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Abstract. This paper deals with Mellin transforms of rational functions g/f

in several variables. We prove that the polar set of such a Mellin transform

consists of finitely many families of parallel hyperplanes, with all planes in
each such family being integral translates of a specific facial hyperplane of

the Newton polytope of the denominator f . The Mellin transform is naturally

related to the so called coamoeba A′
f := Arg (Zf ), where Zf is the zero locus of

f and Arg denotes the mapping that takes each coordinate to its argument. In

fact, each connected component of the complement of the coamoeba A′
f gives

rise to a different Mellin transform. The dependence of the Mellin transform

on the coefficients of f , and the relation to the theory of A-hypergeometric
functions is also discussed in the paper.

1. Introduction

The Mellin transform Mh of a locally integrable function h on the positive real axis
is defined by the formula

(1) Mh(s) =

∫ ∞
0

h(z) zs
dz

z
,

provided the integral converges. Here s is a complex variable s = σ+it. The Mellin
transform is closely related to the Fourier–Laplace transform via an exponential
change of variables. More precisely, the value of Mh(s) is equal to the Fourier–
Laplace transform of the function x 7→ h(e−x) evaluated at the point −is.

In this paper we consider Mellin transforms of rational functions h = g/f,
where g and f are polynomials. Since the general case is easily settled once we
have fully investigated the special case where g ≡ 1, and since this will simplify
our notation and therefore clarify our argument, we shall focus mainly on the case
h = 1/f .

Let us start by considering the one-variable situation. Given a polynomial

f(z) = a0 + a1z + . . .+ amz
m

we assume for the moment that its coefficients a0, . . . , am are positive numbers.
Then the integral (1) with h = 1/f converges and defines an analytic function in
the vertical strip 0 < σ < m.

One can in fact make a meromorphic continuation of this Mellin transform and
write it as

(2) M1/f (s) = Φ(s)Γ(s)Γ(m− s) ,
1
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where Φ is an entire function. To see this, let us first look at the case of a simple
fraction 1/(a+ bx). In this case one has the explicit formula

M1/f (s) = as−1b−sΓ(s)Γ(1− s),
which can be easily established for instance by means of a residue computation.
Now, considering a general product

f(z) =

m∏
j=1

(αj + z),

one can decompose 1/f into a sum of simple fractions and hence immediately
deduce that its Mellin transform will be of the form Ψ(s)Γ(s)Γ(1 − s), for some
entire function Ψ. In fact, a straightforward residue calculation shows that

Ψ(s) = −e−πis
∑

res[zs−1/f(z)] ,

and by the theorem on the total sum of residues it then follows that

Ψ(1) = Ψ(2) = . . . = Ψ(m− 1) = 0 .

This means that we obtain formula (2) with Φ(s) = Ψ(s)/
[
(1− s) · · · (m− 1− s)

]
.

We have thus found that all the poles of the meromorphic continuation are
located at the two integer sequences 0,−1,−2, . . . and m+ 1,m+ 2, . . . emanating
from the end points of the interval [0,m]. Notice that this interval is the Newton
polytope of our one-variable polynomial f .

As a matter of fact, in the above discussion we did not actually need to assume
that the coefficients a0, a1, . . . , am be positive. A necessary and sufficient condition
for the argument to work, and in particular for the integral to converge, is that
f(z) 6= 0 for all real positive values of z. Another way of formulating this latter
condition is that f should have no roots with argument zero.

We now turn to the multidimensional case, and we begin looking at a simple
example with the denominator f being an affine linear polynomial.

Example 1. Consider the polynomial f(z) = 1 + z1 + z2. The Mellin transform of
the corresponding rational function 1/f is then given by the integral∫ ∞

0

∫ ∞
0

zs11 z
s2
2

1 + z1 + z2

dz1dz2

z1z2
=

∫ ∞
0

∫ ∞
0

∫ ∞
0

zs1−1
1 zs2−1

2 e−v(1+z1+z2)dz1dz2dv ,

which after the coordinate change t = vz1, u = vz2 becomes∫ ∞
0

ts1−1e−tdt

∫ ∞
0

us2−1e−udu

∫ ∞
0

v−s1−s2 e−vdv = Γ(s1)Γ(s2)Γ(1− s1 − s2) .

We shall see in this paper that the fact that the poles of the Mellin transform
are determined by a product of Γ-functions is not unique for the special cases we
have considered so far. In fact, the Mellin transform of a rational function in any
number of variables will turn out to be always a product of Γ-functions in linear
arguments, multiplied by some entire function, so that the only poles of the Mellin
transform are the poles of the Γ-functions. Moreover, the configuration of polar
hyperplanes is governed by the Newton polytope of the denominator polynomial,
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with one family of parallel hyperplanes emanating from each facet of the Newton
polytope. Many of the results have been announced previously in [13]. Let us note
in passing that a similar phenomenon can be observed also for Mellin transforms
of more general meromorphic functions, with transcendental denominators. As an
illustration of this we recall the classical formulas

M1/ez = Γ(s) and M1/(ez−1) = ζ(s)Γ(s) = (s− 1)ζ(s)Γ(s− 1) ,

where ζ denotes the Riemann zeta function.

2. Newton polytopes and (co)amoebas

Throughout this paper f will denote a complex Laurent polynomial

(3) f(z) =
∑
α∈A

aαz
α, aα ∈ C∗ ,

where A ⊂ Zn is a finite subset and C∗ denotes the punctured complex plane C\{0}.
Here we use the standard notation zα = zα1

1 · · · zαnn for z = (z1, . . . , zn) ∈ Cn∗ .
The Newton polytope ∆f of the polynomial f is defined to be the convex hull

of A in Rn. We shall primarily be interested in the case where ∆f has a nonempty
interior. Like any other polytope, the Newton polytope ∆f may be alternatively
viewed as the intersection of a finite number of halfspaces:

(4) ∆f =

N⋂
k=1

{
σ ∈ Rn ; 〈µk, σ〉 ≥ νk

}
,

where the µk ∈ Zn are primitive integer vectors in the inward normal direction of
the facets of ∆f , and the νk ∈ Z are integers.

In general we will let Γ denote a face of the Newton polytope of arbitrary
dimension, 0 ≤ dim(Γ) ≤ dim(∆f ), and we define the relative interior relint(Γ) of
such a face to be the interior of Γ viewed as a subset of the lowest dimensional
hyperplane containing it. For each face Γ we also introduce the corresponding
truncated polynomial

fΓ =
∑
α∈Γ

aαz
α ,

consisting of those monomials from the original polynomial f whose exponents are
contained in the face Γ of the Newton polytope ∆f .

The amoeba Af and the coamoeba A′f of a polynomial f are defined to be the

images of the zero set Zf = {z ∈ Cn∗ ; f(z) = 0 } under the real and imaginary
parts, Log and Arg respectively, of the coordinatewise complex logarithm mapping.
More precisely, one has

Af = Log(Zf ) and A′f = Arg(Zf ) ,

where Log(z) = (log |z1|, . . . , log |zn|) and Arg(z) = (arg(z1), . . . , arg(zn)).

Writing w = x + iθ ∈ Cn and z = Exp(w) = (exp(w1), . . . , exp(wn)), one
obtains the identities x = Log(z) = Re (w) and θ = Arg(z) = Im (w), as illustrated
in the following picture.
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Figure 1. Real and imaginary parts of the complex logarithm mapping

The amoeba Af is a subset in Rn, whereas the coamoeba A′f can be viewed as

being located either in the n-dimensional torus (R/2πZ)n or as a multiply periodic
subset of Rn. This reflects the multivaluedness of the argument mapping.

For brevity of notation we denote the amoeba and the coamoeba of a truncated
polynomial fΓ by AΓ and A′Γ.

3. Mellin transforms of rational functions

The natural generalization to several variables of the standard Mellin transform of
a rational function 1/f is given by the integral

(5) M1/f (s) =

∫
Rn+

zs

f(z)

dz1 ∧ . . . ∧ dzn
z1 · · · zn

=

∫
Rn

e〈s,x〉

f(ex)
dx1 ∧ . . . ∧ xn,

where Rn+ = (0,∞)n denotes the positive orthant in Rn. In order for such an
integral to converge one has to make some assumptions about the exponent vector
s and also about the denominator f . It turns out that it is not enough to demand
only that f be non-vanishing on Rn+.

Definition 1. A polynomial f is said to be completely non-vanishing on a set X if
for all faces Γ of the Newton polytope ∆f the truncated polynomial fΓ has no zeros
on X. In particular, the polynomial f itself does not vanish on X.

Remark. This concept of completely non-vanishing polynomials is closely related
to the notion of quasielliptic polynomials discussed in [5].

Theorem 1. If the polynomial f is completely non-vanishing on the positive orthant
Rn+ then the integral (5) converges and defines an analytic function in the tube

domain
{
s ∈ Cn ; Re s = σ ∈ int ∆f

}
.

Proof. It will suffice to prove that for any given s with σ ∈ int ∆f there are
positive constants c, k > 0 such that

(6)
∣∣f(ex)e−〈s,x〉

∣∣ =
∣∣f(ex)

∣∣ e−〈σ,x〉 ≥ c ek|x| , x ∈ Rn .

The proof is by induction on the dimension n. The case n = 1 is easy. Let α
and β with α < β be the two endpoints of ∆f . Then for sufficiently large negative
x one has ∣∣f(ex)

∣∣ e−σ·x ≥ 1

2
|aα| e(σ−α)|x| ,
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and for sufficiently large positive x∣∣f(ex)
∣∣ e−σ·x ≥ 1

2
|aβ | e(β−σ)|x| .

Now make the induction hypothesis that the inequality (6) holds for dimensions
≤ n − 1, and consider a polynomial f of n variables. For each face Γ of ∆f , with
0 ≤ dim Γ ≤ n− 1, the given point σ can be expressed as a convex combination

σ = λσΓ + (1− λ)τΓ ,

where σΓ ∈ relint(Γ) and τΓ ∈ relint
(
conv(A \ Γ)

)
. Fix a choice of such a point σΓ

in each face Γ, and consider for each Γ the new convex polytope

∆Γ = conv
(
(A \ Γ) ∪ σΓ

)
.

Notice that when dim Γ = 0, that is, when Γ is a vertex of ∆f , one has ∆Γ = ∆f .
Notice also that the original point σ belongs to each ∆Γ.

Let C̃Γ be the outer normal cone to ∆Γ with vertex at σΓ:

(7) C̃Γ =
{
x ∈ Rn | 〈ξ − σΓ, x− σΓ〉 ≤ 0 , ∀ ξ ∈ ∆Γ

}
.

All these cones C̃Γ are of full dimension n and together they almost cover the entire
space Rn. More precisely, the complement

Rn \
(⋃

Γ

C̃Γ

)
is a bounded subset of Rn. Then one can let CΓ be a slightly smaller closed convex

cone, still with vertex at σΓ, such that CΓ \ σΓ is contained in the interior of C̃Γ,
and such that the complement of the union ∪ΓCΓ is still a bounded set. Notice
that for x ∈ CΓ \ σΓ the inequality in (7) will be strict, and we may in fact assume
this to be true uniformly.

We now observe that it is enough to prove the estimate (6) for x ∈ CΓ. Actually,
it suffices to do it for x ∈ CΓ \BR(0) for some large ball BR(0). From the induction
hypothesis we conclude that there are constants cΓ such that∣∣∣fΓ(ex)e−〈σΓ,x〉

∣∣∣ ≥ cΓ > 0 , x ∈ Rn .

Indeed, fΓ(ex) is a function depending on fewer variables than n, since it is homo-
geneous in directions orthogonal to Γ, and σΓ ∈ relint(∆fΓ

).

For each face Γ let gΓ(z) be the function containing all the monomials not on
Γ so that fΓ + gΓ = f . Now we use the decomposition f = fΓ + gΓ so that one
obtains

(8) f(ex)e−〈σ,x〉 = e〈σΓ−σ,x〉
(
fΓ(ex)e−〈σΓ,x〉 + gΓ(ex)e−〈σΓ,x〉

)
.

Take x ∈ CΓ and write x = σΓ + y. Recall that σ ∈ ∆f . The first factor e〈σΓ−σ,x〉

can be estimated from below by c0e
k|y| with the positive constants c0 and k given

by c0 = exp〈σΓ − σ, σΓ〉, and

k = min{〈σΓ − σ, y〉 ; |y| = 1 , σΓ + y ∈ CΓ } > 0 .

Assuming, which we may, that |x| > |σΓ|, and hence that |x| − |σΓ| ≥ |x− σΓ| = y,
we find

e〈σΓ−σ,x〉 ≥ c1ek|x| ,
where c1 = c0e

−k|σΓ|.
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To finish the proof of the inequality we now only need to bound the expression
in brackets in (8) from below by a positive constant. From the induction hypothesis
we have that

|fΓe
−〈σΓ,x〉| ≥ cΓ > 0,

and it is therefore enough to show that the remainder term gΓ(ex)e−〈σΓ,x〉 stays
small, say < cΓ/2. We have the identity

gΓ(ex) =
∑

α∈A\Γ

aα e
〈α,x〉

∑
α∈A\Γ

ãα e
〈α,y〉 .

Since α ∈ ∆Γ we have a strictly positive constant

kα = min
{
〈σΓ − α, y〉 ; |y| = 1 , σΓ + y ∈ CΓ

}
,

and hence ∣∣aα e〈α,x〉∣∣ =
∣∣ãα e〈σΓ−α,y〉

∣∣ ≤ |ãα| e−kα |y| .
This means that for some large enough R0 one has∣∣gΓ(ex) e−〈σΓ,x〉

∣∣ < cΓ/2 , whenever |σΓ + x| ≥ R0 , x ∈ CΓ .

Hence there is an inequality |f(ex) exp (−〈σΓ, x〉)| ≥ cΓ/2, and we can conclude
that for all x in CΓ \BR(0), for some large ball BR(0), one has the desired estimate∣∣∣f(ex)e−〈σ,x〉

∣∣∣ ≥ c ek|x| , x ∈ Rn ,

with c = c1cΓ/2. �

Having thus established the convergence of the integral (5) defining the Mellin
transform, we now turn to the question of finding its analytic continuation as a
meromorphic function of s in the whole complex space Cn. The polar locus of
the meromorphic continuation turns out to be a finite union of families of parallel
hyperplanes. The normal directions of these hyperplanes are precisely the vectors
µk from the representation (4) of the Newton polytope ∆f .

Theorem 2. If the polynomial f is completely non-vanishing on the positive orthant
Rn+ and its Newton polytope ∆f is of full dimension, then the Mellin transform M1/f

admits a meromorphic continuation of the form

(9) M1/f (s) = Φ(s)

N∏
k=1

Γ(〈µk, s〉 − νk),

where Φ is an entire function, and where µk, νk are the same as in equation (4).

Before giving the proof of this theorem let us illustrate the idea of the argument
by means of a specific example.

Example 2. Consider the polynomial f(z) = 1 + z2 + z2
1 + z1z

2
2 . It is easy to check

that the representation (4) of its Newton polytope is given by

{σ1 ≥ 0} ∩ {σ1 − σ2 ≥ −1} ∩ {−2σ1 − σ2 ≥ −4} ∩ {σ2 ≥ 0} ,
so in this case the Newton polygon ∆f has four inward normal vectors given by

µ1 = (1, 0) , µ2 = (1,−1) , µ3 = (−2,−1) , and µ4 = (0, 1) .

We know from Theorem 1 that the Mellin transform M1/f is holomorphic for all
s = (s1, s2) whose real part σ = (σ1, σ2) lies inside the Newton polygon ∆f . In
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order to achieve a meromorphic continuation of M1/f across the left vertical edge
of ∆f it suffices to perform an integration by parts with respect to z1. Indeed, this
gives us the identity

(10) M1/f (s) =
1

s1

∫ ∞
0

∫ ∞
0

(2z2
1 + z1z

2
2) zs11 z

s2
2

(1 + z2 + z2
1 + z1z2

2)2

dz1dz2

z1z2
,

and we claim that this integral, that is, the Mellin transform multiplied by s1,
converges for all s with real part σ in the dark triangle on the left in Figure 2.
This means that M1/f has been continued meromorphically over the hyperplane
s1 = 0 as desired. To verify the claim we decompose the integral in (10) into two
Mellin type integrals containing the integrands 2z2+s1

1 zs22 /f
2 and z1+s1

1 z2+s2
2 /f2

respectively. Since the Newton polygon of the denominator f2 is equal to the
original ∆f dilated by a factor 2, we see that the convergence domains for these
two integrals are given by the translated polygons (−2, 0)+2∆f and (−1,−2)+2∆f

respectively. The sum of the integrals therefore converges on the intersection of the
translated polygons, and this is precisely the dark triangle on the left in Figure 2.

Figure 2. The convergence domains (dark) of the integrals after
the two cases of integration by parts, given as the intersection of
two translated copies of ∆f2 = 2∆f . The dashed polygon is ∆f .

We have thus seen how a meromorphic continuation can be carried out in the
horizontal direction, that is, in the direction given by µ1. Suppose next that we
wish to obtain a similar mermorphic extension across the upper left edge of ∆f ,
the one with normal vector µ2 = (1,−1). The way to acheive such a “directional
integration by parts” is to suitably introduce a parameter λ and then to differentate
with respect to λ. More precisely, we make the coordinate change z1 7→ λz1,
z2 7→ λ−1z2 and obtain

M1/f (s) = λ1+s1−s2
∫ ∞

0

∫ ∞
0

zs11 z
s2
2

λ+ z2 + λ3z2
1 + z1z2

2

dz1dz2

z1z2
.

Here the left hand side is obviously independent of λ. Hence so is the right hand
side, and after differentiating and plugging in λ = 1 we find that

0 = (1 + s1 − s2)

∫ ∞
0

∫ ∞
0

zs11 z
s2
2

f(z)

dz1dz2

z1z2
−
∫ ∞

0

∫ ∞
0

(1 + 3z2
1) zs11 z

s2
2

f(z)2

dz1dz2

z1z2
.
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This relation can be re-written as

M1/f (s) =
1

1 + s1 − s2

∫ ∞
0

∫ ∞
0

(1 + 3z2
1) zs11 z

s2
2

f(z)2

dz1dz2

z1z2
,

and reasoning as above we find that this latter integral converges for all s with real
part σ in the dark polygon on the right in Figure 2, thereby yielding a meromorphic
continuation across the hyperplane s1 − s2 = −1.

This method of repeatedly performing integration by parts in all the directions
µk, by using the corresponding coordinate changes zj 7→ λµkjzj , is the basis for our
proof of Theorem 2, and it gives a global meromorphic continuation of the original
Mellin integral. For our special example, the picture below indicates the full set of
polar hyperplanes, going out in all directions from the Newton polytope ∆f .

Figure 3. Polar hyperplanes of the Mellin transform M1/f .

Remark. For the Mellin transform of a general rational function g/f each mono-
mial in the numerator g produces an integral similar to the one in the theorem,
except that we get a shift in the variable s by an integer vector. This corresponds
to a translation of the Newton polytope of f , and hence also of the domain of
convergence of that particular integral. If g has several monomials it can very well
happen that the intersection of all the corresponding shifted polytopes is empty. In
that case the integral defining the Mellin tranform may not actually converge for
any values of s. Nevertheless, performing the meromorphic continuation of each of
the integrals associated with the monomials from g and then summing these mero-
morphic functions, we still obtain a natural interpretation of the Mellin transform
Mg/f as a meromorphic fucntion in the entire s-space.

Proof. We prove that the integral (5) can be re-written in such a way as to
make it have a larger convergence domain, at the expense of having to multiply the
integral with reciprocals of linear terms corresponding to the poles of the gamma
functions. In order to achieve this we shall repeatedly “integrate by parts” in each
of the directions given by the vectors µk. Each such step consists in first making
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the corresponding dilation (z1, . . . , zn) 7→ (λµk1z1, . . . , λ
µknzn) of the coordinates,

then differentiating with respect to the dilation parameter λ, and finally setting λ
equal to 1.

Note that, if Γ is the facet of ∆f with inward normal vector µk, the truncated
polynomial fΓ has the homogeneity fΓ(λµkz) = λνkfΓ(z). Hence, the scaled poly-
nomial λ−νkf(λµkz) has the property that all its monomials with exponents from
Γ have coefficients that are independent of the parameter λ. This means that in
the differentiated polynomial

gek(z) =
d

dλ

(
λ−νkf(λµkz)

)∣∣∣∣
λ=1

there are no monomials with exponents from the facet Γ. Its Newton polytope is
therefore strictly smaller than ∆f , with the integer νk from the original inequality
〈µk, σ〉 ≥ νk being replaced by νk + 1, or possibly by an even larger integer.

Starting from the original integral expression (5) for the Mellin transform M1/f ,
introducing the parameter λ, and keeping in mind that M1/f itself is of course
independent of λ, we obtain

0 =
d

dλ

∫
Rn+

(λµkz)s

f(λµkz)

dz

z
=

d

dλ

[
λ〈µk,s〉−νk

∫
Rn+

zs

λ−νkf(λµkz)

dz

z

]
,

which upon performing the differentation and setting λ = 1 yields the identity

(11)
(
〈µk, s〉 − νk

)
M1/f (s) =

∫
Rn+

zsgek(z)

f(z)2

dz

z
.

As we shall iterate this procedure it will be important to keep track of polytopes
of different sizes, and to this end we introduce, for any vector γ ∈ Zn, the notation

∆(γ) =

N⋂
k=1

{
σ ∈ Rn ; 〈µk, σ〉 ≥ γk

}
.

In particular, we have ∆f = ∆(ν). Now let m ∈ NN be a given vector, and perform
the integration by parts mj times in the direction of µj , for each j = 1, . . . , N . The
total number of such integrations will thus be |m| = m1 + . . .+mN . We claim that
this iterative process leads to an expression for the Mellin transform that is of the
form

(12) M1/f (s) =
1∏N

j=1 uj(s)

∫
Rn+

zs gm(z)

f(z)1+|m|
dz

z
,

where gm is a polynomial whose Newton polytope satisfies ∆gm ⊆ ∆(|m|ν + m)

and uj(s) =
∏mj−1
`=0

(
〈µj , s〉 − νj + `

)
, with the convention uj = 1 if mj = 0.

The proof of the claim is by induction. First we check that it holds true in the
case |m| = 1, that is, when m is a standard unit vector ek with 1 in the k’th entry
and zeros elsewhere. Indeed, this is precisely the content of formula (11), where we
recall that the Newton polytope of gek is contained in ∆(ν + ek).
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Assume now the claim to be true for some given vector m, and let us show that
it then holds also for m′ = m+ ek, where ek is a unit vector as before. Introducing
again the dilated coordinates λµkz, we can re-write the integral in equation (12) as

λ〈µk,s〉−νk+mk

∫
Rn+

zs λ−|m|νk−mkgm(λµkz)

λ−(1+|m|)νkf(λµkz)1+|m|
dz

z
.

We should then differentiate this expression with respect to λ and put λ = 1.
When the derivative falls on the monomial in front of the integral we get a factor
〈µk, s〉−νk+mk which is precisely what needs to be incorporated into the function
uk, and when we differentiate under the sign of integration we arrive at an expression
of the form

−
∫
Rn+

zs gm′(z)

f(z)2+|m|
dz

z
.

The new polynomial in the numerator is gm′(z) = (1+|m|)gek(z)gm(z)−f(z)g̃m(z),
where

g̃m(z) =
d

dλ

(
λ−|m|νk−mkgm(λµkz)

)∣∣∣∣
λ=1

.

To finish the proof of the claim we must show that ∆gm′ ⊆ ∆(|m′|ν+m′). We shall
use the fact that the Newton polytope of a product of two polynomials is equal
to the (Minkowski) sum of their Newton polytopes, and also the obvious general
inclusion ∆(γ) + ∆(δ) ⊆ ∆(γ + δ). Recalling the induction hypothesis, we first
see that the Newton polytope of the product gekgm is contained in the polytope
∆(ν+ek)+∆(|m|ν+m) ⊆ ∆((1+ |m|)ν+m+ek) = ∆(|m′|ν+m′). Then, since the
polynomial g̃m has no monomials with exponents on the plane 〈µk, σ〉 = |m|νk+mk,
we similarly get that the Newton polytope of the other term fg̃m is contained in
∆(ν) + ∆(|m|ν + m + ek) ⊆ ∆(|m′|ν + m′). From this the claim follows, that is,
the Mellin transform is given by (12) with gm satisfying ∆gm⊆ ∆(|m|ν +m).

Our next step is to prove that the integral in (12) converges and defines an
analytic function for all s with real parts σ in the enlarged polytope ∆(ν − m).
By considering separately each term of gm, we can infer from Theorem 1 that the
domain of convergence will contain (the interior of) the intersection

(13)
⋂

τ∈∆gm

[(1 + |m|)∆f − τ ]

of translates of dilated copies of ∆f .

Let us check that ∆(ν − m) is indeed a subset of (13). Take an arbitrary
σ0 ∈ ∆(ν −m). By definition it satisfies the inequalities

(14) 〈µk, σ0〉 ≥ νk −mk , k = 1, . . . , N .

In order to see that σ0 also belongs to the intersection (13), take any τ ∈ ∆gm and
observe that the polytope (1 + |m|)∆f − τ is given by the inequalities

(15) 〈µk, σ + τ〉 ≥ (1 + |m|)νk , k = 1, . . . , N .

What we have to show is that σ0 satisfies these inequalities. In view of the inclusion
∆gm ⊆ ∆(|m|ν + m), we have 〈µk, τ〉 ≥ |m|νk + mk for all k. Together with (14)
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this gives

〈µk, σ0 + τ〉 = 〈µk, σ0〉+ 〈µk, τ〉 ≥ νk −mk + |m|νk +mk = (1 + |m|)νk ,
so σ0 does indeed satisfy (15), and since τ was arbitrary it follows that σ0 lies in
the intersection (13).

In the interior of the domain ∆(ν −m) + iRn the only poles of M1/f are given
by uj(s) = 0, j = 1, . . . , N . All these poles are simple. This is the same polar locus
as for the product

∏
k Γ(〈µk, s〉− νk). By the theorem on removable singularities it

follows that the quotient M1/f/
∏
k Γ(〈µk, s〉 − νk) = Φ is holomorphic for σ inside

the polytope ∆(ν −m). But here m ∈ NN is arbitrary, and since the union of all
the ∆(ν−m) is the entire space Rn, we conclude that Φ is in fact an entire function
as claimed in the theorem. �

4. Two special cases

In certain situations we are able to make our description of the Mellin transform
even more precise, and explicitly compute the entire function Φ that occurs in
front of the gamma factors in Theorem 2. We have already encountered such a
case in Example 1 of the introduction, where we considered the transform of the
simple fraction 1/(1 + z1 + z2). Elaborating this example just a little further, and
considering a more general linear fraction 1/(c0 + c1z1 + . . . + cnzn) with each
coefficient ck being a positive real number, one easily deduces the formula

(16) M1/f (s) = cs1+...+sn−1
0 c−s11 · · · c−snn Γ(s1) · · ·Γ(sn)Γ(1− s1 − . . .− sn) .

So in this case the entire function Φ is equal to the elementary exponential function
s 7→ cs1+...+sn−1

0 c−s11 · · · c−snn and in particular different from zero everywhere.

We shall now consider two families of examples that both generalize the case
of a linear fraction, namely products of linear fractions and rational functions that
are obtained from linear fractions by means of a monomial change of variables.

Proposition 1. Assume that the polynomial f(z) =
∏m
k=0

(
1+ 〈ak, z〉

)
is a product

of affine linear factors, with each ak ∈ Rn+. Then the Mellin transform of the rational
function 1/f is equal to

(17) M1/f (s) = Φ(s)Γ(s1) . . .Γ(sn)Γ(m+ 1− s1 − . . .− sn) ,

with the entire function Φ given by

Φ(s) =

∫
σm

dτ1 · · · dτm
α1(τ)s1 · · ·αn(τ)sn

.

Here σm denotes the standard m-simplex
{
τ ∈ Rm+ ;

∑
τk < 1

}
, and the αk(τ) are

affine linear forms defined by(
α1(τ), . . . , αn(τ)

)
=
(
1−

∑
τk
)
a0 + τ1a1 + . . .+ τmam .

Proof. We begin by first computing the Mellin transform of a power of the
type 1/(1 + 〈c, z〉)m+1. By performing repeated integrations under the sign of
integration we get

M1/(1+〈c,z〉)m+1 =
(−1)m

m!

dm

dλm
M1/(λ+〈c,z〉)

∣∣∣
λ=1

.
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Then, recalling the formula (16) and using the simple identity

(−1)m

m!

dm

dλm
λs1+...+sn−1

∣∣∣
λ=1

=
1

m!

Γ(m+ 1− s1 − . . .− sn)

Γ(1− s1 − . . .− sn)
,

we find that

M1/(1+〈c,z〉)m+1 =
1

m!
c−s11 · · · c−snn Γ(s1) · · ·Γ(sn)Γ(m+ 1− s1 − . . .− sn) .

Next we make use of the generalized partial fractions decomposition

1∏m
k=0(1 + 〈ak, z〉)

= m!

∫
σm

dτ1 · · · dτm
(1 + 〈α(τ), z〉)m+1

,

which occurs in the theory of analytic functionals and Fantappiè transforms, see
for instance [1] or [11]. From this formula we immediately obtain

M1/
∏m
k=0(1+〈ak,z〉) = m!

∫
σm

M1/(1+〈α(τ),z〉)m+1 dτ1 · · · dτm ,

which yields (17). �

In particular, when m = n = 1 and f(z) = (1 + a0z)(1 + a1z) we obtain the
entire function

Φ(s) =

∫ 1

0

dτ(
(1− τ)a0 + τa1

)s 1

1− s
a1−s

1 − a1−s
0

a1 − a0
=

1

1− s
∑

res[zs−1/f(z)]

in accordance with the formulas mentioned in the introduction above. Similarly,
when n = 2 and f(z1, z2) = (1+a01z1 +a02z2)(1+a11z1 +a12z2) the entire function
becomes

Φ(s1, s2) =

∫ 1

0

dτ(
(1− τ)a01 + τa11

)s1(
(1− τ)a02 + τa12

)s2 .
Here one may remark a close connection to the classical Euler beta function B.
Namely, if we let the coefficients a02 and a11 become zero, we are left with

Φ(s1, s2) = a−s101 a−s212

∫ 1

0

(1− τ)−s1τ−s2dτ = a−s101 a−s212 B(1− s1, 1− s2) .

Since B(1− s1, 1− s2) = Γ(1− s1)Γ(1− s2)/Γ(2− s1− s2) we see that the function
Φ is no longer entire. This is to be expected however, because the new polynomial
f(z1, z2) = (1 + a01z1)(1 + a12z2) has a different Newton polygon, and the new Φ
should contribute to the change of Γ-factors in the Mellin transform. In fact, when
a02 = a11 = 0 we have the formula

M1/f (s) = Φ(s)Γ(s1)Γ(s2)Γ(2− s1 − s2) = a−s101 a−s212 Γ(s1)Γ(s2)Γ(1− s1)Γ(1− s2) .

It is not always the case that all the polar hyperplanes of the gamma functions
in the representation (9) are actual singularities for the Mellin transform M1/f . It
may happen that the entire function Φ has zeros that cancel out some of the poles.
A very simple example of this phenomenon is provided by the function f(z) = 1+zm

with m ≥ 2. In this case the substitution zm = w leads to the formula

M1/f (s) =
1

m

∫ ∞
0

ws/m

1 + w

dw

w
=

1

m
Γ(s/m)Γ(1− s/m) ,
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so the polar locus is just mZ. In fact, the entire function Φ from (9) is given by

Φ(s) =
1

m

Γ(s/m)

Γ(s)

Γ(1− s/m)

Γ(m− s)
,

and it has plenty of integer zeros. A slight generalization of this example is provided
by the following result.

Proposition 2. Let f(z) = 1 + zα1 + . . . + zαn , for some linearly independent
vectors α1, . . . , αn ∈ Zn, and denote by δ the non-zero determinant det(αjk). The
Mellin transform of the rational function 1/f is then given by

M1/f (s) =
1

δ
Γ(〈β1, s〉) · · ·Γ(〈βn, s〉)Γ(1− 〈β1, s〉 − . . .− 〈βn, s〉) ,

where the βk denote the column vectors of the inverse matrix (αjk)−1.

Proof. We make the monomial change of variables z
αj1
1 · · · zαjnn = wj , so that

zj = w
βj1
1 · · ·wβjnn and dz/z = δ−1dw/w. The Mellin transform can then be written

M1/f (s) =

∫
Rn+

zs

1 + zα1 + . . .+ zαn
dz

z
=

1

δ

∫
Rn+

w
〈β1,s〉
1 · · · w〈βn,s〉n

1 + w1 + . . .+ wn

dw

w
,

and the latter integral is of a similar form as the one in Example 1. �

We point out that the Newton polytope ∆f of the polynomial in Proposition 2 is
a simplex with one vertex at the origin, and that its normal vectors µ1, . . . , µn+1 are
integer multiples of the rational vectors β1, . . . , βn and −(β1 + . . .+βn). Moreover,
one has ν1 = . . . = νn = 0 and νn+1 = 1. In this case the entire function Φ
occurring in (9) is therefore of the form

Φ(s) =
1

δ

Γ(〈β1, s〉)
Γ(〈µ1, s〉)

· · · Γ(〈βn, s〉)
Γ(〈µn, s〉)

Γ(1− 〈β1, s〉 − . . .− 〈βn, s〉)
Γ(1 + 〈µn+1, s〉)

.

5. Mellin transforms and coamoebas

Let us return for a moment to the one-variable Mellin transform

M1/f (s) =

∫ ∞
0

zs

f(z)

dz

z
=

∫ ∞
−∞

esx

f(ex)
dx ,

where we assume, as before, that the polynomial f does not vanish on the positive
real axis and that the real part of s lies in the interior of the Newton interval ∆f .
Our first claim is now that the value of the above integral remains unchanged if the
set of integration is rotated slightly. In other words, for |θ| small enough one has
the identity ∫ ∞

0

zs

f(z)

dz

z
=

∫
Arg−1(θ)

zs

f(z)

dz

z
=

∫ ∞
−∞

es(x+iθ)

f(ex+iθ)
dx .

To verify this, we perform an integration along a closed path starting at the origin,
then running along the positive real axis to the point R, continuing along the circle
|z| = R to the point Reiθ, and then going straight back to the origin, see Figure 4
below. Since θ is close to zero, the denominator f has no zeros in the closed sector
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with arguments between 0 and θ. By the residue theorem the integral over the
closed contour is therefore equal to zero, and since the integrand decreases fast
when |z| → ∞, the integral over the circular arc CR can be made arbitrarily small
by choosing R large enough. The integrals along the two infinite rays are thus equal
as claimed.

θ

CR

R

Figure 4. The contour of integration in the residue computation.

From the above argument we see that the directional Mellin transform coincides
with the standard one as long as the two directions θ and 0 belong to the same
connected component of the coamoeba complement R\A′f . Furthermore, it is clear

that the Mellin integral over Arg−1(θ) converges for every choice of θ outside the
coamoeba A′f . A similar residue computation as above then again shows that the

directional Mellin transform only depends on which connected component of R\A′f
it is that contains θ.

Turning to the general case n ≥ 1, there are two important differences to be
observed. On the one hand we recall the condition in Theorem 1 that the polynomial
f should be completely non-vanishing on Rn+ = Arg−1(0) in order for the integral
to converge, and on the other hand we note that the coamoeba A′f is in general
not a closed set. The following result connects these two facts, and it allows us to
define the directional Mellin transform

(18)

∫
Arg−1(θ)

zs

f(z)

dz

z
=

∫
Rn

e〈s,x+iθ〉

f(ex+iθ)
dx ,

for each argument θ that does not belong to the closure A′f .

Theorem 3. For any θ ∈ Rn \ A′f the polynomial f is completely non-vanishing

on the set Arg−1(θ).

Proof. For any given argument vector θ we can consider the new polynomial
fθ(z) = f(eiθ1z1, . . . , e

iθnzn). Observe that A′fθ + θ = A′f , so that 0 ∈ A′fθ if and

only if θ ∈ A′f , and also that fθ is completely non-vanishing on Arg−1(0) if and

only if f is completely non-vanishing on Arg−1(θ). This means that it actually
suffices to prove the theorem for the special case θ = 0.



MELLIN TRANSFORMS OF MULTIVARIATE RATIONAL FUNCTIONS 15

Assume then that f is not completely non-vanishing on the set Arg−1(0), so
that for some face Γ one has 0 ∈ A′Γ. In other words, there is an x0 ∈ Rn such

that fΓ(ex0) = 0. We must show that 0 belongs to the closure A′f . This is obvious
if Γ = ∆f , so we can assume that dim Γ ≤ n − 1. Choose a vector µ ∈ Zn and an
integer ν ∈ Z such that 〈µ, α〉 = ν for α ∈ Γ and 〈µ, α〉 < ν for α ∈ ∆f \Γ. Writing
gΓ = f − fΓ we then have

fΓ(ex0−tµ) =
∑
α∈Γ

aα e
〈x0,α〉−t〈µ,α〉 = e−tν

∑
α∈Γ

aα e
〈x0,α〉 = 0

and

gΓ(ex0−tµ) =
∑

α∈∆f\Γ

aα e
〈x0,α〉−t〈µ,α〉 = e−tν

∑
α∈∆f\Γ

bα e
−tcα ,

where bα = aαe
〈x0,α〉 and cα = 〈µ, α〉−ν > 0. Now let ε > 0 be given. Choose a disk

Dε of radius ε centered at x0 and contained in a complex line on which the function
w 7→ fΓ(ew) does not vanish identically. Then translate this disk along the real
space, so that Dε− tµ is a disk centered at the point x0− tµ for some large positive
number t. Since fΓ(ew) is non-zero on the boundary of Dε we have |fΓ(ew)| ≥ δ > 0
for w ∈ ∂Dε. This means that |fΓ(ew)| ≥ δ e−tν on the translated circle ∂Dε − tµ.
Taking t large enough, we also have |gΓ(ew)/fΓ(ew)| < 1 on ∂Dε − tµ, that is,
|gΓ(ew)| < |fΓ(ew)|. Rouché’s theorem then tells us that f(ew) = fΓ(ew) + gΓ(ew)
has a zero wε in the disk Dε−tµ. So zε = ewε belongs to the hypersurface f(z) = 0.
But we also know that |Arg(zε)| = |Imwε| < ε, and since ε was chosen arbitrary

we conclude that 0 ∈ A′f . �

Remark. In the above proof we showed that all the facial coamoebas A′Γ are

contained in the closure A′f of the main coamoeba. It is a fact, proved by Johansson

[12] and independently by Nisse and Sottile [14], that one actually has an equality⋃
Γ⊆∆f

A′Γ = A′f .

Using Theorems 1 and 3 we can now define a directional Mellin transform (18)

for any θ in the complement Rn \ A′f . Just as in the one-variable case discussed
earlier in the section, the various Mellin transforms will in fact be equal for all
θ that belong to the same connected component of Rn \ A′f . This can be seen
by connecting two different values of θ through a polygonal path such that along
each edge of the path only one component θk is being changed. The invariance of
the Mellin transform under such a move is then a consequence of the one-variable
argument.

ln order to put our next theorem in a proper perspective, it seems appropriate
at this juncture to recall some known facts about amoebas and Laurents series
of rational functions. A reference for these results is [6]. Associated with each
connected component E of the amoeba complement Rn \ Af is a Laurent series
representation

1

f(z)
=
∑
α∈Zn

cEα z
−α

of the rational function 1/f . The coefficients of the series are given by the integrals
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cEα =
1

(2πi)n

∫
Log−1(x)

zα

f(z)

dz

z
=

∫
[−π,π]n

e〈α,x+iθ〉

f(ex+iθ)
dθ ,

where x is any point in the connected component E. Each such Laurent series will
converge in the corresponding Reinhardt domain Log−1(E). We stress the fact that
the amoeba Af is always a closed set, so in contrast to the case of coamoebas, there
is no need to take the closure of the amoeba.

The following result about coamoebas and Mellin transforms provides a prac-
tically perfect analogy to the above picture for amoebas and Laurent coefficients.

Theorem 4. For any connected component E of the coamoeba complement Rn\A′f
there is an integral representation

(19)
1

f(z)
=

∫
σ+iRn

ME
1/f (s) z−sds ,

which converges for all z in the domain Arg−1(E). Here σ is an arbitrary point in
int ∆f and

(20) ME
1/f (s) =

1

(2πi)n

∫
Arg−1(θ)

zs

f(z)

dz

z
=

1

(2πi)n

∫
Rn

e〈s,x+iθ〉

f(ex+iθ)
dx ,

with θ being an arbitrary point in the component E.

Proof. From Theorem 3 and (an obvious generalization of) Theorem 1 we see
that the integral (20) converges, and from the discussion preceding Theorem 3 we
also know that the value of (20) is independent of the particular choice of point
θ ∈ E.

In order to prove the identity (19) it suffices to verify that, for all s = σ + it
such that σ ∈ int(∆f ), the function x→ e〈s,x+iθ〉/f(ex+iθ) is in the Schwartz space
S(Rn) of rapidly decreasing functions. Then the result follows from well known
facts about inversion of Fourier transforms, see Thm 7.1.5 in [10].

For simplicity, and without loss of generality, we assume that θ = 0. We have
|e〈s,x〉/f(ex)| = e〈σ,x〉/|f(ex)|, and from the inequality (6), which we established
in the proof of Theorem 1, we see that e〈s,x〉/f(ex) is an exponentially dercreasing
function. It remains to verify that all its partial derivatives have the same property.
Computing a typical derivative, we get

(21)
∂

∂xk

( e〈σ,x〉
f(ex)

)
=

σk e
〈σ,x〉

f(ex)
− e〈σ+ek,x〉f ′k(ex)

f(ex)2
,

where f ′k denotes the derivative of the polynomial f with respect to zk. Here the
first term one the right hand side is just a constant times the original function, and
the second term is of the form ∑

α∈A

αkaα e
〈σ+α,x〉

f(ex)2
.

The Newton polytope of the denominator is ∆f2 = 2∆f , so σ+α ∈ int ∆f2 for every
α ∈ A, and hence each term in the sum satisfies the conditions of Theorem 1. This
means that the derivative (21) is a finite sum of functions to which we can apply
Theorem 1 and the inequality (6). By induction this implies that all derivatives of
e〈s,x〉/f(ex) decrease exponentially. �
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Remark. It is clear that if E′ is a connected component of Rn\A′f that is obtained
by just translating another component E by 2πek, then the corresponding two
Mellin transforms are related by the simple formula

ME′

1/f (s) = e2πiskME
1/f (s) .

In general however, the relations between the various Mellin transforms associated
with different connected components are rather complicated. Furthermore, it is
worth mentioning that all the connected components of Rn \ A′f are convex sets.

This fact follows for instance from the Bochner tube theorem, see [4]. Finally, we
point out that Theorem 4 can also be proved by using results from Antipova [2].

6. Hypergeometry

In this final section we shall consider the dependence of the Mellin transform,
and in particular of the entire function Φ, on the coefficients a = {aα} of the
polynomial f . In order to emphasize this dependence we are here going to write
Φ(a, s) rather than just Φ(s). The crucial observation will be that, with respect
to the variables a, the function Φ is an A-hypergeometric function in the sense
of Gelfand, Kapranov and Zelevinsky. More precisely, a 7→ Φ(a, s) satisfies the A-
hypergeometric system of partial differential equations with homogeneity parameter
β = (−1,−s1,−s2, . . . ,−sn).

Let us recall the structure of the A-hypergeometric system. Our starting point
is the subset A ⊂ Zn of exponent vectors occurring in the expression (3) for the
polynomial f . We introduce a numbering α1, . . . , αN of the elements of A, with
each αk = (α1k, . . . , αnk) ∈ Zn. Abusing the notation slightly, we write A also for
the (1 + n) × N -matrix whose column vectors are (1, αk). For any vector v ∈ Zn
we denote by v+ and v− the vectors obtained from v by replacing each component
vk by max(vk, 0) and max(−vk, 0) respectively, so that v = v+− v−.

Definition 2. Let A denote a subset {α1, . . . , αN} ⊂ Zn and the associated (1 +
n) × N -matrix as above. The A-hypergeometric system of differential equations
with homogeneity parameter β ∈ Cn is then given by

�bF (a) = 0, b ∈ ZN , Ab = 0, and Eβj F (a) = 0, j = 0, 1, . . . , n ,

where the differential operators �b and Eβj are given by

�b =
( ∂
∂a

)b+
−
( ∂
∂a

)b−
and Eβj =

N∑
k=1

αjk ak
∂

∂ak
− βj .

An analytic function F that solves the system is called A-hypergeometric with ho-
mogeneity parameter β.

Remark. We are assuming N ≥ 1+n, and as soon as this inequality is strict there
are of course infinitely many vectors b satisfying Ab = 0, but it is a known fact, see
[15], that the system is in fact determined by a finite number of operators �b.

Let us now, for a given choice of coefficients a, consider an entire function
s 7→ Φ(a, s) as described in Theorems 2 and 4. We want to study what happens
when we start varying a. Recall from [7] and [8] the notion of the principal A-
determinant EA, also known as the full A-discriminant. It is a polynomial in the
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variables a, with the property that its zero set ΣA ⊂ CN contains the singular locus
of all A-hypergeometric functions.

Theorem 5. Take a ∈ CN \ ΣA and let E be a connected component of Rn \ A′f ,

with f being the polynomial f(z) = a1z
α1 + . . . + aNz

αN . Also take s ∈ Cn with
Re s ∈ int ∆f . Then the analytic germ

Φ(a, s) =
1∏

k Γ(〈µk, s〉 − νk)

∫
Arg−1(θ)

zs∑
k akz

αk

dz

z
, θ ∈ E ,

has a (multivalued) analytic continuation to (CN \ ΣA) × Cn which is everywhere
A-hypergeometric in a with varying homogeneity parameter (−1,−s1, . . . ,−sn).

Proof. First of all it is clear that θ will be disjoint from A′f also for poly-

nomials f with coefficients ak near the original ones, say in a small ball B(a), so that
the integral does indeed define an analytic germ Φ(a, s). From (a straightforward
generalization of) our Theorem 2 we also know that Φ is extendable as an entire
function with respect to the variables s. In other words, we already have an analytic
extension of Φ to the infinite cylinder B(a)× Cn.

Let us next verify that Φ is an A-hypergeometric function with the correct
homogeneity parameter. When doing this we first fix s at an arbitrary value with
Re s ∈ int ∆f , hence in particular away from the polar hyperplanes of the gamma
functions. Then the function in front of the integral is just a non-zero constant and
we can deal directly with the integral, by differentiation under the integral sign.

Notice that the condition that Ab = 0 amounts to the two identities |b+| = |b−|
and 〈b+, α〉 = 〈b−, α〉, were we have used the shorthand notation |b±| =

∑
b±k and

〈b±, α〉 =
∑
b±k αk. Computing iterated derivatives of the integrand 1/f in the

Mellin integral we get

( ∂
∂a

)b± 1∑
ak zαk

= (−1)|b
±||b±|! z〈b

±, α〉

(
∑
ak zαk)1+|b±| ,

and since here the right hand side is independent of the choice of sign in b±, so is
the left hand side. This means that �b(1/f) = 0, and hence we also have �bΦ = 0.

It is obvious that Φ is homogeneous of degree −1 with respect to the variables
ak. To check the other homogeneities one can integrate by parts in the integral. As
in our proof of Theorem 2 this can be efficiently done by dilating the variables by
means of a parameter λ. For example, making the dilation zj 7→ λzj we get∫

Arg−1(θ)

zs∑
k akz

αk

dz

z
= λsj

∫
Arg−1(θ)

zs∑
k λ

αjkakzαk
dz

z
.

Differentiating both sides of this identity with respect to λ and then putting λ = 1,
we find that

0 = sjΦ +

N∑
k=1

αjk ak
∂

∂ak
Φ ,

and hence Eβj Φ(a, s) = 0, with βj = −sj as claimed.

We have thus established that Φ is an A-hypergeometric analytic function in the
product domain B(a)× (int ∆f + iRn), and by uniqueness of analytic continuation
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its extension to the cylinder B(a)×Cn will remain A-hypergeometric. Next, by the
general theory of A-hypergeometric functions one has, for each fixed s, a (typically
multivalued) analytic continuation of a 7→ Φ(a, s) from B(a) to all of CN \ ΣA.
Well known results on analytic functions of several variables then tell us that these
continuations will still depend analytically on s, so we have achieved the desired
analytic continuation to the full product domain (CN \ΣA)× Cn. The uniqueness
of analytic continuation again guarantees that Φ will everywhere satisfy the A-
hypergeometric system with the homogeneity parameter (−1,−s1. . . . ,−sn). �

Related integral representations of A-hypergeometric functions have been con-
sidered by several authors, see for instance [9] and [3]. It is probably instructive to
examine a concrete special instance of the above theorem, and we choose to present
the case of the classical Gauss hypergeometric function.

Example 3. Take A = {(0, 0), (1, 0), (0, 1), (1, 1)} to consist of the four corners
of the unit square in the first quadrant. It is easy to check that in this case ΣA
is given by the equation EA(a) = a1a2a3a4(a1a4 − a2a3) = 0. Then consider the
polynomial f(z) = a1 + a2z1 + a2z2 + a4z1z2 together with its associated Mellin
transform

(22) M1/f (a, s) =

∫ ∞
0

∫ ∞
0

zs11 z
s2
2

a1 + a2z1 + a3z2 + a4z1z2

dz1dz2

z1z2
.

Let us compute this transform for simplicity first in the case a1 = a2 = a3 = 1.
Writing f as (1 + z2) + (1 + a4z2)z1, we can use formula (16) and first perform the
integration with respect to z1. This yields the expression

Γ(s1)Γ(1− s1)

∫ ∞
0

(1 + z2)s1−1(1 + a4z2)−s1zs2−1
2 dz2

for the Mellin transform (22). Re-writing the integrand and expanding in a power
series we find that the above integral equals∫ ∞

0

(
1 +

(a4 − 1) z2

1 + z2

)−s1 zs2−1
2 dz2

1 + z2
=
∑
k≥0

Γ(1− s1)

Γ(1− s1 − k) k!
(a4−1)k

∫ ∞
0

zs2+k−1
2 dz2

(1 + z2)1+k
,

so using the formula∫ ∞
0

wt

(1 + w)1+k

dw

w
=

1

k!
Γ(t)Γ(1 + k − t)

we find that (22) can be expressed as Γ(s1)Γ(1− s1)Γ(s2)Γ(1− s2) times

∑
k≥0

Γ(1− s1)Γ(s2 + k)

Γ(1− s1 − k)Γ(s2)(k!)2
(a4 − 1)k =

∑
k≥0

Γ(s1 + k)Γ(s2 + k)

Γ(s1)Γ(s2)(k!)2
(1− a4)k .

In other words, we have shown that Φ(1, 1, 1, a4, s1, s2) = 2F1(s1, s2; 1; 1 − a4).
Using the homogeneities if Φ, corresponding to the row vectors of the matrix

A =

 1 1 1 1
0 1 0 1
0 0 1 1
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and the homogeneity parameter (−1,−s1,−s2), we then easily recover the more
general formula

(23) Φ(a, s) = as1+s2−1
1 a−s12 a−s23 2F1

(
s1, s2; 1; 1− a1a4

a2a3

)
.

Notice that the three singular points 0, 1 and∞ for the Gauss function correspond
to the factors a1a4 − a2a3, a1a4 and a2a3 of the principal A-determinant EA.

The A-hypergeometric system consists in this case of the single binomial equation(
∂2

∂a1∂a4
− ∂2

∂a2∂a3

)
Φ(a, s) = 0 ,

together with the three homogeneity equations

{ (a1∂/∂a1 + a2∂/∂a2 + a3∂/∂a3 + a4∂/∂a4 + 1) Φ(a, s) = 0 ,
(a2∂/∂a2 + a4∂/∂a4 + s1) Φ(a, s) = 0 ,
(a3∂/∂a3 + a4∂/∂a4 + s2) Φ(a, s) = 0 .

Let us end by considering what happens as one of the variables ak vanishes.
From the Gauss hypergeometric theorem one knows that, for σ1 + σ2 < 1, there is
an identity 2F1

(
s1, s2; 1; 1) = Γ(1− s1− s2)/(Γ(1− s1)Γ(1− s2)), so setting a4 = 0

in the above formula (23) we get

Φ(a1, a2, a3, 0, s1, s2) = as1+s2−1
1 a−s12 a−s23

Γ(1− s1 − s2)

Γ(1− s1)Γ(1− s2)
.

This of course fits beautifully with the fact that the Mellin transform M1/f for the
polynomial f(z1, z2) = a1 + a2z1 + a3z2 is equal to

as1+s2−1
1 a−s12 a−s23 Γ(s1)Γ(s2)Γ(1− s1 − s2) ,

compare with formula (16) above.

To treat the case a1 = 0 we can use Euler’s hypergeometric transformation

2F1(a, b; 1; z) = (1− z)1−a−b
2F1(1− a, 1− b; 1; z) and re-write formula (23) as

Φ(a, s) = as2−1
2 as1−1

3 a1−s1−s2
4 2F1

(
1− s1, 1− s2; 1; 1− a1a4

a2a3

)
.

Again using the hypergeometric theorem of Gauss, now for (1− σ1) + (1− σ2) < 1
or equivalently σ1 + σ2 > 1, we find that

Φ(0, a2, a3, a4, s1, s2) = as2−1
2 as1−1

3 a1−s1−s2
4

Γ(s1 + s2 − 1)

Γ(s1)Γ(s2)
,

which can be seen to concord with the formula for the Mellin transform M1/f with
f(z1, z2) = a2z1 + a3z2 + a4z1z2. Finally, the other two Euler transformations

2F1(a, b; 1; z) = (1−z)−a2F1(a, 1−b; 1; z/(z−1)) = (1−z)−b2F1(1−a, b; 1; z/(z−1))

similarly lead to the formulas

Φ(a1, 0, a3, a4, s1, s2) = as2−1
1 as1−s23 a−s14

Γ(s2 − s1)

Γ(1− s1)Γ(s2)
,

and

Φ(a1, a2, 0, a4, s1, s2) = as1−1
1 as2−s12 a−s24

Γ(s1 − s2)

Γ(s1)Γ(1− s2)
.
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