a polynomial of degree zero in Xj, such that B(Y;) - T',_y = 0.
This is possible because M < degP < v. This concludes the proof of the
second part of the proposition.

(Il

Let us give an application of Proposition 1.1 to the module
M(Py,...,P) =K\[zy,...,2,,e"[1/P,...,1/P]P*
defined by equation (2), where P; € K[zy,...,2,, "], K a subfield of C.

Proposition 1.2 There are two mon-zero polynomials Ay, As of a single
variable s, with coefficients in K[A, A\ = (A1,..., ), and 2q linear dif-
ferential operators, @Q;; (i = 1,2; 7 = 1,...,q), with coefficients belonging
K[\, x,e™ e~"1], such that for every j

0
Ay 2P = QN m, €™ e %)Pﬂ?’\, (7)
T A T —x 9 A
As(X, e)P = Qaj(\, x, e e 1,%)]3373 : (8)
(To simplify the notation we have written -2 to denote (6%1’ c %).)

Proof. We follow an idea of Lichtin [29]. The module M,
M=M(Py,....P) =Kz, ... 20, e"][1/Py,... .1/ PP

is an E, 1 (K(X)-module of finite type and d(M) = n + 1, as stated earlier.
Introduce the new E, 1(K(\))-module N defined by

N = M@ . @M (qtermS),
consider the elements ¢; € N, | € N*,
e = (Pll—1P2l - qupA7 o 7P1l . qulqul_lp)‘),

and denote N (1) the submodule of N generated by e;.
We have that
dN)=n+1,
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since it is a direct sum [18]. Hence (cf. [18]),

dN (1)) <n+1.
Moreover,

N({I+1) CN(), (IeN").

On the other hand, we can apply Proposition 1.1 to conclude that d(N (1)) =
n + 1 for every [. If not true, there would be a non-zero polynomial B &€
KI[A, s], such that

B(\, e™)e; = 0.
This is impossible, since we are just multiplying exponential polynomials.
Furthermore, for every [ [18],

AN /N({+1)) <n+1.

Thus, either for every [ we achieve this upper bound or there is a smallest
index [y such that

d(N (o) /N (lo + 1)) < n. (9)
Let us show the first case cannot occur. If it did, consider the sequence of
modules

0— N({I+1) — N(1) — N/N(+1) — 0,

which is clearly exact for every [. Since the dimensions of all the terms coin-
cide and it is possible to apply the proof of [18, Proposition 3.6], with A, (K)
replaced by E,, 1(K()\)), we conclude that their multiplicities are related by

eN(1) =eWN({+1)+eN)/N(+1)),
which implies that for all [ > 1
1<eN(1) <eN(+1)).

This is obviously impossible. Hence, the equation (9) holds for some minimal
value of [.

It could occur that N(ly)/N(lop + 1) = 0, then e, € N(lp + 1). In this
case there is a differential operator R = R(\, x,e™, a%) € E,1(K()\)) such
that

€l = Relo—i—l-
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Consider the jth entry. We have

plo...pl-t...pbpr = R (Plloﬂ Pl quo+17;>\)
= R((P1pqu) (Pllo...quOfP)\))
= R] (Pllo T PL]ZOIP)\) )

where R; is another differential operator in £, ;(K(\)) obtained applying
Leibniz’s rules. Since Ay, ..., A, are transcendental over K, this last formal
identity is equivalent to a true identity involving only Fi, ..., F,, and their
derivatives, instead of P*. We can therefore change variables \; — \; +
lo,.. . s A\j=Xj+1lo—1,..., A, — Ag + [y, and obtain

P* = R;j(PPY).

Finally, we can clear the denominators from K[)\] in R; and conclude that
there is some b € K[A]\ {0}, independent of j, and corresponding differential
operators ); with coefficients in K[\, z, €] so that

bNP* = Q;(PPY). (10)

If N(lo)/N(lg+ 1) # 0, we can apply Proposition 1.1 to this £, 1(K(\))-
module and find two non-zero polynomials A, B € K[\, s] and an integer
t € N such that

e AN, z1)er, € N(lp+ 1)

and
B\, e")e, € N(lp+ 1).

We can divide out by e’ the first relation and apply the earlier reason-
ing to conclude there are non-zero polynomials A;, Ay € K[\, s|] and linear
differential operators @; ; with coefficients in K[\, z, e*', e~*'] so that

Al()\,xl)'])/\ - Ql,jpj,PA

Ay(\, e™)YPY = Qo PP

fory=1,...,q.
This concludes the proof of the functional equation in every case.
O
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Let us denote by A the ring of all entire functions f in C"*? satisfying
the growth condition

[FO @) < KL+ ]+ fo]) Ve (11)

for some k, N, D > 0.

If we knew that A;(\,s) = b;(N\)B;(s), j = 1,2, then we could simplify
the equations (7) and (8) when K C Q, as follows. The only possible solution
s € C of the pair of equations

Bl(S) = BQ(GS) =0

is s = 0, by the Gelfond-Schneider theorem [2]. Let us denote m € N is the
multiplicity of this solution. Then, appealing to [10] we know there are two
entire functions C, (5 satisfying the growth conditions

Ci(s)] = O((1 + [s)Ne"P*) (s € ©), (12)
for some N € N, 7 =1,2, and
Ol(S)Bl(S) + OQ(S)BQ(es) = Sm. (13)

We could then conclude that there would be a non-zero polynomial b()) and
linear differential operators (); with coefficients in A such that

b(\)z,"P* = Qj(PjP)\), i=1,...,q.

Namely, multiply (7) by bo(X)Co(z1), (8) by b1(AN)Ci(x1), and add.

In general, we do not have such a factorization of A; and A,. The idea
will be to use an approximate factorization. We discuss this point in the
following section.

To conclude this introductory section, let us make some remarks about
generalizations of the previous results. First, it is convenient to observe that
the algebra A is a subalgebra of the weighted Fréchet algebra usually denoted
A,(C"), p(x) =log(1l + |z]) + |Rx|, where

A,(C") = {f entire : 3¢ > 0 |f(z)| < ce™ Vo € C"}.

The spaces E, ,,, we are considering, are subalgebras of this weighted algebra.
In this paper we will essentially consider only this weight p.
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Let us now see how to apply the previous reasonings to the algebra of
polynomials in e, e, 2, .. ., 2, with coefficients in Q, where we assume o €
Q \ Qand zi, ..., z, are n complex variables. For this purpose, we introduce
the algebra K = K < Y1, 21, Xs,..., X,,,Dy,..., D, > of operators acting
on the polynomial algebra K[Y;, Z1, X, ..., X,,], K a field of characteristic
zero. The differential operators D; obey Leibniz’s rule, the X, Y;, Z; act by
multiplication, and we define

DYy =Y, D12, = aZy, DlXj =0,
DYy =D;Z; =0(j = 2), Dj Xy, = dj.
As a consequence, we have the conmutation rules
Y1, Z1] = 1, Xj] = [Z0, X5] = [ X, X5] = 0,

Dy, V"2 = (k + al)V1* 2! (14)
Y1, Di*] = =vAD* ' + Dy([Y1, Di\* ")) = =kYiD* " + p(Y1, D1),  (15)

where p(Y1, D;) is a polynomial of degree < k — 2 in D;.
We remark that the algebra of exponential polynomials in the variables

e*, e 29, ..., z,, cannot be isomorphic to the polynomial algebra in Y7, 73,
Xo,..., X, unless a € Q. Recall that the field K always contains a copy of

Q.

Lemma 1.5 Every element P of IC can be written in a unique way as
P=> cuXY’z"D.

Proof. Denote degP = |i| + j + k + |I|. Suppose P = 0, as operators, we
need to verify that all the coefficients c;j;; = 0. As in Lemma 1.1, we can
reduce ourselves to the case P is a polynomial in Y, Z;, D;. We use (13) to
diminish the degree of P in D;, by commutations with Y7, and conclude we
can assume there is no D;. But, as a multiplication operator, a polynomial
in Y7, Z; cannot vanish unless its coefficients are zero.
O

We define the filtration /C, of IC, by degrees, and the corresponding graded
ring gr(K) = Ko @ K1/Ko @ - - - We conclude, as before, that ¢gr(K) is con-
mutative and isomorphic to the polynomial ring in 2n + 1 variables over K.
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The concept of good filtrations is the same as earlier and Lemma 1.4 and its
consequences hold.
We need to prove the analogue of Proposition 1.2.

Proposition 1.3 Let M be a finitely generated K-module. Then, either
d(M) > n+1 or for every element my € M \ {0} there are two non-zero
polynomials A, B € K[s] and two non-negative integers a,b such that

7" A(Y1)mo = Y1*B(Z1)mg = 0.

Proof. We use the same filtration I', as in the proof of the Proposition 1.2,
so that mg € T'g. Thus, if d(M) < n, for all large v there is P € K, \ {0},
such that P -1', = 0. By the argument we have used in Proposition 1.2, we
can assume that P depends only on the variables Yi, Z1, D1, 1 < degP < v.
Using the relation (13), we can even eliminate D;. We just observe that
ad(Y1)P - T',—1 = 0, and ad(Y;)P is a non-zero polynomial whose degree
in Dy strictly smaller than that of P. This is verbatim the procedure in
Proposition 1.2 to eliminate D;. So that, from the start we could assume
that 1 < degP <wv, P-T, =0, and P € K[Y}, Z4].

If P were independent of Z;, then, either P(Y) = cY1%, ¢ # 0, d = degP,
and we can take a = 0, b = d, A(Y1) = P(Y1), B(Z,) = ¢, or P has at least
two terms. In the latter case, the polynomial ad(D;)P (Y1) — (degP)P(Y1) #
0, it annihilates I',_1, and it has degree < degP. Iterating this procedure we
would be done. Thus, let us assume that P depends both on Y; and on 7.
Consider

!
P=>"Q,W)z,
=0

and assume there are at least two non-zero terms in this representation.

(Otherwise, we let A(Y1) = @Q;(Y1) and a = [.) Then,

l
(D1, P =3 (M@Q5(V1) + ajQ; (V1)) Zy

Jj=0

kills I',_1, and so does

Py :=Qi[Dy, P] — (V1Q)(Y1) + adQi(Y1)) P,
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which has degree in Z; < [. The only problem is to show that P, # 0. Since
there is an index j < [ such that @); # 0, if P, = 0 we would have that

Yi(QiQ; — Q;Q1) = a(l — j)Q;Qu.
This leads to the formal differential equation

Q@ _al-))

Q Q Y

which, by an argument similar to that used in (5), can be shown to be
impossible. This concludes the proof of the existence of an a € N and
an A € K[Y1]\ {0} with the required properties. The other part of the
proposition is proved similarly.

70,

(Il
As pointed out above, the algebra generated over K by e, e**! xo, ..., x,,
8%1, e %, when K is a subfield of C and o € K\ Q, is isomorphic to the
algebra K = K, we have considered above ( Y} = e, Z; = e*). There-

fore, we can consider a family Pi,..., P, of exponential polynomials in I,
K(\) =K(\, ..., ), and the module

M= M(P,...,P) =K\ [e™,e*™ ag,...,2,][L/P,..., 1/ PP,

which is the module generated by the action of I on the formal generator
Pr=pPM... Pq’\q. So that we obtain the following result, corresponding to
Proposition 1.2.

Proposition 1.4 There are two mon-zero polynomials Ay, As of a single
variable s, with coefficients in K[A, A\ = (A1,..., ), and 2q linear dif-
ferential operators, Q;; (1 < i < 2;1 < j < q), whose coefficients belong

to K[\, e™1 e e e~ 1o ... x,] , such that for every j =1,...,q we
have
Ai(\, )P = Q1 PP, (16)
Ag(\, e* )P = QPP (17)
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2 Functional equations and analytic
continuation

In the applications we have in mind, e.g., Bezout identities, division prob-
lems, and the like, one needs to determine the principal part of the Laurent
development of |f|** for A = —k, k € N, where f is an exponential polyno-
mial. The reason for this need will become clear later on. Meanwhile, we are
going to explain how to obtain sufficient knowledge of the coefficients of the
principal parts, even if we do not have the factorization of the polynomials
Aj, As mentioned at the end of the last section.

Lemma 2.1 Let f be an exponential polynomial in E,1(K), k € N, there is
an integer g € N such that for any N € N one can find a non-zero polynomial
Ry € K[z1] and a functional equation of the form

A+ k)R = Qe ([P + A+ k)N oy | £, (18)

where vy € K[\, 1] and Qg is a linear differential operator with coefficients
in K[\, x, et e "1].

Proof. From Proposition 1.2 we know the existence of a non-zero polynomial
A € K[\, 2] and a differential operator ) with polynomial coefficients such
that one has the formal identity

0

AN z) A = QN x, ™, e, %)F“ = Q(\) AL

We would like to iterate this identity, except that contrary to the usual
Bernstein-Sato functional equations, the coefficients of A(\,z1) depend on
x1. We factor A into two coprime polynomials

AN\ 1) = p1( V)AL (A 29).

In particular, for every fixed A the map z; — A;(\, z1) is not identically
zero, and hence we deduce the formal identity

PO+ DAN 2 = QO {A.(il?:\l—;_xf)gl; }

QA+ 1) A+
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Applying Leibniz’s rules one obtains

Ql ()\)fA+2

A
pl()\—’_l)A(/\?xl)f _Al()\‘l“l,ml)ml?

for some m; € N, and Q; a new differential operator with coefficients in
K[\, x,e" e~*1]. Thus, we find

A ) A = o+ DA+ L) ™ AN, 21) f = QM) 2

Iterating this procedure, for every k& € N we find a non-zero polynomial
Ak (A, x1) and a differential operator Q) with coefficients in the same ring as
above, so that

Akf)\ _ Qkf)\+2k+1- (19)

Since multiplication by the formal antiholomorphic function T\ commutes
with the operators a% then

ARl = QuN (L.

Note that this formal identity can also be interpreted as an identity among
distributions. It is convenient to factor Ay into coprime polynomials as fol-
lows

AN, z1) = (AN + k)IBr(A, 1),
which allows us to write
A+ R)2BR(A, 1) f12 = QN (| fA ) (20)

Since By, is coprime with A+ k, for any N € N* we have a polynomial Bezout
identity
Ry(21) = un(A 21) Be(A, 1) +on (A, 21) (A + k), (21)

for some polynomials uy,vy € K[\ z1] and Ry € Klz1], Ry # 0. (It is
clear that uy, vy, Ry, and ¢ depend also on k. We suppress this index to
simplify the notation.) Therefore, we have

A+ B Ry(@)lf? = A+ B unBelf + (A + k)™ oy | f1
= un QNS + A+ )™ Moy £

= Qun([fIP ) + A+ k) Nuy | £,
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with Q. n = unQs, which concludes the proof of the lemma.

The same proof yields relations of the form
A+ B)ISN (@D = Qe (P + A+ k)™ Nan | f17, (22)

where Oy € K[\ e™],Sy(t) = Syi(t) € K[t], and Q. n is a differential
operator with the same properties as Q.

We know a priori [1] that, in a neighborhood of A = —k, the distribution-
valued meromorphic function |f|** has the Laurent expansion

o0

=30 ay(A+ kY, (23)

j=—2n

with ay; € D'(C"). The previous lemma allows us to compute explicitly
the products Rn(x1)ak;, Sn(€™)ay,;, for —2n < j < 0, as soon as we take
N > 2n + 1. Namely, the polynomial vy in (21) can be expanded in powers
of A+ k, ie.,

UN()\, .CEl) = iUN,l(xl)()\ -+ k’)l (24)

1=0
Let ¢ € D'(C"), then

A+ k) <|fP Rn(z1)p> = Y. <apj, Ryvo > A+ k)7

j=—2n

= < QrnW(fP) 0>

+ > <apj,one > (A4 k)TN
j=—2n

= <|fIPf Qun (Ve >

+Z < Ak, j, UNIP > (/\ + k)q+N+j+l,
75l

(25)
where Q). y is the adjoint operator of Q x (obtained by integration by parts).
The first term of the last sum is holomorphic at A = —k, and the series

only contains powers of X\ + k bigger or equal to ¢ + 1, due to the choice
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N > 2n + 1. Thus, the distribution-valued function (X + k)?Ry(x1)|f]* is

holomorphic in a neighboorhood of A = —k. Moreover, if we denote
A+ ) By () [ f[** = 3 ben(A + K)" (26)
h=0

its Taylor development, then, for 0 < h < ¢, the distributions b are given
by

dA
< by >= o /Hk' /n ()| f(2) ' Q;, N(A)(w(x))dxmv

(27)
where € > 0 is chosen sufficiently small so that on a neighborhood of supp(y),
the function x — | f(z)|7% is integrable.

We can rewrite the last integral as

2(M+ 27k Y d\
o [ o [E@PO (as)(f(as)/fu))k@k,]vu)<w<x>>dxm

— .Ooojllglm//\% / (log |F*Y f(f/f)F QkN( )(@(x))da (N + k)" tdx,

which shows that the terms < by, ¢ > are linear combinations of integrals

of the form | B
L Qolf Y 177D Qulp)da, (28)

where j € N (in fact, 0 < j < h 4+ 1) and the @, are differential operators
with coefficients in K[z, e*' e®1]. Note that the term (f/f)* is bounded,
and the same holds locally for f(log|f[*)’.

Let us take, once for all, N = 2n + 1 and, since Ry really depends also
on k we shall denote it Ry from now on. Therefore, from (23) and (26) we
obtain

Rile)a, = 0  ifq+j<0 (29)
Ri(z1)ag; = brgr; f0<qg+j<gq (30)

Moreover, if we introduce the polynomials S in a similar way, the same
procedure leads to an explicit computation of Sy(e™)ay, ; for the same values
of j, —2n < 7 < 0. We summarize these remarks in the following statement.
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Proposition 2.1 Let f € E,;(K) and k € N, there exist non-zero polyno-
mials Ry, Sk of a single variable, with coefficients in K, Ny, € N, and positive
constants Cy, Dy, such that the distributions ayj, —2n < j < 0, defined by
the Laurent development

o0

|fIP* = o api(A+ kY

j=—2n
satisfy the estimates

| < Ri(x1)akj, o > |+ | < Sp(e™)ak;, ¢ > | < Ckllelln, ma}% )e(D‘“p(m)),
xeESsupp(p
(31)

where p € D(C™), p(x) =log(1 + |z|) + |Rx1].

Corollary 2.1 If K C Q, there are integers my, € N, and two constants
C}., Dy, > 0 such that the estimate (31) implies

’ < qunkakdﬂp > | < CI/cHSOHNk max e(D;Cp(x))
zesupp(p)
Proof. We return to the argument at the end of the preceding section. For
each k € N we can find two entire functions y, ¥;. in the Paley-Wiener class
of functions, i.e., O((1+ |z1])PeA®*1]) "and an integer m = my, > 0 such that

Ri(z1)er(w1) + Sp(e™ g (x1) = 27" (32)

Thus, we can get estimates for the distributions z7ay ;, using (28), (30), and
(32).
O

In the following section, we shall use these estimates for the distributions
involved in the analytic continuation of distribution-valued holomorphic func-
tions of the form [ f,[** - | f, |7 /(| f[* +-- - +[/,|*)™. These functions have
already appeared in our previous work [12, 3]. The existence of an analytic
continuation as a meromorphic function of Ay, ..., \, follows from Hironaka’s
resolution of singularities, but since we want to control the distributions that
appear as coefficients in the Laurent developments about some pole, that
is, we would like to obtain estimates similar to those of Proposition 2.1 and
Corollary 2.1, we need to find some kind of functional equation that provides
the analytic continuation. Since it is easier to provide functional equations
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for |fi**---|f,]**, we need a technical trick to reduce this kind of quo-
tients of functions to products. It is based on a simple lemma about the
inverse Mellin transform. In order to simplify its writing let us introduce the
following notation.

For ti,...,t, >0, p1,...,pp € C, we let

(= g
Given sq,...,5,-1,8 € C, let
ds:=dsy---dsy_1, sp:=0— 51— —Sp_1, fi; = p; — 5; (L < j <p).

We also let s := (s1,...,8,-1),5" = (81,...,5p), with s, as previously de-
fined. Recall also the somewhat standard notation,

[a] :==Tay,---,ax] :==T(ay)---T(ag),

for complex values a; such that the Euler Gamma function is defined. Finally,
as long as there is no possibility of confusion, we shall use the following
abbreviated notation for multiple integrals on lines parallel to the imaginary
axes. Let v = (71,...,7y-1) be a vector of real components, then, for any
integrable function F

vy+ioco y1+100 Yp—1-+100
/ F(s)ds := / . / F(s)dsy---dsy_;
v s

—100 Y1 —100 p—1—100

Lemma 2.2 Let ty,...,t, >0, pi1,..., 1, € C, RG> 1, P € Clpa, ..., itp),
then, with the previous notation,

P() (t1+-7-fl-£+tp)ﬁ - (zm)pllr( 5 /y V:op[s*]j_va(g)tﬂds (33)

for any v; > 0 such that y1 4+ - - + -1 < RB — 1.

Proof. We start from a known formula about the inverse Mellin transform
24, 6.422.3,p.657], for 0 < v < R(F — 1), t > 0, one has

(1 j £)8 271'2'11“(5) /ﬁ: [(s)L(8 — s)t™°ds, (34)
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This integral is absolutely convergent because of the rapid decrease of I'(s)
along verical lines in the right-hand plane. (In fact, (34) follows inmediately
from the definition of Euler’s Beta function and the Mellin inversion formula.)
Thus, when p > 2 we let 7 =ty + --- +t,, and then, if 0 <y < (5 — 1),
we have

[ S
(i++) I m/7)
1 Y1 +i00 .
- W fh—ioo F(Sl)r(ﬁ - Sl)(tl/T) dsl
B 271'21F(ﬁ) [Z:—:O T(s1)(B — s1)t, 5177 ~*1ds,.

Since (5 —s1) > 1, we can use a recurrence argument when p > 3, which
will become clear after we write down the next step. We rewrite 7 =ty + o,
so that

1 B 1 1
s gBsi (14 (ty/0))P—=
1 /'szrioo I (52)(3 )t ~(B-s1-52)
= — S — 81— S o S
27Tlr<ﬁ — 81) Y2 —100 2 ! 2 >

as long as 0 < v < (B — 51 — 1), i.e,, 11 + 72 < RG — 1. Therefore, with
T =1t +---+t, we have

1 1 Yoo 72+ioor ps14=52 o= (B=s1=52) 15 g
75 = PTG Lo Sy DBt —s1salt™7% sidss

which shows, by induction on p, that the formula (33) is correct when P =
1, u;=1(j =1,...,p). In other words, with the notation introduced above,
we have proved that

1 1 vhico g
= G /ym T[s*]¢~*" ds. (35)

Multiplying (35) by #* = t{* ---t/», we obtain the formula (33) in the case
P=1

t* 1 y+ioco il
5 = Gri T L Tlsds. (36)
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To obtain the general case, let us rewrite (36) by choosing new variables
r1,...,7p defined by

t; t;

=g (1<j<p)
ST T gy, SIS

It follows that for any r; > 0, u; € C,

rH = (27ri)7ilr(ﬁ) L’:r:o I[s*]rds. (37)

If we now apply the differential operator rjﬁ to both sides of (37) we find

i = b e T[s*)ijrids
Pl = Qi D (B) Sy~ T

It is clear now that for any polynomial P,

P(p)rt = M /j::o L[s*|P(f)rfds.

Replacing r; by their values in terms of the 5, we obtain the expression (33).
(Il

Let us now apply this lemma to the study of the coefficients in the Laurent
expansion about p = 0 of the analytic continuation of

|f|2(utfk)

SR TTETS (38)

where ¢t €]0,00[P is a vector to be chosen below, u € C, k € Z, k is the
p-dimensional vector (k,..., k), m € N*, f; € E,1(K), |fI*™ = (|f]* +
<+ |f,]*)™, and, keeping with the previous notation |f|" = [fi|™ - |fp|™

for any vector r = (ry,...,r,) (Similar meaning for f"). From Proposition
1.2 we conclude that there is a polynomial A(\,...,\,,z1) and differential
operators Q1 ;(\, z,e™, e, %) such that

AN ) i 0 Qu (A AN - f - ).

As we have done in the proof of Lemma 2.1, for any & € Z,l € N there is
a polynomial A; € K[\ z1] and a functional equation (in which we use the
abbreviated notation introduced earlier)

AfTE = Q) (FATE).
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The polynomial A; and the new differential operator );; depend also on

k. Multiplying this equation by ﬁ/\l_k . -TpAp_k, we obtain a functional
equation that has also meaning in the sense of distributions

ALFPOE = QN (FPA 1. (39)

As a consequence of Lemma 2.2, and using the same notation, for any point
x such that fi(z)--- fy(x) # 0 we have

T f@)POH 1 T P A, 21 () PO ds
Ao O — T /wioo [[s*] A\, 21)| f ()] d@O)

Let us fix [ = 2m + 2k 4+ 1 and choose a vector t €]0, co[P such that the
one variable polynomial p — A;(ut, z1) is not identically zero. Almost every
choice of t works for all £ and m. To emphasize the dependence on k, we
now denote Ay (i, z1) := Aj(ut, x1). Factor Ay into two coprime terms,

A (e, 1) = p2Bg (1, 1), (¢ = q(k)).

Therefore, there are polynomials Ry (z1) # 0, ug(p, 1), and vy (u, x1), with
the property that

2n+1

Ri(w1) = ur(p, 1) Bi(ps v1) + p=" " og (g, 1)

Consider from now on A = ut. For Ry > 1 and ¢ € D(C") we can
integrate ¢ against (40) to obtain

1 Y+i00

G o o T A ) )5 s

2)[20—EK)
:/Cn Uk(ﬂ,$1)Ak(M,xl)M¢<w)dx

1 )1
)P0 +2n+1 |f () OB
= [ / mpde — pf / o oda
||f @ 1 ()I*
We remind the reader that A;(\, ;) is really a polynomial in p, sy, . .., S,_1,

and x1. For s fixed we apply the functional equation (39) and integration by
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parts, to conclude that

L Tl ueA ozl PO Ppdr = [ Qud(fP Y funpda

= /Cn |f|2(f\—k)f£ Qll;l(j\)(ukgo)d:x,

where @7, represents the adjoint operator. Using Fubini’s theorem we get

o RO
% / k— 2m PAT =
o

ST Jon | TP QL () s

200

2n+1 |f|2 (A5
2t [ oda (41)

I
= 5L(p) + Ix(p)

Similarly to the case of a single equation considered earlier, we have that
in a neighborhood of p = 0, the distribution-valued function (38) has the
Laurent development

| f[2008) o0 ,
= > ap, ap; € D'(C). (42)

Hf“2m j=—2n

The choice | = 2m + 2k + 1, ensures that the distribution valued function

e [f@ PO B (i) - fola)!

is holomorphic in a neighborhood W of u = 0, uniformly with respect to
s, and independent of x as long as x is near supp(yp). Thus, the Taylor
coefficients of I;(u) about p = 0 are linear combinations of expressions of
the form

y+ioo
| L TR Gom 7)1 0 B e e )V,

where E, F are polymonials, « € N?, 5 € N", and we have written (log | f])* =
(log | fi])* - - (log | fp])**. Altogether, due to the choice of [ and the con-
straints on the 7;, there are constants s, and N € N such that these integrals
can be estimated by

Kamaz{|fi(x) - fp(x)E(z,e™,e™™)] s x € supp(p) Helln,
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with [|¢||xy denoting a Sobolev norm of ¢. It is clear that there are distribu-
tions by, € D'(C") such that

Lip) =" <bgp, o> p
h=0

On the other hand, if vy(p, 71) = % vgi(z1)pf, then

[e'S) d

I(p) = Z Z < g, Vii(T1)p > MiHHHnH

j=—2ni=0

Summarizing,

o0

> < Ri(wr)ag, > pta

j=—2n

= Z < bk‘,ha ©w > Mh + Z < ak7j,vk7i(xl)g0 > [Li+j+q+2n+1.
h=0 1]
The second series on the right hand side does not contain any power of
w1 smaller than ¢ + 1. This allows us to identify the coefficients on the left
hand side with indices —2n < j < 0. Namely,

Rk(xl)ak,j = 0 if qg+7 < 0

) . 43
Ri(z1)ak,; = brgy; f0<qg+7<gq (43)

Note that if the f; are polynomials (no exponentials) then the polynomial
factor can be taken to be Ry = 1 for any k. This follows from the fact that
E, o(K) is holonomic and, hence, there are always functional equations (7)
with A; independent of x and @) ; with coefficients in K[\, z].

The same reasoning holds when we start with the system of formal iden-
tities (8), and the only thing to remark is that we can choose the vector
t €]0, 0o[P so that for every k, m the corresponding exponential polynomials
in K[\, e”] are not identically zero on the complex line A = ut. Correspond-
ingly, we obtain Sy € Kle™], ¢ = ¢(k) € N, and distributions ¢ j, with the
same properties as the by ; such that

Sk(exl)bk,j =0 if (j+] <0
Sk(e™)brj = brgy; f0<q+75<4

In other words, we have proved entirely the following proposition.
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Proposition 2.2 Let fi,..., f, € E,1(K), then, for any t €]0,1[P (outside
a countable union of K-algebraic hypersurfaces, which depend on the f;) and
any k € Z,m € N*, there are polynomials Ry, and Sy, in K[u] and constants
Cy, D > 0, N}, € N such that if aj € D'(C") denote the coefficients of the

Laurent expansion
| f|2(utfk) 0 ,
T
j=—2n

then, for —2n < j <0, ¢ € D(C"),

| < Re(@)ans, e > |+ < Sile™)ary > | < Cillellw, max ePrr@)),

where p(z) = log(1 + |x|) + [Rx1].

Note that in this proposition, Ry, Sk, C, Dy depend also on m and ¢, while
Ny depends on k,m.

Corollary 2.2 IfK C Q, there is an integer v, € N, and positive constants
Ch., D}, such that

| < aParj, @ > | < Cillelly, max @it
zE€supp(p)

Proof. It is the same as that of Corollary 2.1.

O
Let us examine now the situation where fi,..., f, are polynomials in
e ey, ..., x,, with coefficients in Q, a € Q \ Q. The same procedure

as earlier shows there are polynomials of a single variable A, B € Q[s] \ {0}
such that if a; ; denote the distributions that appear in (42), then A(e™)ay ;
and B(e*')ay,; have good estimates for —2n < j < 0. In this case the
two entire functions A(e®') and B(e**') can only have x; = 0 as a common
zero. In fact, if z; = ¢ is a common zero, then w = €S satisfies the algebraic
equation A(w) = 0, so that w € Q. For the same reason w® € Q. Gelfond’s
theorem [2] implies that ¢ = 0. Let us factor

I

A(s) = (s = D" [I(s = &),

Jj=1

lo

B(s) = (s = 1) ][ (s — m),

J=1

where &;,m; € Q\ {1}.

31



Lemma 2.3 Let A(e™) = zVAi(xy), B(e*™') = 2¥By(x1), where v € N,
and Ay, By are entire functions without any common zeros. Then there are
constants cy, co, e,k > 0 such that

eexp(—rp(r)) < |[Ar(1)| + |Bi(21)| < erexp(eap(r)).

Proof. Clearly v = inf(v1,1v2). For the sake of definiteness, let us assume
v = 1. The proof now follows from the fact that if |A;(xy1)| + |Bi(x1)] is
small, then, either | —¢&;|+|e** —n,| is small for some pair of indices j, [, or
le™t —&;| 4|y —2mri]| is small for some index j and some integer m. Baker’s
theorem [2] on lower bounds for linear combinations over Q of logarithms of
algebraic numbers yields the lower bound of the lemma. (Otherwise, either
|21 — log&;| + |awy — logm| is too small or |z — log&;| + |awy — 2mmi| is
too small. Since o € Q \ Q these two simultaneous estimates are impossible
2, 10].) The upper bound is clear.
(]

As a consequence of this lemma, we conclude that z7ay ; can be estimated

as in Corollary 2.2. For future use, we state this in the form of a proposition.

Proposition 2.3 Let fi,..., f, are polynomials in ', e*™, xq, ..., x,, with
coefficients in Q, a € Q\ Q and t €]0,1[P (outside a countable union of
K-algebraic hypersurfaces, which depend only on the f;) and any k € Z,m €
N*, there are an integer v, € N and positive constants Cy, Dy such that if
ai; € D'(C™) denote the coefficients of the Laurent expansion

|f|2(#t,@ i ;
Tnrzm Ak, j 15

1] i=om
then, for —2n < j <0, ¢ € D(C"), we have the estimate

| < at*arg, 0 > | < Cillplly, max e,
z€supp(p)

where p(x) = log(1 + |z|) + |Ra1].

3 Division formulas and representation
theorems

In [9] we gave some sufficient conditions, albeit sometimes hard to verify,
so that if fi,..., f, are exponential polynomials in n variables with integral
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frequencies whose variety of common zeros V = {z € C" : fi(z) = -+ =
fn(z) = 0} is discrete or empty, then the ideal I generated by them in the
space A,(C"), p(z) = log(1+ |z|) + |Rz| coincides with [;,. the ideal of those
functions in A,(C™) which can locally be obtained as linear combinations of
the f; with holomorphic coefficients. In particular, I is closed and localizable
(i.e., I = I = Ij,.). In fact, the conditions given in [9] implied that the n-tuple
fi,- .., fn was slowly decreasing in the sense of [6]. This has a certain number
of interesting consequences for the harmonic analysis of the solutions of the
system of difference-differential equations in R™ with symbol given by the f;.
In [8] we had proved that in case n = 2, the discreteness of V' was enough to
ensure that the pair fi, fs is slowly decreasing. This led to the conjecture in
9] that if the coefficients of the f; are algebraic numbers, the discreteness of
V should be enough to prove that fi,..., f, is slowly decreasing or, at least,
that I is closed and localizable. Examples were given showing that this last
statement could fail if the algebraicity of the coefficients was not true. On
the other hand, we show in this section that if fi,..., f, € E,1(C) define
a complete intersection variety, that is dimV < n — p, then [ is closed and,
moreover, I = I;,.. In the case V is not a complete intersection we show that
the local algebraic closure I and the radical v/T are closed. That is, these
theorems are valid without any restrictions on the coefficients, whereas to
extend them to exponential polynomials with two main frequencies one needs
to impose arithmetic restrictions both on the frequencies and the coefficients.
The section ends with some representation theorems for the solutions
of systems of difference-differential equations corresponding to exponential
polynomials fi, ..., f, € E,1(C), which define a complete intersection, as an
illustration of the applications of the previous results to harmonic analysis.

Theorem 3.1 Let fi,..., f, € E,1(C) define a complete intersection vari-
ety V. The ideal I generated by them in A,(C"), p(z) = log(1 + |z|) + |Rz]|
15 localizable.

Proof. The first thing to do is to replace fi,..., f, by some linear combi-
nations of them, ¢i,...,g,, that have the additional property that for any
sequence of indices 1 < i1 < 1ig < --- <1y < p,

dim{z e C": ¢g;,(2) =+ =g;,(2) =0} <n—k.

We say that the sequence g, ..., g, is a normal sequence. The existence of
such a normal sequence is guaranteed by the following lemma.
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Lemma 3.1 Given any collection of entire functions fi,..., f, such that
dim{z € C": fi(z) =---= fo(2) =0} <n—p.

There exist (;; € C such that the functions defined by

p

gi =Y Gjif; (1 <i<p)

j=1
form a normal sequence. Moreover det((;;) # 0.

Proof of Lemma 3.1. Let g; = f; and V},; denote the irreducible compo-
nents of V(g1) = {z € C": gi1(2) = 0}. Pick a regular point z}; in each Vi;;.
Since dimV < n —p and we can assume p > 2, for each z},; there is a nearby
regular point z;; € V3, and some 2 < k < p such that f(z,;) # 0. Consider
now the system of linear equations

p

Z i fi(z1) = 0.

k=2

Since the number of equations is countable, the Baire category theorem en-
sures there is a complex vector (ca, ..., c,) such that go ;== cofo+ -+ ¢, f,
does not vanish at any of the points z;,. It is clear that the two vectors
¢ =(1,0,...,0) and (3 = (0, ca,...,cp) are linearly independent. We claim
that dimV (g1, g2) < n—2. If not, g would be identically zero on a component
of V(g1), which is impossible.

Assume now that p > 3. By the previous reasoning we can choose regular
points zy.; € V(ga) (resp., 2194 € V(g1,92)), one for each component, such
that for some index 1 <k < p, fr(z5;) # 0 (vesp. fu(212,) 7 0). The index
k clearly depends on the point. Let us denote now {z9,}; the collection of
all the points 21, 22,5, 21,2;,. Then we consider the countable family of linear
equations in CP

p
> Canfi(z20) = 0,
k=1
augmented by the linear equation in (3 = ((31,.-., ()

rank|[Cy, G2, (3] = 2.
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The earlier considerations imply the existence of a point (3 not satisfying any
of the equations. We define g3 := > _; (31 fx for this choice. It is clear now
that also dimV (g1,93) < n—2, dimV (g2, g3) < n—2, and dimV (g1, g2, 93) <
n —3. If p > 3 it is easy to continue this process. This way we obtain a
normal sequence with the desired properties.
O

Let us return to the proof of Theorem 3.1. We assume henceforth that
fi,..., [, is a normal sequence. We recall from the proof of Proposition
2.1, applied to the function f := f"* - - fp7, my € N, the existence of
polynomials Ry ,,(z1) such that the coefficients a1, —2n < j < 0, of
the Laurent development of |f|** at A = —1, have the property that the
distributions Ry, (x1)am;1,; are linear combinations of distributions of the
form

o [ FU/P1og]F5/Qulg)da, (o € D(C™) (44)
where [ € N and @),, are differential operators in a% with coefficients that are

polynomials in z,e* e~"1. (See equation (28), note that & = 1 in this case.)

For simplicity, we define R to be the product of R, ,, for all the choices
of indices m with length |m| < p. This choice allows us to control all the
coefficients a,,,; ; simultaneously.

Let aq, ..., ay be the distinct roots of the polynomial R(z1) and vy, ..., v
their respective multiplicities. Fix one such root ;. Then each function f;
can be considered as a power series in x; — «qq, with coefficients that are
polynomials in z' = (xa,...,x,). It is clear that when we truncate this series
at the term (21 —ay)", we obtain a polynomial P;;. Moreover, if a function is
locally in the ideal generated by fi, ..., f,, (x1—ay)", then, it is also locally in
the ideal generated by Py, ..., Py, (r1—y)". Let F' € A,(C"™) belong to I,
then, for each [ it is locally in the ideal generated by Py, ..., P, (1 — )"
We can apply Ehrenpreis’ Fundamental Principle to obtain a representation

hS]

Z G P+ (1 — )" Gpia s

with functions G;; € A,(C") (cf. [21, 18, 26]). If we write

fi =P+ (r1 — )" Qju,
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then @;; € A,(C") and F' can be expressed as

p
F = Z Gj’lf]' + (1’1 — Oél)VleJrl,la (45)

Jj=1

where Gpy1 = Gpi1y — >h—1 Qj1Pj, so that this function also belongs to
A,(C™).
We claim that there are functions G; € A,(C") such that

F =3 Gif + R(@)Cpin. (46)

J=1

In fact, for 2’ fixed, we apply the Lagrange interpolation formula to the points
ai, ..., a, with multiplicities vy, . . ., v, so that we construct functions G;(x)
with the property that for each [

Gi(r1,2") — Gj(x,2") = O((xy — a)™). (47)

The Lagrange interpolation formula guarantees that G; € A,(C"), and
(45),(47) imply that

p
F=3 Gif; =F=5_Gfi+3Xi.1(Gu— Gy f;
j=1
= O((z1 — a)").

Hence, F' — Z§:1 G, f; is divisible by the polynomial R, and the entire func-
tion G,y defined by (46) also belongs to A,(C") by the Pélya-Ehrenpreis-
Malgrange division lemma [21, 27].

Note that the remainder term in (46), namely H := R(21)Gp+1 € Lioe,
since F' € I[;,. and Z§:1 G;f; € I. The idea of the rest of the proof of
Theorem 3.1 is to show that, thanks to the fact that H is also divisible by
R, we have H € I, using the explicit division formulas considered in [3].

Let us recall the construction from [3, 14], except that here we will need
three weights as in [14]. Let N be a sufficiently large integer and x > 1 (both
shall be chosen below.) Let 6 € C5°(R?"), non-negative, radial, §(x) = 0 for
|z| > 1, [0 dx = 1. The weights we consider are constructed starting with
an auxiliary entire function I'(¢) of a single variable, I'(1) = 1, and a smooth
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(1,0)-differential form @ in C?". In fact, we take three such pairs, the first
one depends on A and it is

o lp 2,\93( f)
(48)
Nt = ;!j:fpt‘”

The g;(z, ) are differential forms given by

Zg]k r,§) dé,
=1

where the entire functions g;, € A,g,(C**), with (p ® p)(x, &) = p(z) + p(§),
and satisfy the identities

n

> (k= &)gin(r,€) = fi(x) — £3(§) (1<j<p)

k=1
The existence of such functions is well-known [27, 6]. The second pair is
given by

Finally,
@3(z,§) = rO(|R& | *0)
Ty(t) = exp(t—1). (50)

To every pair we associate a function
(I)j(xvg) =1+ < Qj?x _5 >=1+ Z ij(x7§)(l‘k - gk)7
k=1

where Q;(x,&) == Y1_; Qjr(x,&)dE. A simple computation shows that

(I)l(xaga)‘) = 7Z|f] |2>\ 1f] + Z ]‘_|fj
1 . o1

D3(2,8) = K(IRG[*0e0) - (11— &) +1
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Here x - £ = x1& + -+ - 4+ x,€,. We also need a few extra auxiliary functions

(6% « da
Y = T57(2,6) 1= = L0l g, e @ €N
@ .= F(al)F(M)F(a?’), a; € Na = (g, a9, a3).

Following Henkin’s ideas [11, 5, 25, 16], we can represent an arbitrary function
u in C§°(C™) by the formula

1 _
u(e) = o fo, MOP@E) = [ DO AK @O, (52
where
(0O =PeeN) = X 190",
jal=n ¢
(0Q) = @e@i(@.)™ A (DeQal, ) A (FeQa(r.£))™
K(@,6) = K(2,6,)) = 3 711(&)5 A (0S)20 A (0Q)™

vt oo al |z — £[200+2 )

_S(.€) = > - )i,

7j=1
S =08 = S dg; AdE;.
=1

Let us now apply (52) to prove that H € I. We choose a radial function
X € CP(CY), x =1for |§] <1, x =0for ] > 2,0 < x <1. Fora
fixed R > 1, apply the representation formula (52) to the function u(§) :=
X(E/R)H (&) = x(§/R)R(&1)Gp+1(€). Note that (52) is a priori defined only
when the parameter \ satisfies RA > 1, and we apply it to a fixed z, |z| <
R/2. The two integrals in (52) admit an analytic continuation to the whole
complex plane as meromorphic functions of A. We are going to identify the
zeroth coefficient of their Laurent development at A = 0, which will provide
a representation for H(z).
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Following the computations in [3, p.42-43], we can conclude that because
H € I, the first integral in (52) represents an element of the ideal generated
by I in C§°(C™). (It is here that one uses the fact that fi,..., f, is a normal
sequence, a point left implicit in [3].) More precisely, if we consider
(@ dmT 12 P
L6, ) = T (= ) 2= 1OF) = 2 f@) s (.6 0), (53)

7=1 J=1

it is possible to show (cf. [3]) that to compute the zeroth coefficient of the
first integral in (52) at A = 0, we can replace everywhere in P, FY”) by

=1 [i(@)Yar (@, & A). B
The other important terms where A appears are (0Q1)*',a; € N. We
have

(an = Z ‘f] |2 =D af](&) A gj(xag))alv (54)

which is a linear comblnatlon of terms of the form

X iy (&) -+ fia, (PPOY /i 0f:, (&) A giy(x,€). (55)
=1

A typical term in Fgal) is

{Zlf] ‘2)\ Df] Z 1_‘f3 ‘2/\)} , 0<q¢<p—ay. (56>
J=1

So that
L w@ro@Q) = [ HExE /R @Q)™ A, (57)

for some differential form ¥,, independent of \.
Similarly, for the second integral in (52)

5 (@S A (98) A (0Q)"
L oue) AT | ﬂmm
=+ L HO@O() ATV @) ne., (58)
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O, a form independent of A\, smooth on supp((9x)(£/R)). Finally, (57) and
(58) are both linear combinations of expressions of the following type
A
Ri

L e PO e PHEOXOE/ R, (59)

where m; € N, Z§:1 m; < p,nj €N, x| the ith derivative of y, i = 0,1,
is a form of degree (n,n), smooth on the support of x(¢/R). The form €
involves the coefficients of the second and third pairs. It is this formula (59)
that will eventually allow us to let R — oc.

Let us recall that H(§) = R(&1)Gp41(€), Gpe1 € A,(C™). Each expression
of the form (59), when analytically continued to A = 0, contributes one term
to the zeroth term of the Laurent expansion of (52), namely that correspond-
ing to the coefficient a1, _q, of the Laurent expansion of |fi"* --- f;”l"|2A at
A = —1. Therefore, the contribution of (59) is given by terms of the form

< R(§1)mi1,—an s ];Gpﬂ‘f{“ e f;P|2X(i)(§/R)w(x,f) >, (60)

where w(z,§) is one of the coefficients of Q(x,¢). We know from (44) how
the distributions R(&1)am:1,—a, act on test functions, which shows that their
limit exist when R — oo and, in fact, are zero for ¢ = 1 (i.e., the terms
corresponding to the kernel K'), while that for i = 0 (i.e., those corresponding
to the kernel P) they are entire functions of x, with the correct growth
conditions, that is, they belong to A,(C™). All these estimates are achieved
thanks to the previous choices of ()5, I's, O3, I's for sufficiently large constants
N, k. (We dot really need to use the exact form (44) of the distributions
R(&1)Ami1,—ay, it is enough to apply the estimates of the Proposition 2.1.)
This is similar to what we have done elsewhere, [3], in the algebraic case,
and [14], in the analytic case. In other words, we have shown that H € I.
O

Let us consider now the case where we do not assume the ideal is either
complete intersection or its variety is discrete. We shall study several ideals
containing I = I(f1,..., f,). First, let us recall that V1, the radical of I, is
the set of all elements ' € A,(C") such that F* € I for some k € N. Second,
let I, the local integral closure of I, be the set of all elements F € A,(CY)
such that for every point xy € C” there is a neighborhood U and a constant
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Cy, > 0 such that
p
|F(2)] < Cop |l (@)l = Cop O |f5(2) )2, Vo € U.
j=1

For W open in C", let Iy denote the ideal generated by fi,..., f, in H(W).
It follows from [28] that F € I if and only if for every z, € C" there is an
open neighborhood W, a positive integer N, and functions ¢, ..., N such
that

FN 4 o FN " oo 4oy =0in W, and ¢; € I}y

Finally, let I(V) = {F € A,(C") : F |V = 0}. Note that for a function F
to belong to [j,. means that it vanishes on the points of the variety V' with
some multiplicity, whereas in I(V') the common multiplicities of fi,..., f,
are disregarded. It is obvious that I(V) is a closed ideal, and we recall that
the same is true for [;,.. Some inclusions between these ideals are clear

IC Ly CICI(V), VICIV).

It is also clear that, in general, we do not have I,,. = I(V)). We are now
ready to state two important results.

Theorem 3.2 Let I be the ideal in A,(C") generated by fi,..., f, € E,1(C),
V={zxeC": filx)=-= f,(v) =0}. Then VI=1(V).

Theorem 3.3 Let I be the ideal of the previous theorem and let m be given
by m =inf(p+1,n), then [*™ C I.

The crucial step in the proof of these two theorems is the following propo-
sition. We state it in a slightly more general form that actually needed for
future reference.

Proposition 3.1 Let ¢ be a convex, non negative function in C", satisfying
the inequality
p(r) < Kop(y) + K1 if [z —y| < 1, (61)

for some constants Ky, K1 > 0. Let A be the space of entire functions given
by

A:={g€H(C"): A > 0 log|g(z)| < A(log(2 + |z]) + ¢(x))}-
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Let fi,...,fp,R € A, m = inf(p,n), and assume there are t €0, c0[?,
B > 0,N € N such that the coefficients aj, —2n < j < 0, of the Laurent

ETPansion
|f|2(ut—l) o) )
> o (62)

IS

satisfy for any 1» € D(C™) the estimates

| < Raj,¢ > | < Bexp(Bmaz{log(2 + [z|) + p(z) : x € Supp(¢)})||¢||<1\f- |
63
Then

(i) If F € A and F(x) = 0 whenever fi(z) =--- = fy(z) =0, then

RENT € A+ + [, A

(i) If F € A is such that every xy € C™ has a neighborhood Uy, in which
|F(2)] < Cop |l f ()| Vi € Usy
for some constant Cy, > 0, then

RFm€f1A+"'+fp.A.

Proof. The proof is based on the representation formula (52) with

u(€) == x(§/R)R(§)F(&)", (64)

for some R > 0,k € N, x a plateau function as in the proof of Theorem 3.1.
We need to make explicit the three pairs );,I'; that appear in the kernels P
and K. First, for Ru > 1,

Vil

Qi(z,&p) = e ;fjgj(f’f@ (65)

Ti(s) = s, g =min(p,n+1),

where we have left implicit the variable £ of f; in the definition of Q1, as we
shall do elsewhere. The differential forms g, are defined exactly as in (48),
for the present growth conditions.

42



As before, for some N > 1 to be chosen later
Qa(w,€) 1= Olog(1 + [¢]*), Ta(s) := 5", (66)

Finally, for some £ > 1 and 6 € C**°, non-negative and radial, supp(f) C
{¢: 18l <1}, JodE =1,

Qs3(x,€) == kO(p * 0)(€), T3(s) =t (67)

When the corresponding functions ®; are defined as before, the function ®,
is the same as in (51). The function ®3 is given by

B(1,€) = 1

J

ZW%%@@r@W+L

1

We remark that the function ¢ * 6 and all its partial derivatives of order «
can be estimated by

[D*(p  0)(€)] < Col(€) +1) < Cae?®
and, since the function ¢ * # is also convex,

|exp®(z,&)| = eexp{rR(I(p*0) - (x— &)}
< eexp{5(px0(r) —p+0(5))}.

On the other hand, not only
(0 0)(x) < Kop(x) + K,

by the hypothesis (61), but moreover,

Kolp=0)(©) = | Kop(e=moin < [ (o)~ Kno(m)in < p(6)~ Ky,

In|<1
It follows that, for some C' > 0,

exp @(2,6)| < Cexp{ (Kuplz) = -#(€):

The function ®4, here, is really different from that in the proof of Theorem
3.1. Namely,

(o) = (1= L) + |y ),

(68)
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Moreover, it will turn out to be important to make the expression of (9Q;)*
explicit. We have

. TN Y IR NN
5Qu (w65 0) = |12 [ (u 301,200 A (2SO0, L STy p ) ).
o 11l el (|
(69)
For oy € N, (9Q1)** is a linear combination of terms of the form
l 2uat fin le ) <af]1 af]l)
s (e 1) (00 7
K] fin )A...Aé(f’“l-l) Ay(z, €, (70)
[Fals [l

where 0 <1l <oy < pig < - <4, 1 < -+ < J,h1 <--+ < hg, -1, and
7 is an (aq,0)-form with holomorphic coefficients, obtained from the wedge
product of several g;. It is clear that, for a; > m, (9Q;)* = 0, since there
are either too many d¢; or too many g;. For a; = p, the expression of (0Q)?
is particularly simple, namely

Nk

1711

In fact, from (69) we see that Q; has the form

(0Q1)P = up! (=1)PP= V2 () 4. . 41, Afin. . . NOfyAgy(, E)A. . Agy(, €).

(71)

Q. = |f*(ANB+C),

where A and B are 1-forms and C is a 2-form. Since 2-forms commute for
the wedge product,

(0Q,)P = | f|2Pm Z (?) (AABY ACP™ = |f|?PMY(CP + p(A A B) ACP™Y),
j=0

since clearly (A A B)Y = 0 for j > 2. In [11, p.61-62] we have shown that
CP? =0 (just set € = 0 in the expression obtained there.) Hence,

(0Q) = uplf ;08 F) A QC(F/NFI7)gi) A 2 O/ II£IF) A ge)”™,

% k

which yields the identity (71) after an easy computation.

44



With these simplifications at hand, let us return to the analysis of the
kernel P that appears in (52). The following computations are all made for
R > 1, modulo the ideal Z generated by fi, ..., f, in C*°(C"). Every term
in P contains some ['(®) ag a factor, 0 < oy < n, then it contains ®7
when a1 < ¢ (and vanishes when oy > ¢), thus the terms that do not belong
to Z are of the form

(1 - ‘f‘QMt)qial (5@1)(11 A 190417

Vo, = Vo (x,€) is a C* form, which we do not make explicit for the time
being. From (70) we conclude that, modulo Z, we need to consider the
analytic continuation of integrals of the form
2,ut qg—a1 2uat afJ Y
s — £l | f] hr T N Ok N\ O(z,§), (72)
J

where -
fis - Ja
LI
% = %1 /\..-/\%l,
fJ fj1 sz
Okns = O(fonr [IFIP) A+ N O(Fon, o/ NI,
© is a C™ form, and u is given by (64), so that it has compact support.
Let us distinguish two cases, p <n and p > n. If p > n, then g =n+1,
and ¢ — a; > 0 always. If p < n, (0Q1)** = 0 once a; > p. On the other
hand, when «; = p, (71) shows that the only possible non-trivial value for
is [ = 1. Hence, in every case, either [ > 0 or ¢ — ay > 0 in (72).
We are now going to consider the case [ = 0 in (72). Recall that we are
only interested in the zeroth term in the Laurent development of the analytic
continuation of (72) at u = 0. As a function of p, (72) can be written as

h[ =

q—aq

S () e un 2 a G no@e. (79
§=0 cn fa
where we have absorbed all other terms into ©. Even though the powers
| f|?#(@1+9)t are different, their contributions to the zeroth term at u = 0 coin-
cide. (This is evident by considering the variable A = p(ay + j).) Therefore,
the total contribution of (73) is zero.
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Consider now the case [ > 0. As in [3, Proposition 2.3] we can use
Hironaka’s resolution of singularities to study the current defined by the
zeroth term of the analytic continuation at p = 0 acting on test forms O,

ofr =
l 2u3t
“ /C RIS 2 A Dk 16, (74)

where 3 = a; + j, for some j, and we have absorbed x(¢/R)F(€)* into
©. The first thing to observe is that these currents are supported by the
variety V' of common zeros of fi,..., f,. Moreover, we shall show that these
currents are also annihilated by multiplication by the functions f;, as well as
multiplication by fi"* --- f)'*, whenever nj + - - - +n,, exceeds the order of the
current. The order of these currents will be estimated using hypothesis (63).
Recall that, after using a partition of unity and resolving the singularities
as in [3, p.33-34], we can reduce ourselves to the case where all the f; are
invertible holomorphic functions multiplied by monomials m;, all the m; are
multiples are my, that is, 7* f;(w) = w;(w)m;(w) = u;(w)m}(w)my(w), m) =
1, where 7 is the blowdown of the desingularized variety. Hence,

ki = m(fi/lfI°) =

T gm0 Juymy 2

w;m;

7 (%

ma(jual® + X7 fumj[2) — my’
with v; € C*°. Thus,

7 (Okar) = O (kar) = —ot,
1

for some smooth wy,;. Similarly,

Finally,

. Of; du;,  Omy, ou om,;
e = (B Ty (G
fr Ujy Mg, Uy, mg,
dw5
- Z\I]ls/\iu
B Ws



where, as above, wy, ..., w, are local coordinates in the desingularized vari-
ety, W5 are smooth forms, § := (d1,...,0,),1 <d; <--- <, <n,|d] :=7r <

dws dw dws . . . . .
[, and 22 := % /ACERIAN % Hence, in the coordinates w the integral in
1 T

(74) is a linear combination of
[l 25t S A 7 (RO), (75)
my' Ws

for some smooth form 7;. Recall we are assuming that [ > 0 and note
that when oy = 0 the integrand in (75) is integrable up to p = 0, thus it
contributes nothing to the zeroth term of the Laurent development. We can
therefore assume that oy > 0 in what follows.

Let us assume now that © is a smooth multiple of some f;, then 75 A
m™(RO) = m10’, © a smooth form in the w-coordinates (it depends on z
also, but that is irrelevant at this moment.) In this case we can integrate by
parts (75) and obtain

o
i [ T

o] —
1 Ws

= /‘Ll/|m|2u6tmldw5 IN-4
P(y) W
Here ©” = ©"(z,w, u) such that p+— ©” is holomorphic at = 0 and P is a
polynomial which does not vanish at © = 0 (cf. [3, eqns.(1.20)-(1.22)] for the
details.) It is now clear that the integrand is integrable for u = 0, so that this
term cannot contribute to the zeroth term of the Laurent expansion. This
is equivalent to say that the currents we are computing are annhilated by
FLC® +- -+ f,C>, which implies that their support lies in N;{f; =0} = V.

Remark that if F' satisfies the local estimates in part (ii) of the state-
ment of this proposition and k > m = min(p,n) > ay, then (7*F)F/mS" is
bounded, so that again the integral (75) will not contribute to the currents
we are looking for, because everything is integrable up to . = 0. We will use
this remark in the proof of part (ii) of the proposition.

We are now ready to conclude the proof of statement (i) in the proposi-
tion. We observe that the integrand in (74) is a linear combination of terms
of the form
| f|2(uﬁt—1)

R—
£

"
e,
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where ©” is smooth and has absorbed some factors |f;|* and || f||>. This
expression is obtained by using the definitions of hy, f;, ky;. The hypothesis
(63) of the proposition ensures that the orders of the currents that appear
in (74) are at most N (plus giving some precision in the estimates in terms
of x.) As these currents are supported by V, it follows that if the power k
of Fis N 4 1 or larger, then these integrals do not contribute to the zeroth
Laurent coefficient at pu = 0.

We can summarize these statements in the observation that, for |z| <
R/2, we need only to consider the zeroth term of the Laurent expansion of
(52) at p = 0 and obtain

R(x)F(x)"* = ¥ fi(x) < T, ), R F(E) X/ R) >

1

TR Jo ROFE O E/R) A K (2,64 = 0)
(76)

where the distributions 7} are holomorphic in the variable z and the kernel
K(z,&; XA = 0) involves the distributions a;, —2n < j <0, from (62), so that,
as we did in the proof of Theorem 3.1, we can choose the constants N, x in
(66) and (67) to ensure that all the limits exist when R — oo and that the
last term of (76) vanishes for R = oo. It follows that the coefficients of the
fi(x) in (76) belong to the space A. This concludes the proof of part (i) of
the Proposition 3.5.

Because of the earlier remark, the same representation (76) is valid for
R(z)F(z)™, m = inf(p,n), and the conclusion of part (ii) follows. This ends
the proof of the proposition.

(I

Remarks

1. We have pointed out, in the proof of Proposition 3.1, the remarkable
fact that the currents involved in the remainder terms of the division formulas
we have used, are annihilated by the conjugates f; of the generators of the
ideal. In the case of a complete intersection, there is only one remainder term,
given by the residue current, and hence the remainder is also annhilated by
the generators f;. The fact that we do not know that the remainder terms
are killed by the f; in the case of not complete intersection, is what prevents
us from obtaining holomorphic division theorems.

2. In the algebraic case, that is, all the f; are polynomials, we know from
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the Bernstein-Sato functional equations that hypothesis (63) is valid taking
R =1 and a convenient choice of t.
Proof of Theorem 3.2. Let ' € I(V), we need to show the existence
of k € N such that F* € I. We follow the lines of the proof of Theorem 3.1.
JFrom Proposition 2.2 of the previous section we conclude there are t €
10, 00" and a polynomial R(x;) so that the Laurent coefficients a; := a4 j,
—2n < 7 <0, of the expansion
| f|2(utfl) 0 ,
S = 2o ek (77)
AP =

have the property

| < R(z1)aj, > | < Cexp(Dmaz{p(z) : = € supp(@)})Ifllx  (78)

for some positive constants C, D, Ny, and any ¢ € D(C").

Let aq, ..., a; be the zeros of R, with respective multiplicities vy, ..., 1.
Consider [, the ideal generated by fi,..., fp, (1 — o). This ideal is gen-
erated by polynomials Py, ..., P,;, (x1 — a;)”, as observed in the proof of

Theorem 3.1. Since F' vanishes on the set V' of common zeros of I, it also van-
ishes on the set V} of common zeros of I;. We can therefore apply Proposition
3.1, and obtain a decomposition

p
FM =% GiPiy+ (21— a0)" Gy (79)
7=1

for some N; € N,G;; € A,(C"). (There is no factor in front of F™ since
we are considering a polynomial ideal.) Let N = maxz(N, : 1 <1 < k),
then, as done in the proof of Theorem 3.1, we conclude there are functions
Gi,...,Gpp1 € A,(C") such that

P
FN=3"G;f; + GpuiR. (80)

=1

We can apply again Proposition 3.1 to F', this time with fi,..., f, as gener-
ators and R = R(z) as in (78), to obtain

RFNotL ¢ T
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so that
FN+N0+1 c [’

which concludes the proof of Theorem 3.2.

O
Proof of Theorem 3.3. Let I € I. We follow the proof of the previous
theorem and introduce a polynomial R as in (78), polynomials Py, ..., P,,,
associated to fi,..., f, and a root a; of R. For any z, € C" we have

[F ()] < Copll f(2)|| for 2 € U,

where U,, is a neighborhood of zy, which we can assume is bounded, and
Cy, > 0. Hence, for z € U,,,

|15 (@)] < [ Pa(@)] + C (1 — an)™],

for some constant C}, > 0. It follows that for another constant C7; > 0,

hS]

P < CL L IPAP + (o1 — )

We can apply now Proposition 3.1 to the polynomials Py, ..., Py, (z1—o)",
and conclude that

P
Fm = Z GjJP"l + <I1 - Oél)Vle—i-l,la
j=1

for some Gj; € A,(C"), m = min(p + 1,n). As earlier, we conclude that

P

=Y G,f;i+ GpiR,

j=1
G, € A,(C™). Let m' = min(p,n), once more Proposition 3.1 ensures that

RF™ € 1.

Hence F™™ ¢ I. Since m + m’ < 2m, the theorem has been proved.
O
As a corollary of the last two proofs we can obtain a theorem about
representation of entire functions in A,(C™), modulo an ideal /, which defines
a zero-dimensional, complete intersection variety.
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Proposition 3.2 Let fi,...,f, € E,1(Q) be such that dimV = 0. As-
sume further that the algebraic variety in C" defined by f1(0,2') = -+ =
fa(0,2") =0, (x = (x1,2")), is empty. Then, there are constants N € N and
k > 0 such that any entire function satisfying the estimates

[P ()] < A(L+ [a])” exp(C|Rz]),

can be represented (modulo the ideal I) as

F(IL’) =< a;l AR /\8;(6)7 F(g)\ll(x7§)gl(x7§) ARRRA gn<x7€) >, (81)
where
=\ B+N
W) = (1) o000 Rel ) (o-€)+r0Re 1)1 -60)

(2)
0o is a smooth non-negative radial function in C", supp(6y) contained in the
ball {|€] < 1}, Jan 00 = 1, 6 is an even non-negative function in C, supp(6,)
is contained in the disk {|&1| < 1}, [cbh = 1, and 5;—1 AR 5%” is the
residue current associated to fi,..., fn.

Proof. Before we start the proof we should remark that the residue current
5% ARER /\gfin has been defined in [3] and the proof we give here follows the
ideas in [14]. Moreover, the theorem is valid for other growth conditions than
|Rx|+1log(1+|x]), all we need is to work with a weight > |Rx ;| +log(1+ |x]).
This is done by changing the form ()3 to incorporate the new weight function,
as in Proposition 3.1.

Let us recall from Section 2 that, due to the arithmetic hypothesis on
the coefficients of fi,..., f,, there is an integer m > 0 such that the distri-
butions z7'ay; appearing in the division formula (52) have estimates of the
type (63), with ¢(z) = |Rz1|. On the other hand, as we already have seen,
the ideal generated by fi,..., fn, 27" in A,(C") is also generated by polyno-
mials Py,. .., P,, z". Our extra hypothesis on the zeros of f;(0, ') translates
exactly into the fact that these polynomials have no common zeros. Thus,
for any F' € A,(C") we have

F= Z G;P)J + $TG;L+17

j=1
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with G’ entire functions satisfying
|G ()] < Ay (1 + |2])7H exp(ClR)),
for some A;, N; > 0. This is clear since, for some ¢ > 0, Ny > 0,
|Pr(@)[* 4 - 4 [Po@) |+ |27 > (1 + |2]) 7™,
Writing P; = f; + x"h;, we obtain
F =Y Gifs + a7 G, (53)
j=1

with the estimates

1G;(2)] < AAy(1 + |2) P2 exp(C|Rz| + ko Ry ),

for some As, No, kg > 0.

We apply to z]'G,41 the division procedure described in the proof of
Theorem 3.1, the only changes are in the more precise choice of the weight
(23 and the fact that «7"G),41 is not in the ideal Ij,., hence there is a remainder
term coming from the kernel K in (52). We set

with k£ > 0 to be chosen conveniently.
In [3, Theorem 3.2] the explicit form of the remainder is given as

S(z) =< <a}1 A AT (€) € Gt ()T (, ) (2, €) A -+~ A gl €) >,

Jn
(84)
where U is given by (82), with N,k are chosen so that all the integrals
appearing in the representation (52) for u(§) = x(&/R)&7"Gr11(§) converge.
This expression shows that

27'Gpi(z) = S(z)  (mod ).

On the other hand, one of the properties of the residue current in (84) is to
kill all the functions in [j,.. This shows that, with the help of (83), we can
replace in (84), £"G,+1(€) by F(€). This proves the proposition.
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O
In the particular case when the set of common zeros of fi,..., f, is dis-
crete and the zeros are simple, we can obtain that V' is an interpolation
variety for the weight |z |+ log(2 + |z]), thus also for the space A,(C") for
any weight p > |Rx1| + log(2 + |z|). This follows from [7] and the following
proposition.

Proposition 3.3 Let fi,...,fn € En,1(C) be such that dimV = 0 and
J(x) # 0 for every x € V, where J is the Jacobian determinant of the
fj. Then there is a constant C' > 0 such that

|J(x)| > exp(=C(|Rx1| + log(2 + |z|))) Vx € V. (85)

Proof. We only need to apply Theorem 3.3 to the ideal I, generated by
fiy. oy [, J, with weight |Rz;| 4 log(2 + |z|) instead of p. Then f02m C I.
Since V(Iy) = 0, then 1 € Iy, so that 1 € I,. It follows that there are
J1,---,9ni1, entire functions, satisfying the inequalities

|9; ()| < exp(C(|Ra1] + log(2 + [z]))),
for some C' > 0, and also the Bezout identity

fil@)gi (@) + -+ ful@)gn(z) + J(2)gni1(z) =1 Vo € C™

Considering a point x € V, we obtain the inequality (85) from the earlier
estimate of g,1.
O

Remark. In fact, one has a stronger result. Let fi,..., f, € E,1(C) be
such that dimV = k and assume that, at every point x € V', there is a k x k
minor of the Jacobian matrix Df of fi,..., f,, which does not vanish. Then,
the variety V' is an interpolation variety for any weight > |Rxq|+log(2+|z]).
Namely, if we let Jp, ..., J; denote all the k X k minors of D f, then the ideal
Iy generated by fi,..., fp, J1,...,J; does not have any common zeros, and
the previous proof applies, allowing us to conclude that for x € V'

[J1(@)] + -+ [Ji(2)] = exp(=C([Ra1| +log(2 + []))).

¢ From [7, Theorem 1], one obtains that V' is an interpolating variety.

Let us now observe that essentially all the previous results of this section
are valid for exponential-polynomials f;(e™, e, z9,...,2,), « € Q\ Q, f; €
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Qly1, 21, %2, ..., x,]. As before, one could replace the weight p by |Rzq| +
log(2 + |x]), if necessary for the applications.

Lemma 3.2 Let fi,..., f, be polynomials in e*', e, xq, ..., x,, with coef-
ficients in Q, and o € Q\ Q. Assume dimV < n—p. Then, there are linear
combinations @1, ..., of f; with integral coefficients such that the f; are
also linear combinations of the ¢;, and, moreover, 1, ..., ¢, form a normal
sequence.

Proof. We follow the procedure of Lemma 3.2. We can assume that f; # 0,

and choose ¢; = fi. Assume that we have already found a normal se-
quence @1, ...,¢k, k < p, such that ¢; = >0 ¢;ifi, ;i € 2,1 < j <k,
and rank(c;;) = k. We need to choose ¢j41 so that for any subfamily

©irs-- oy 05 of {1, o}, we have dimV (g, ..., @), or+1) < n— (1 +1).
To simplify the notation consider 1, ..., ¢y, then V(py, ..., ¢;) is a count-

able union of irreducible varieties of dimension n — [. There are two kinds
of components, those contained in some hyperplane {x; = const}, say {U;},
and those that are not, say {V;}. Let Q1,...,Q,, P, ..., Py be the polyno-

mials in Q[ys, 21, Za, . . ., Ty such that f;(z) = Q;(e™, e xg, ..., Ty,), ; =
P;(e™,e* x9,...,x,) and consider the finitely many irreducible compo-
nents W, of the algebraic variety P, = --- = P, = 0 in C""'. Each of the

varieties V}, is contained in some W,. We have that
W, ﬂ{yl ="z = e} D V.

Locally, near a point in Vj, {y; = €™,z = €'} is the analytic variety
z1 = yf, so that either (locally) W, C {2y = y{} or n+1—1> dimW, >
14+ dimVy, = n—101+1. If y; is not constant on W,, we can fix generic
Zo, ..., Tn, SO that near a point in V}, we have that z; is an algebraic function
of y;. Considering the Puiseux development of z; we see that only rational
powers of y; can appear in it, which contradicts the fact that z; = y¢ (since
a € Q. On the other hand, if y; is locally constant, then z; is constant in
Vi, which is impossible by the definition of V},. Hence

dimW, =n—1+ 1.

Assume all the polynomials Q, ..., ), vanish identically on W,, then the
functions f1,. .., f, vanish identically on V},, which contradicts the hypothesis
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dimV < n—p. Thus, for A € CP outside a hyperplane, we have \{Q1+-- -+
ApQp # 0 on W,.. We claim that >7_; A;f;(z) # 0 on Vj,. If this were not
the case, let

W, =W, N> \Q; =0}
=1

Then )
Wo(fyr =€, 21 =e*™} DV,

and dimW, < n — [. This implies that W, C {y; = €™,z = e}, which,
as we have just seen, leads to contradiction. So that for A outside a finite
union of hyperplanes, we have Z?:l Ajf; # 0 on any Vj,. In particular, one
can always choose all the \; € Z.

There are also finitely many components U; contained in the hyperplane
{z1 = 0}. This is the case for those that are components of the algebraic
variety Pi(1,1,29,...,2,) = -+ = P(1,1,29,...,2,) = 0. The previous
reasoning shows that we can choose integers Ay, ..., \, such that 3 \;f; Z0
in any V3, that > A\;Q; # 0 on any W, which contains points of V' (¢1, ..., ¢;)
and has dimension dimW, = n—1[+1, and that >J \; f; # 0 on those U; which
lie in {x; = 0}. If we run over all possible families ¢, ,...,¢;,1 <1 <k,
we can obtain the \; simultaneously satisfying these conditions, not only for
©1,-..,¢;, but also for all such families. Moreover, we can also assume that
the rank of the matrix of coefficients of @1, ..., ¢r, >° A; f; in terms of all f;
is exactly k£ + 1. We claim that this is a good choice of A;.

Consider now whether there are any U; not contained in {z; = 0}. For
such U; we would have a unique W, such that U; C W, N{y; = €™, z; = e**1}.
If W, C {y1 = €™,z = e*}, we have already seen that y; and z; are
constant on W,.. Let us denote these constants by y; =1, 21 = (, and let z; =
€ be such that 7 = ef and ¢ = ¢*¢. Now, Noether’s Normalization Theorem
allows us to choose, near a regular point, n — (= dimW,) coordinates, which
parametrize W, by algebraic functions with algebraic coefficients. Choosing
a point with algebraic coordinates shows that 1 and ( are algebraic numbers.
Since they are related by 1 = e, ( = e, it follows from Gelfond’s theorem
that £ = 0 and n = ¢ = 1. This implies that U; is contained in {z; = 0},
a contradiction. The only possibility left is that W, is not contained in
{y1 = e™,z; = e*}. In this case dimW, = n — [+ 1. Then, by the earlier
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choice of A\;, 3> A\;Q; # 0 on W,., thus

Ui € W.({D_\Q; = 0}

Since both sides have the same dimension n — [, U; is a component of the
algebraic variety W, N{> A\;@; = 0}. On this component y; =17, 2; = (. For
the same reasons as above, the constants 7, ( are algebraic, so that 1 = 0
on U;. Again a contradiction.

This proves that the choice pry1 = > A;f;, defines a normal system

©1, ..., ¢k such that the rank of the integral matrix (¢;;)i1<j<k+1.1<i<p 18
exactly k + 1. Iterating this procedure we conclude the proof of the lemma.
O

With the help of this lemma and Proposition 2.3, we can repeat the proofs
of the previous results of this section and obtain the following statements.

Proposition 3.4 Let « € Q\ Q and fi,..., f, be polynomials in e, ™™,
To, ..., Tn, with coefficients in Q. Assume that the exponential polynomi-
als f1,..., fp define a complete intersection variety. Let I be the ideal they
generate in the space A,(C"™). Then I = Ij,..

Proposition 3.5 Let « € Q\ Q and let I be the ideal in A,(C") generated
by fi,..., [p, polynomials in €™, e xo, ..., z,, with coefficients in Q. De-
note V.= {x € C": fi(x) = --- = f,(x) = 0}. Then VI = I(V) and
I*™ C I, where m = min(p + 1,n).

Proposition 3.6 Let « € Q\ Q, let fi1,..., f, be polynomials in e, e,
To, ..., Ty, with coefficients in Q, and let the variety of common zeros be
V={reC": fi(x)="---= f(x) =0}. If V is discrete and all the zeros
are simple (or if the f; define a manifold), then V' is an interpolation variety
for A,(C").

We conclude this manuscript with an indication of some simple applica-
tions to harmonic analysis that can be obtained from the earlier results and
the methods of [6]. For that purpose, let us recall that a linear differential
operator P(D) with constant coefficients and commensurable time lags is a
finite sum of the form

(P(D)p)(t.x) =D pjn(D)(t — kT, x), (86)
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teR,z€R", (n>0),D= (2,2 . . 2) jeN* kecZ T >0, and

ot dz1? )y,
pir € C. The symbol of this operfitor P(7,€) is the element of E,;11(C)

given by

P(T, g) — ei(t7+x~§)P(D>6—i(t7+m~§)
(87)
— ijk(—iC)jeikTT,

with ¢ = (7,€). (By the introduction of the new coordinate {, = iT'r, we are
in the case of exponential polynomials considered at the beginning of this
section.)

Theorem 3.4 Let Pi(D),...,P,.1(D) be differential operators with time
lags as in (86), with the property that the characteristic variety

Vi={CeC"": P)=0,1<1<n+1}

is discrete and all the points of V' are simple. Then, every solution @ €
ER™Y) (resp., ¢ € D'(R")) of the overdetermined system

Pi(D)p == Py1(D)p =0, (88)

can be represented in a unique way in the form of a series of exponential
solutions of the system (88), namely,

gO(t, l’) _ Z Ccei(tfr—&—a:.f) ‘
Cev

This series is convergent in the topology of E(R™) (resp., D'(R™1)).

Similarly, if we allow two non-commensurable time lags, but we assume
that: (i) their ratio is algebraic, (ii) there are no derivatives in the time
variable, and (iii) the coefficients of the operators are algebraic, then we can
prove the same representation theorem for the solutions of a corresponding
system.

We shall present the applications of this type of result to Control Theory
elsewhere. Meanwhile, we refer the reader to [20, 22, 30] for some results
in that direction, and to [32, 4] for related applications to deconvolution
problems.
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