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Matematiska institutionen, Stockholms universitet

SE-10691 Stockholm, SWEDEN

21st June 2000

1 Introduction

Suppose f is an entire function in the complex plane with zeros a1, a2, a3, . . .
ordered so that |a1| ≤ |a2| ≤ . . . . Assume for simplicity that f(0) 6= 0. The
classical Jensen formula states that

1

2π

∫ 2π

0

log |f(reit)|dt = log |f(0)|+
N

∑

k=1

log
r

|ak|

where N is the largest index such that |aN | < r. If this expression is considered
as a function Nf of log r there is a strong connection between this function and
the zeros of f . Thus, it follows immediately that Nf is a piecewise linear convex
function whose gradient is equal to the number of zeros of f inside the disc
{|z| < r}. The second derivative of Nf , in the sense of distributions, is a sum
of point masses at log |ak|, k = 1, 2, 3, . . . . In this paper we consider a certain
generalisation of the function occuring in the Jensen formula to holomorphic
functions of several variables.

Let Ω be a convex open set in Rn and let f be a holomorphic function defined
in Log−1(Ω), where Log : (C \ {0})n −→ Rn is the mapping (z1, . . . , zn) 7→
(log |z1|, . . . , log |zn|). In [8] Ronkin considers the function Nf defined in Ω by
the integral

Nf (x) =
1

(2πi)n

∫

Log−1(x)

log |f(z1, . . . , zn)| dz1 . . . dzn

z1 . . . zn

. (1)

As we will see, the function Nf retains some of its properties from the one-
variable case, while others are lost or attain a new form. For example, Nf is
a convex function, but it is no longer piecewise linear. In section 2 below we
consider the consequences of approximating Nf by a piecewise linear function.
In section 3 we investigate the relation between local properties of Nf and the
hypersurface f−1(0).
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The properties of the function Nf are closely related to the amoeba of f .
The amoeba of f , which we denote Af , is defined to be the image in Ω of the
hypersurface f−1(0) under the map Log. The term amoeba was first used by
Gelfand, Kapranov and Zelevinsky in the case where f is a polynomial.

Suppose E is a connected component of the amoeba complement Ω \ Af .
It is not difficult to show that all such components are convex. For example,
Log−1(E) is the intersection of Log−1(Ω) with the domain of convergence of a
certain Laurent series expansion of 1/f , and domains of convergence of Laurent
series are always logarithmically convex. In [3] Forsberg, Passare and Tsikh
defined the order of such a component to be the vector ν = (ν1, . . . , νn) given
by the formula

νj =
1

(2πi)n

∫

Log−1(x)

∂f

∂zj

zjdz1 . . . dzn

f(z)z1 . . . zn

, x ∈ E. (2)

Here xmay be any point in E. They proved, for the case when f is a polynomial,
that the order is an integer vector, that is ν ∈ Zn, that ν is in the Newton
polytope of f , and that two distinct components always have different orders.
These conclusions remain true, with essentially the same proofs, in the more
general setting considered here.

Ronkin proved a theorem, which in the language of amoebas amounts to the
followin statement.

Theorem. Let f be a holomorphic function as above. Then Nf is a convex
function. If U ⊂ Ω is a connected open set, then the restriction of Nf to U
is affine linear if and only if U does not intersect the amoeba of f . If x is
in the complement of the amoeba, then gradNf (x) is equal to the order of the
complement component containing x.

Sketch of proof. The convexity of Nf follows from a general theorem because
log |f | is plurisubharmonic, see for example [9], Corollary 1 on p. 84. Differen-
tiation with respect to xj under the integral sign in the definition (1) of Nf

yields precisely the real part of the integral (2) defining the order. However, the
integral (2) is always real valued and this shows immediately that Nf is affine
linear in each connected component of Ω \ Af . The fact that Nf is not linear
on any open set intersecting the amoeba of f can be proved in several ways. It
follows, for instance, from the results in section 3.

2 Triangulations and polyhedral subdivisions

In this section we will consider an approximation to Ronkin’s function Nf by a
piecewise linear function. This will lead to a polyhedral complex approximating
the amoeba of f .

First we establish a more general construction. Recall the concept of a coher-
ent triangulation from [4]. We will here use a slight generalization of this idea.
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Let A be a possibly infinite subset of the lattice Zn, and let there be given for
each α ∈ A a real number cα. Assume also that

S(x) = max
α∈A

(cα + 〈α, x〉) (3)

is finite for all x in a convex domain Ω and that Ω is the maximal domain with
this property. We call Ω the domain of convergence of S. Here and in what
follows, we identify Rn with its dual by the standard scalar product. Consider
the convex hull of the set

{(α, t) ∈ A×R; t ≤ cα} ⊂ Rn ×R

which we denote by G. It is an unbounded polyhedron which is mapped onto the
convex hull of A under the projection Rn×R −→ Rn onto the first factor. The
bounded faces of G are mapped to polyhedra with vertices among the points of
A, and they are easily seen to constitute a polyhedral subdivision of the convex
hull of A, which we denote by T . For generic choices of the coefficients cα,
this will actually be a triangulation, which is called the coherent (or regular)
triangulation corresponding to the cα.

It is also possible to construct a polyhedral subdivision of Ω from these data.
By a polyhedron in Ω we mean a convex subset of Ω which is locally the in-
tersection of a finite number of closed halfspaces. For each cell σ of T , we
define

σ∗ = {x ∈ Ω;S(x) = cα + 〈α, x〉 for all vertices α of σ}.
Clearly, σ∗ is a polyhedron in Ω. Denote the collection of all such σ∗ by T ∗.

Theorem 1. T ∗ is a polyhedral subdivision of Ω which is dual to T in the
following sense:

(i) If σ is a k-dimensional cell of T , then σ∗ is an (n− k)-dimensional cell
of T ∗ which is orthogonal to σ.

(ii) τ is a face of σ if and only if σ∗ is a face of τ∗.

Proof. Let G∗ = {(x, t);S(x) ≤ t} ⊂ Ω×R. This is a polyhedron whose faces
project onto Ω under the projection π : Ω ×R −→ Ω to produce a polyhedral
subdivision. We shall prove that this subdivision coincides with T ∗. Assume
that σ is a cell in T . For every α ∈ A, {(x, t) ∈ G∗; t = cα + 〈α, x〉} is a face of
G∗. The intersection of all such faces as α ranges over all vertices of σ projects
onto σ∗. Conversely, let σ̃ be a face of G∗. Take a point (x0, t0) in the relative
interior of σ̃, and let σ be the convex hull of Aσ̃ = {α ∈ A;S(x0) = cα+〈α, x0〉}.
Since cα ≤ S(x0) − 〈α, x0〉 for all α ∈ A, with equality precisely if α ∈ Aσ̃ , it
follows that σ is the projection of a face of G∗, hence a cell of T . Since S(x) is
linear in π(σ̃) and S(x) ≥ cα + 〈α, x〉 for all α it follows that S(x) = cα + 〈α, x〉
for all x ∈ π(σ̃) and all α ∈ Aσ̃ , hence π(σ̃) ⊂ σ∗. On the other hand it is not
difficult to verify that σ∗ ⊂ π(σ̃). This shows that the polyhedral subdivision
obtained from the faces of G∗ coincides with T ∗.

If σ is a k-dimensional cell in T and α1, α2 are vertices of σ, then

〈α1 − α2, x〉 = (S(x) − cα1
)− (S(x) − cα2

) = cα2
− cα1
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for all x ∈ σ∗. This shows that dimσ∗ ≤ n − k. On the other hand, there is
some x0 ∈ Ω such that cα + 〈α, x0〉 ≤ S(x0), with equality if α is a vertex of σ,
and strict inequality if α is outside σ. The same holds with x0 replaced by x
for all x near x0 in the (n − k)-dimensional plane through x0 orthogonal to σ.
This completes the proof that dimσ∗ = n− k and also that σ∗ is orthogonal to
σ.

Finally, if τ is a face of σ, it is immediate from the definition that σ∗ is a
subset of τ∗, hence it is a face since T ∗ is a polyhedral subdivision. The converse
follows in a similar way if we observe that σ is spanned by {α ∈ A; cα + 〈α, x〉 =
S(x) for all x ∈ σ∗}. �

Assume now that f is a holomorphic function in Log−1(Ω) where Ω is a convex
open set in Rn, and write A = {α ∈ Zn;Rn \Af has a component of order α}.
It may happen that A is empty, but we will assume that this is not the case.
The most interesting situation arises when A has plenty of points, for example
when the convex hull of A coincides with the Newton polyhedron of f . This
will always happen if f is a Laurent polynomial. Let the numbers cα used in
the definition (3) of S(x) be given by

cα = Nf (x)− 〈α, x〉, x ∈ Eα. (4)

Recall that the gradient of Nf in Eα is equal to α, so the definition does not
depend on x. By the following proposition the domain of convergence of S(x)
contains Ω, so we have a triangulation T of the convex hull of A and a polyhedral
subdivision T ∗ of Ω. We call the (n− 1)-skeleton of T ∗ the spine of the amoeba
Af and denote it by Sf .

Figure 1: Amoebas of the polynomials 1+z1+z2 and 1+z3
1 +z3

2−6z1z2 (shaded)
together with their spines (solid).

Proposition 1. With notations as in the construction above the following hold,
(i) S(x) ≤ Nf (x) with equality for x ∈ Ω \ Af .
(ii) For every α ∈ A, {α}is a vertex of T and the component of order α in

Ω \ Af is contained in {α}∗.
(iii) The spine of the amoeba of f is contained in the amoeba. Every com-

ponent of Ω \ Sf contains a unique component of Ω \ Af .
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Proof. The linear function cα +〈α, x〉 coincides with Nf on an open set, hence
cα + 〈α, x〉 ≤ Nf (x) for all x. Taking the supremum over all α in A proves part
(i). If Eα denotes the component of Ω \ Af of order α, then

cα + 〈α, x〉 ≤ S(x) = Nf (x) = cα + 〈α, x〉, for x ∈ Eα,

which shows that Eα ⊂ {α}∗. Since gradNf = β in Eβ we have a strict
inequality cα + 〈α, x〉 < Nf (x) = S(x) for x ∈ Eβ and all β 6= α, which
implies that Eα = {α}∗ \ Af . If x ∈ Sf then there exist α, β ∈ A such that
x ∈ {α}∗ ∩ {β}∗ ⊂ Ω \ ⋃

γ 6=αEγ \
⋃

γ 6=β Eγ = Af . Finally we note that the
connected components of Ω \ Sf are precisely the sets {α}∗. �

Let us now turn to the question of how to compute the coefficients cα corre-
sponding to a given Laurent polynomial f . If Γ is a face of the Newton polytope
of f(z) =

∑

α∈C wαz
α, where C denotes a finite subset of Zn, let f |Γ denote

the truncation of f to Γ, that is f |Γ(z) =
∑

α∈Γ wαz
α. It is well known that

when α ∈ Γ∩Zn, the complement of the amoeba of f has a component of order
α precisely if the complement of the amoeba of f |Γ does (see [3] Prop. 2.6 and
also [4]).

Proposition 2. Let f be a Laurent polynomial and let Γ be a face of the Newton
polytope of f . If α ∈ Γ and the complement of Af has a component of order α,
then cα(f) = cα(f |Γ). In particular, if α is a vertex of the Newton polytope of
f , then cα = log |wα|.

Proof. Take an outward normal v to the Newton polytope at Γ. If α ∈ Γ and
x is in the component of Rn \ Af of order α, it is known that x+ tv is also in
that component for all t > 0. Therefore

cα(f)− cα(f |Γ) =
1

(2πi)n

∫

Log−1(x+tv)

log

∣

∣

∣

∣

f(z)

f |Γ(z)

∣

∣

∣

∣

dz1 . . . dzn

z1 . . . zn

.

and here the integrand clearly tends to 0 when t→∞. �

To further describe the dependence of the coefficients cα on the polynomial
f(z) =

∑

α∈C wαz
α it is useful to introduce the functions

Φα(w) =
1

(2πi)n

∫

Log−1(x)

log(f(z)/zα) dz1 . . . dzn

z1 . . . zn

, (5)

where x is in the component of order α. This means that cα = Re Φα. Notice
that Φα is a holomorphic function in the coefficients w with values in C/2πiZ,
defined whenever the complement of the amoeba of f has a component of order
α.

Example. Suppose f(z) = (z+ a1) . . . (z+ aN ) = w0 + . . .+wN−1z
N−1 + zN

is a polynomial in one variable. Let 0 ≤ k ≤ N and assume that 0 < |a1| <
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. . . < |ak| < r < |ak+1| < . . . < |aN |. Then one finds that

Φk(w) =
1

2πi

∫

|z|=r

log(f(z)/zk)dz

z

=

k
∑

j=1

∫

|z|=r

log((z + aj)/z)dz

z
+

N
∑

j=k+1

∫

|z|=r

log(z + aj)dz

z

=
N

∑

j=k+1

log aj = log(ak+1 . . . aN ).

In this case, we observe that Φk(w) may be continued as a finitely branched
holomorphic function, whose branches correspond to various permutations of
the roots of f . Incidentally, the sum of all branches of expΦk(w) is equal to wk.

We now return to the general case and show that the functions Φα very
nearly satisfy a system of GKZ hypergeometric equations. We remark that the
functions Φα, or rather ∂Φα/∂wα were used in [2] in the study of constant terms
in powers of Laurent polynomials. The main result was obtained by showing,
essentially, that the second term in the representation (6) is non-constant along
every complex line parallel to the wα axis, provided that α is not a vertex of
the Newton polytope of f .

Theorem 2. Let f(z) =
∑

γ∈C wγz
γ be a Laurent polynomial with C being a

fixed finite subset of Zn. Then the holomorphic functions Φα have the power
series expansion

Φα(w) = logwα +
∑

k∈Kα

(−kα − 1)!
∏

β 6=α kβ !
(−1)kα−1wk , (6)

where

Kα = {k ∈ ZC ; kα < 0, kβ ≥ 0 if β 6= α,
∑

γ

kγ = 0,
∑

γ

γkγ = 0}. (7)

The series converges for example when |wα| >
∑

β 6=α |wβ |. Moreover, Φα satis-
fies the differential equations

(∂u − ∂v)Φα = 0 if
∑

γ

(uγ − vγ) = 0 and
∑

γ

γ(uγ − vγ) = 0 (8)

and

∑

γ

wγ∂γΦα = 1 (9)

∑

γ

γwγ∂γΦα = α. (10)

Here we have used the notation ∂γ = ∂/∂wγ and ∂u for u ∈ NC is the obvious
multiindex notation for a higher partial derivative.
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Proof. Use the power series expansion of the logarithm function to write

log(f(z)/zα) = logwα +
∑

m≥1

(−1)m−1

m

(

∑

β 6=α

wβz
β

wαzα

)m

.

Now

∑

m≥1

(−1)m−1

m

(

∑

β 6=α

wβz
β

wαzα

)m

=
∑

m≥1

∑

�
kβ=m

(−1)m−1

m

m!
∏

kβ !

∏

w
kβ

β zkββ

wm
α z

mα

=
∑

Lα

(−1)kα−1 (−kα − 1)!
∏

kβ !
wkz

�
kγγ .

Here all sums and products indexed by β are taken over β ∈ C \ {α} while
γ ranges over all of C and Lα = {k ∈ ZC ; kα < 0, kβ ≥ 0,

∑

kγ = 0}. The
constant terms in this expression, considered as monomials in the z variables,
are precisely those corresponding to the set Kα, and we have proved (6).

To verify the differential equations, we differentate under the sign of inte-
gration defining Φα. By a simple computation,

∂u log(f(z)/zα) = −(
∑

uγ − 1)! z
�

uγγ(−f(z))−
�

uγ

which depends only on
∑

uγ and
∑

uγγ. Also,

∑

wγ∂γ log(f(z)/zα) =
∑

wγz
γ/f(z) = 1.

This verifies (8) and (9). Finally,

∑

γjwγ∂γ log(f(z)/zα) =
∑

γjwγz
γ/f(z) =

zj∂f/∂zj

f(z)
.

Comparing this to the definition (2) of the order of a component proves the
relation (10). �

Example. Let us consider the polynomial f(z) = 1 + zn+1
1 + . . . + zn+1

n +
az1 . . . zn in n variables. The Newton polytope of this polynomial is a simplex
and the terms correspond to the vertices and the barycenter of the Newton
polytope. The complement of the amoeba of f has at least n + 1 components
corresponding to the vertices of the Newton polytope, and in addition there
may be a component corresponding to the single interior point (1, . . . , 1). Let
Kn denote the set of a ∈ C such that Rn \ Af does not have a component of
order (1, . . . , 1).

Proposition 3. Let f(z) = 1+zn+1
1 + . . .+zn+1

n +az1 . . . zn. Then Rn\Af has
a component of order (1, . . . , 1) if and only if Af does not contain the origin.
Hence Rn \ Af has such a component precisely if

a 6∈ Kn = {−t0 − . . .− tn; |t0| = . . . = |tn| = 1, t0 . . . tn = 1}.
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Proof. Let M be an invertible n×n matrix with integer entries and let f(z) =
∑

α aαz
α be any Laurent polynomial. Define a new Laurent polynomial Mf =

∑

α aαz
Mα where a multiindex α is regarded as a column vector. It is not

difficult to show that the linear mapping x 7→MTx (where T denotes transpose)
takes the amoeba of Mf onto the amoeba of f .

Now let f be the special polynomial in the proposition and considerM which
map the Newton polytope of f onto a translate of itself. The set of such M
can be identified with the symmetric group Sn+1 via its action on the vertices.
Then Mf coincides with f up to an invertible factor, hence they have the same
amoeba. In particular, MT maps the component of order (1, . . . , 1) in the
complement of Af (if it exists) onto itself. If x is any point in that component,
then the convex hull of the points MTx, where M ranges over Sn+1, contains
the origin. Since every component in the complement of the amoeba is convex,
it follows that the component of order (1, . . . , 1) contains the origin. Conversely,
if some component E contains the origin, then MTE also contains the origin
and hence coincides with E. This implies that E has order (1, . . . , 1).

Now, the amoeba of f contains the origin precisely if

a = −(1 + zn+1
1 + . . .+ zn+1

n )/z1 . . . zn

with |z1| = . . . = |zn| = 1, or equivalently,

−a ∈ {t0 + . . .+ tn; |t0| = . . . = |tn| = 1, t0 . . . tn = 1}.�

We depict the sets Kn for a few small values of n. Note that the cusps on the
boundary correspond to polynomials with singular hypersurfaces.

Figure 2: The sets Kn for n = 2 and 3.

Let us in particular consider the case n = 2. The coefficients cα are equal to
0 when α is a vertex of the Newton polytope while

c(1,1) = log |a|+ Re
∑

k>0

(3k − 1)!

(k!)3
(−1)k−1a−3k

when |a| > 3, by Theorem 2. In fact it can easily be checked that the series
converges even when |a| = 3. What happens with the spine when a approaches
the boundary of K2 from the outside? For example, when a→ −3 a numerical
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computation of the power series shows that c(1,1) converges to a limit with the
approximate value 0.9693. This means that the complement of the spine has a
rather large component which suddenly disappears when a enters K2.

3 Associated Monge-Ampère measures

Let f be a holomorphic function in Log−1(Ω) where Ω is a convex domain in Rn.
We have seen that Nf is a convex function which is linear in each component
of Ω \ Af . It might be interesting to measure how much this function deviates
from being linear at points in the amoeba.

If u is a smooth convex function, its Hessian Hess(u) is a positive semidefinite
matrix which in a certain sense determines how convex u is near a given point.
In particular, the determinant of the Hessian is a nonnegative function. The
product of this function with ordinary Lebesgue measure is known as the real
Monge-Ampère measure of u, and we will denote by Mu. In fact, the Monge-
Ampère operator can be extended to all convex functions. In general, if u is a
non-smooth convex function, Mu will be a positive measure, see [7]. We will
denote the Monge-Ampère measure of Nf by µf . Hence µf is a positive measure
supported on the amoeba of f . The following result motivates why it might be
interesting to consider the Monge-Ampère measure of the Ronkin function.

Theorem 3. If f is a Laurent polynomial, then the total mass of µf is equal
to the volume of the Newton polytope of f .

Proof. This is an almost immediate consequence of the definition. From the
results in [7], it is known that when E is a Borel set Mu(E) is equal to the
Lebesgue measure of the set of all ξ such that u(x) − 〈ξ, x〉 attains its global
minimum in E. Let u = Nf and E = Rn, and denote this set by F . Also let G
be the set of all ξ ∈ Rn such that Nf (x)− 〈ξ, x〉 is bounded from below on Rn.
It is easy to see that F is contained in G and that the interior of G is contained
in F . Hence the claim will follow if we prove that G is equal to the Newton
polytope N of f .

Now, if ξ is in N then Nf (x)−〈ξ, x〉 ≥ S(x)−〈ξ, x〉 where S(x) is defined by
(3) and (4), and this latter function is certainly bounded from below. Conversely,
if ξ is outside N , take v ∈ Rn so that 〈ξ, v〉 > supζ∈N 〈ζ, v〉 and a vertex
α of N where this supremum is attained. If x belongs to the complement
component of order α, then x+ tv is also in that component for all t > 0. Hence
Nf (x+ tv)− 〈ξ, x + tv〉 = cα − 〈ξ − α, x+ tv〉 → −∞ as t→∞, so ξ is not in
G. �

It is interesting to consider a generalisation of the Monge-Ampère operator.
Notice that on smooth functions u, the operator M is actually the restriction to
the diagonal of a symmetric multilinear operator M̃ on n functions u1, . . . , un.
Conversely, M̃ can be recovered from M by the polarization formula

M̃(u1, . . . , un) =
1

n!

n
∑

k=1

∑

1≤j1<...<jk≤n

(−1)n−kM(uj1 + . . .+ ujk
). (11)

This expression still makes sense if u1, . . . , un are arbitrary convex functions,
and by approximating u1, . . . , un with smooth convex functions it follows that
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M̃(u1, . . . , un) is a positive measure which depends multilinearly on the argu-
ments uj . We call M̃ the mixed real Monge-Ampère operator.

The real Monge-Ampère operator is related to its complex counterpart as
follows. Suppose u1, . . . , un are smooth convex functions on the domain Ω.
Let U1, . . . , Un be plurisubharmonic functions on Log−1(Ω) defined by Uj(z) =
uj(Log z). Then

n!

∫

E

M̃(u1, . . . , un) =

∫

Log−1(E)

ddcU1 ∧ . . . ∧ ddcUn (12)

where dc = (∂− ∂̄)/2πi. This remains true if one of the functions Uj , say U1, is
allowed to be an arbitrary smooth plurisubharmonic function in Log−1(Ω), u1

being defined by

u1(x) =
1

(2πi)n

∫

Log−1(x)

U1(z)dz1 . . . dzn

z1 . . . zn

.

More generally, if U1, . . . , Un are arbitrary smooth plurisubharmonic functions
on Log−1(Ω), and

uj(x) =
1

(2πi)n

∫

Log−1(x)

Uj(z)dz1 . . . dzn

z1 . . . zn

(13)

then

n!

∫

E

M̃(u1, . . . , un) =

∫

T n2

∫

Log−1(E)

ddcU1(t
(1)z) ∧ . . . ∧ ddcUn(t(n)z)dλ(t).

(14)

Here Tn2

denotes the real n2-dimensional torus {t = (t
(k)
j ); |t(k)

j | = 1, j, k =

1, . . . n} equipped with the usual normalized Haar measure λ, and each t(k) =

(t
(k)
1 , . . . , t

(k)
n ) acts on Cn by componentwise multiplication. These formulas

can be checked by direct computation. A proof of (12) when u1 = . . . =
un can be found in [6]. The general case follows by polarization since both
sides are multilinear. Formula (14) follows by reversing the order of integration
on the right. Since the inner integral is constant along certain n dimensional
submanifolds of T n2

it is actually possible to omit some of the variables in the
outer integration. This also proves the generalised version of (12) with U1 an
arbitrary smooth plurisubharmonic function.

Theorem 4. Let E be any Borel set in Ω, and let ∆ denote the Laplace oper-
ator. Then

(n− 1)!

∫

E

∆Nf =

∫

Log−1(E)∩f−1(0)

ωn−1

where ω = (|z1|−2dz̄1 ∧ dz1 + . . .+ |zn|−2dz̄n ∧ dzn)/2πi.

Proof. If u is any convex function, then ∆u = nM̃(u, |x|2, . . . , |x|2) and ω =
ddc|Log z|2. Since ddc log |f | is equal to the current of integration along f−1(0)
it follows from (12) that

n!

∫

E

∆Nf = n

∫

Log−1(E)

ddc log |f | ∧ ωn−1

= n

∫

Log−1(E)∩f−1(0)

ωn−1.�
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The following theorem can be thought of as a local analog of Bernstein’s
theorem [1] relating the number of solutions to a system of polynomial equations
to the mixed volume of their Newton polytopes.

Theorem 5. Let f1, . . . , fn be holomorphic functions in Log−1(Ω) and let E ⊂
Ω be a Borel set. Then n!M̃(Nf1

, . . . , Nfn
)(E) is equal to the average number

of solutions in Log−1(E) to the system of equations

fj(t
(j)
1 z1, . . . , t

(j)
n zn) = 0 j = 1, . . . , n (15)

as t = (t
(j)
k ) ranges over the torus {t; |t(j)k | = 1, j, k = 1, . . . , n}.

Proof. If Uj are smooth plurisubharmonic functions which converge to log |fj |,
then uj defined by (13) converge to Nfj

. By the general properties of the real

Monge-Ampère operator this implies that M̃(u1, . . . , un) converges weakly to
M̃(Nf1

, . . . , Nfn
). Also ddcU1(t

(1)z) ∧ . . . ∧ ddcUn(t(n)z) converges weakly to
the sum of point masses at the solutions of f1(t

(1)z) = . . . = fn(t(n)z) = 0.
Hence the theorem follows by passing to the limit in (14) if we only show that

∫

Log−1(E)

ddcU1(t
(1)z) ∧ . . . ∧ ddcUn(t(n)z)

remains uniformly bounded as Uj → log |fj |. Here we may assume that E is
compact and that Uj is of the form Uj = ψ(|fj |) where ψ will converge to log.
Let ft(z) = (f1(t

(1)z), . . . , fn(t(n)z)). Then ft(z) is a holomorphic function
in z and t defined for z in a neighbourhood of Log−1(E) and t in a complex

neighbourhood of T n2

. Using compactness arguments it is not difficult to show
that there exists a constant C such that the number of solutions in Log−1(E)

to the equation ft(z) = w is bounded above by C for almost all t ∈ T n2

and
w ∈ Cn. Since η = ddcψ(|w1|)∧ . . .∧ψ(|wn|) induces a positive measure on Cn

with total mass 1, it follows that

0 ≤
∫

E

f∗t η ≤ C

and this completes the proof. �

If E is a compact component of Af1
∩ . . .∩Afn

, then for topological reasons,
the number of solutions to (15) in Log−1(E) does not depend on t. Hence we
obtain the following corollary.

Corollary 1. Suppose K is a compact component of Af1
∩ . . . ∩ Afn

. Then

n!M̃(Nf1
, . . . , Nfn

)(K) is a positive integer, which is equal to the number of
solutions of the system f1(z) = . . . = fn(z) = 0 in Log−1(K).

Let us now see what the measure µf looks like in some specific cases. First, if
n = 1, the amoeba is a discrete point set and µf is a sum of point masses. More
precisely, µf ({x}) is equal to the number of zeros of f on the circle log |z| = x. In
the case of two variables there is an interesting estimate on the Monge-Ampère
measure.

Theorem 6. Let f be a holomorphic function in two variables defined on a
circular domain Log−1(Ω). Then µf is greater than or equal to π−2 times
Lebesgue measure on the amoeba of f .

11



Proof. We prove the inequality in a neighbourhood of a point x ∈ Af where
Log−1(x) intersects f−1(0) transversely in a finite number of points. Since this
is true for almost all x it will establish the inequality.

Write log zj = xj + iyj for j = 1, 2 and assume that the hypersurface f−1(0)
is given locally as the union of graphs y = φk(x). We shall express the Hessian
of Nf in terms of the functions φk.

Differentiating the integral (1) defining Nf with respect to x1 we obtain

∂Nf

∂x1
= Re

1

(2πi)2

∫

Log−1(x)

∂f/∂z1 dz1 dz2
f(z)z2

=
1

2πi

∫

log |z2|=x2

n(f(·, z2), x1)
dz2
z2

=
1

2π

∫ 2π

0

n(f(·, ex2+iy2), x1)dy2.

Here n(f(·, z2), x1) is the number of zeros minus the number of poles of the
function z1 7→ f(z1, z2) inside the disc {log |z1| < x1} provided that it is mero-
morphic in that domain. In general, n(f(·, z2), x1) − n(f(·, z2, x′1) is equal to
the number of zeros in the annulus {x′1 < log |z1| < x1} when x′1 < x1. The
integrand in the last integral is a piecewise constant function with a jump of
magnitude 1 at y2 = φk,2(x). It follows that the gradient of ∂Nf/∂x1 is given by
a sum of terms ±(2π)−1 gradφk,2. The correct sign of each term can be found
by observing that n(f(·, ex2+iy2), x1) is increasing as a function of x1, hence all
the terms contributing to ∂2Nf/∂x

2
1 should be positive. A similar computation

applies to ∂Nf/∂x2.
Assume now that f−1(0) is given locally by an equation

a log z1 + b log z2 + higher terms = constant.

Solving for y in this equation yields that

∂φk

∂x
=

1

Im(ab̄)

(

Re(ab̄) |b|2
−|a|2 −Re(ab̄)

)

.

The crucial observation here is that

±
(

∂φk,2/∂x1 ∂φk,2/∂x2

−∂φk,1/∂x1 −∂φk,1/∂x2

)

(16)

is a positive definite matrix with determinant 1, and that 2πHess(Nf ) is a sum
of such matrices.

The inequality now follows from the following lemma since Log−1(x) inter-
sects f−1(0) in at least two points for generic x in Af . �

Lemma. If A1, A2 are 2 × 2 positive definite matrices, then det(A1 + A2) ≥
detA1 + detA2 + 2

√
detA1 detA2. Equality holds if and only if A1 and A2 are

real multiples of one another.

Proof. To see this, write Aj =
( aj bj

bj cj

)

and apply the Cauchy-Schwarz inequal-

ity to the vectors (bj ,
√

ajcj − b2j ) to obtain b1b2 +
√

detA1 detA2 ≤
√
a1a2c1c2.
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Then it follows that det(A1 + A2) − detA1 − detA2 = a1c2 + c1a2 − 2b1b2 ≥
2
√
a1a2c1c2 − 2b1b2 ≥ 2

√
detA1 detA2. The conditions for equality are that

(b21, a1c1 − b21) is proportional to (b22, a2c2 − b22) and that (a1, c1) is proportional
to (a2, c2) which clearly is equaivalent to A1 being proportional to A2. �

As an immediate consequence of Theorem 3 and Theorem 6 we have the
following estimate.

Corollary 2. Let f be a Laurent polynomial in two variables. Then the area of
the amoeba of f is not greater than π2 times the area of the Newton polytope of
f .

On the contrary, when n ≥ 3 the volume of the amoeba of a polynomial is
almost always infinite.

Example. As an illustration of the last theorem we consider the polynomials
f(z1, z2) = fa(z1, z2) = a + z1 + z2 + z1z2 where a is assumed to be a real
number.

We want to compute the number of points in Log−1(x) ∩ f−1(0) for a given
point x ∈ Rn. For points z in this set it must hold that |a+ z1| = |1 + z1|ex2 .
Conversely, if this equation holds, then (z1, (a + z1)/(1 + z1)) is in this set. If
θ = arg z1, the equation can be rewritten 2ex

1(e2x2 −a) cos θ = a2 +e2x1−e2x2 −
e2x1+2x2 . From this it follows immediately that the amoeba of f is defined by
the inequality 4e2x1(e2x2 − a)2 ≥ (a2 + e2x1 − e2x2 − e2x1+2x2)2. Moreover, the
following can be deduced when we assume that a 6= 1. If x is in the interior
of the amoeba, then Log−1(x) ∩ f−1(0) has precisely two points. If x is in the
boundary of the amoeba, and not equal to (log a, log a)/2 when a is positive,
then Log−1(x)∩ f−1(0) has exactly one point. If a > 0 and x = (log a, log a)/2,
then Log−1(x) ∩ f−1(0) contains a real curve.

By the preceding theorem, µf is greater than or equal to π−2 times the
Lebesgue measure on the amoeba of f . Assume now that a < 0. For x in the
interior of Af , 2πHess(Nf ) is a sum of two matrices of the form (16). Since f
has real coefficients it follows that φ1 = −φ2, hence the two matrices are equal.
This means that all inequalities in the proof of Theorem 6 actually become
equalities. It follows also from Theorem 5 that µf has no mass on the boundary
of the amoeba. Hence the area of the amoeba is equal to π2.

When a is positive and not equal to 1, the same conciderations hold away
from the special point (log a, log a)/2. On the other hand, the amoeba of fa

is strictly smaller than the amoeba of f−a. The remaining mass of µfa
, which

must have the same total mass as µf
−a

resides as a point mass at (log a, log a)/2.
In the particular case a = 1, there is a factorization f(z) = (z1 + 1)(z2 + 1)

and the amoeba consists of the two lines {x1 = 0} and {x2 = 0}. The Monge-
Ampère measure µf then degenerates into a single point mass at the intersection
point of the two lines.
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Figure 3: The amoebas of a+ z1 + z2 + z1z2 for a = −5 and a = 5.
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