Amoebas, Monge-Ampère measures and triangulations of the Newton polytope

Mikael Passare
Hans Rullgård

Research Reports in Mathematics Number 10, 2000

Department of Mathematics
Stockholm University

Electronic versions of this document are available at http://www.matematik.su.se/reports/2000/10

Date of publication: June 21, 2000
1991 Mathematics Subject Classification: Primary 32A07 Secondary 32A05, 26A51, 52B20.

Postal address:
Department of Mathematics
Stockholm University
S-106 91 Stockholm
Sweden

Electronic addresses:
http://www.matematik.su.se
info@matematik.su.se

Amoebas, Monge-Ampère measures and triangulations of the Newton polytope

Mikael Passare \& Hans Rullgård
Matematiska institutionen, Stockholms universitet
SE-10691 Stockholm, SWEDEN

21st June 2000

1 Introduction

Suppose f is an entire function in the complex plane with zeros $a_{1}, a_{2}, a_{3}, \ldots$ ordered so that $\left|a_{1}\right| \leq\left|a_{2}\right| \leq \ldots$. Assume for simplicity that $f(0) \neq 0$. The classical Jensen formula states that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(r e^{i t}\right)\right| d t=\log |f(0)|+\sum_{k=1}^{N} \log \frac{r}{\left|a_{k}\right|}
$$

where N is the largest index such that $\left|a_{N}\right|<r$. If this expression is considered as a function N_{f} of $\log r$ there is a strong connection between this function and the zeros of f. Thus, it follows immediately that N_{f} is a piecewise linear convex function whose gradient is equal to the number of zeros of f inside the disc $\{|z|<r\}$. The second derivative of N_{f}, in the sense of distributions, is a sum of point masses at $\log \left|a_{k}\right|, k=1,2,3, \ldots$ In this paper we consider a certain generalisation of the function occuring in the Jensen formula to holomorphic functions of several variables.

Let Ω be a convex open set in \mathbf{R}^{n} and let f be a holomorphic function defined in $\log ^{-1}(\Omega)$, where $\log :(\mathbf{C} \backslash\{0\})^{n} \longrightarrow \mathbf{R}^{n}$ is the mapping $\left(z_{1}, \ldots, z_{n}\right) \mapsto$ $\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right)$. In [8] Ronkin considers the function N_{f} defined in Ω by the integral

$$
\begin{equation*}
N_{f}(x)=\frac{1}{(2 \pi i)^{n}} \int_{\log ^{-1}(x)} \frac{\log \left|f\left(z_{1}, \ldots, z_{n}\right)\right| d z_{1} \ldots d z_{n}}{z_{1} \ldots z_{n}} \tag{1}
\end{equation*}
$$

As we will see, the function N_{f} retains some of its properties from the onevariable case, while others are lost or attain a new form. For example, N_{f} is a convex function, but it is no longer piecewise linear. In section 2 below we consider the consequences of approximating N_{f} by a piecewise linear function. In section 3 we investigate the relation between local properties of N_{f} and the hypersurface $f^{-1}(0)$.

The properties of the function N_{f} are closely related to the amoeba of f. The amoeba of f, which we denote \mathcal{A}_{f}, is defined to be the image in Ω of the hypersurface $f^{-1}(0)$ under the map Log. The term amoeba was first used by Gelfand, Kapranov and Zelevinsky in the case where f is a polynomial.

Suppose E is a connected component of the amoeba complement $\Omega \backslash \mathcal{A}_{f}$. It is not difficult to show that all such components are convex. For example, $\log ^{-1}(E)$ is the intersection of $\log ^{-1}(\Omega)$ with the domain of convergence of a certain Laurent series expansion of $1 / f$, and domains of convergence of Laurent series are always logarithmically convex. In [3] Forsberg, Passare and Tsikh defined the order of such a component to be the vector $\nu=\left(\nu_{1}, \ldots, \nu_{n}\right)$ given by the formula

$$
\begin{equation*}
\nu_{j}=\frac{1}{(2 \pi i)^{n}} \int_{\log ^{-1}(x)} \frac{\partial f}{\partial z_{j}} \frac{z_{j} d z_{1} \ldots d z_{n}}{f(z) z_{1} \ldots z_{n}}, \quad x \in E \tag{2}
\end{equation*}
$$

Here x may be any point in E. They proved, for the case when f is a polynomial, that the order is an integer vector, that is $\nu \in \mathbf{Z}^{n}$, that ν is in the Newton polytope of f, and that two distinct components always have different orders. These conclusions remain true, with essentially the same proofs, in the more general setting considered here.

Ronkin proved a theorem, which in the language of amoebas amounts to the followin statement.

Theorem. Let f be a holomorphic function as above. Then N_{f} is a convex function. If $U \subset \Omega$ is a connected open set, then the restriction of N_{f} to U is affine linear if and only if U does not intersect the amoeba of f. If x is in the complement of the amoeba, then $\operatorname{grad} N_{f}(x)$ is equal to the order of the complement component containing x.

Sketch of proof. The convexity of N_{f} follows from a general theorem because $\log |f|$ is plurisubharmonic, see for example [9], Corollary 1 on p. 84. Differentiation with respect to x_{j} under the integral sign in the definition (1) of N_{f} yields precisely the real part of the integral (2) defining the order. However, the integral (2) is always real valued and this shows immediately that N_{f} is affine linear in each connected component of $\Omega \backslash \mathcal{A}_{f}$. The fact that N_{f} is not linear on any open set intersecting the amoeba of f can be proved in several ways. It follows, for instance, from the results in section 3.

2 Triangulations and polyhedral subdivisions

In this section we will consider an approximation to Ronkin's function N_{f} by a piecewise linear function. This will lead to a polyhedral complex approximating the amoeba of f.

First we establish a more general construction. Recall the concept of a coherent triangulation from [4]. We will here use a slight generalization of this idea.

Let A be a possibly infinite subset of the lattice \mathbf{Z}^{n}, and let there be given for each $\alpha \in A$ a real number c_{α}. Assume also that

$$
\begin{equation*}
S(x)=\max _{\alpha \in A}\left(c_{\alpha}+\langle\alpha, x\rangle\right) \tag{3}
\end{equation*}
$$

is finite for all x in a convex domain Ω and that Ω is the maximal domain with this property. We call Ω the domain of convergence of S. Here and in what follows, we identify \mathbf{R}^{n} with its dual by the standard scalar product. Consider the convex hull of the set

$$
\left\{(\alpha, t) \in A \times \mathbf{R} ; t \leq c_{\alpha}\right\} \subset \mathbf{R}^{n} \times \mathbf{R}
$$

which we denote by G. It is an unbounded polyhedron which is mapped onto the convex hull of A under the projection $\mathbf{R}^{n} \times \mathbf{R} \longrightarrow \mathbf{R}^{n}$ onto the first factor. The bounded faces of G are mapped to polyhedra with vertices among the points of A, and they are easily seen to constitute a polyhedral subdivision of the convex hull of A, which we denote by T. For generic choices of the coefficients c_{α}, this will actually be a triangulation, which is called the coherent (or regular) triangulation corresponding to the c_{α}.

It is also possible to construct a polyhedral subdivision of Ω from these data. By a polyhedron in Ω we mean a convex subset of Ω which is locally the intersection of a finite number of closed halfspaces. For each cell σ of T, we define

$$
\sigma^{*}=\left\{x \in \Omega ; S(x)=c_{\alpha}+\langle\alpha, x\rangle \text { for all vertices } \alpha \text { of } \sigma\right\}
$$

Clearly, σ^{*} is a polyhedron in Ω. Denote the collection of all such σ^{*} by T^{*}.
Theorem 1. T^{*} is a polyhedral subdivision of Ω which is dual to T in the following sense:
(i) If σ is a k-dimensional cell of T, then σ^{*} is an $(n-k)$-dimensional cell of T^{*} which is orthogonal to σ.
(ii) τ is a face of σ if and only if σ^{*} is a face of τ^{*}.

Proof. Let $G^{*}=\{(x, t) ; S(x) \leq t\} \subset \Omega \times \mathbf{R}$. This is a polyhedron whose faces project onto Ω under the projection $\pi: \Omega \times \mathbf{R} \longrightarrow \Omega$ to produce a polyhedral subdivision. We shall prove that this subdivision coincides with T^{*}. Assume that σ is a cell in T. For every $\alpha \in A,\left\{(x, t) \in G^{*} ; t=c_{\alpha}+\langle\alpha, x\rangle\right\}$ is a face of G^{*}. The intersection of all such faces as α ranges over all vertices of σ projects onto σ^{*}. Conversely, let $\tilde{\sigma}$ be a face of G^{*}. Take a point $\left(x_{0}, t_{0}\right)$ in the relative interior of $\tilde{\sigma}$, and let σ be the convex hull of $A_{\tilde{\sigma}}=\left\{\alpha \in A ; S\left(x_{0}\right)=c_{\alpha}+\left\langle\alpha, x_{0}\right\rangle\right\}$. Since $c_{\alpha} \leq S\left(x_{0}\right)-\left\langle\alpha, x_{0}\right\rangle$ for all $\alpha \in A$, with equality precisely if $\alpha \in A_{\tilde{\sigma}}$, it follows that σ is the projection of a face of G^{*}, hence a cell of T. Since $S(x)$ is linear in $\pi(\tilde{\sigma})$ and $S(x) \geq c_{\alpha}+\langle\alpha, x\rangle$ for all α it follows that $S(x)=c_{\alpha}+\langle\alpha, x\rangle$ for all $x \in \pi(\tilde{\sigma})$ and all $\alpha \in A_{\tilde{\sigma}}$, hence $\pi(\tilde{\sigma}) \subset \sigma^{*}$. On the other hand it is not difficult to verify that $\sigma^{*} \subset \pi(\tilde{\sigma})$. This shows that the polyhedral subdivision obtained from the faces of G^{*} coincides with T^{*}.

If σ is a k-dimensional cell in T and α_{1}, α_{2} are vertices of σ, then

$$
\left\langle\alpha_{1}-\alpha_{2}, x\right\rangle=\left(S(x)-c_{\alpha_{1}}\right)-\left(S(x)-c_{\alpha_{2}}\right)=c_{\alpha_{2}}-c_{\alpha_{1}}
$$

for all $x \in \sigma^{*}$. This shows that $\operatorname{dim} \sigma^{*} \leq n-k$. On the other hand, there is some $x_{0} \in \Omega$ such that $c_{\alpha}+\left\langle\alpha, x_{0}\right\rangle \leq S\left(x_{0}\right)$, with equality if α is a vertex of σ, and strict inequality if α is outside σ. The same holds with x_{0} replaced by x for all x near x_{0} in the $(n-k)$-dimensional plane through x_{0} orthogonal to σ. This completes the proof that $\operatorname{dim} \sigma^{*}=n-k$ and also that σ^{*} is orthogonal to σ.

Finally, if τ is a face of σ, it is immediate from the definition that σ^{*} is a subset of τ^{*}, hence it is a face since T^{*} is a polyhedral subdivision. The converse follows in a similar way if we observe that σ is spanned by $\left\{\alpha \in A ; c_{\alpha}+\langle\alpha, x\rangle=\right.$ $S(x)$ for all $\left.x \in \sigma^{*}\right\}$.

Assume now that f is a holomorphic function in $\log ^{-1}(\Omega)$ where Ω is a convex open set in \mathbf{R}^{n}, and write $A=\left\{\alpha \in \mathbf{Z}^{n} ; \mathbf{R}^{n} \backslash \mathcal{A}_{f}\right.$ has a component of order $\left.\alpha\right\}$. It may happen that A is empty, but we will assume that this is not the case. The most interesting situation arises when A has plenty of points, for example when the convex hull of A coincides with the Newton polyhedron of f. This will always happen if f is a Laurent polynomial. Let the numbers c_{α} used in the definition (3) of $S(x)$ be given by

$$
\begin{equation*}
c_{\alpha}=N_{f}(x)-\langle\alpha, x\rangle, \quad x \in E_{\alpha} \tag{4}
\end{equation*}
$$

Recall that the gradient of N_{f} in E_{α} is equal to α, so the definition does not depend on x. By the following proposition the domain of convergence of $S(x)$ contains Ω, so we have a triangulation T of the convex hull of A and a polyhedral subdivision T^{*} of Ω. We call the $(n-1)$-skeleton of T^{*} the spine of the amoeba \mathcal{A}_{f} and denote it by \mathcal{S}_{f}.

Figure 1: Amoebas of the polynomials $1+z_{1}+z_{2}$ and $1+z_{1}^{3}+z_{2}^{3}-6 z_{1} z_{2}$ (shaded) together with their spines (solid).

Proposition 1. With notations as in the construction above the following hold,
(i) $S(x) \leq N_{f}(x)$ with equality for $x \in \Omega \backslash \mathcal{A}_{f}$.
(ii) For every $\alpha \in A,\{\alpha\}$ is a vertex of T and the component of order α in $\Omega \backslash \mathcal{A}_{f}$ is contained in $\{\alpha\}^{*}$.
(iii) The spine of the amoeba of f is contained in the amoeba. Every component of $\Omega \backslash \mathcal{S}_{f}$ contains a unique component of $\Omega \backslash \mathcal{A}_{f}$.

Proof. The linear function $c_{\alpha}+\langle\alpha, x\rangle$ coincides with N_{f} on an open set, hence $c_{\alpha}+\langle\alpha, x\rangle \leq N_{f}(x)$ for all x. Taking the supremum over all α in A proves part (i). If E_{α} denotes the component of $\Omega \backslash \mathcal{A}_{f}$ of order α, then

$$
c_{\alpha}+\langle\alpha, x\rangle \leq S(x)=N_{f}(x)=c_{\alpha}+\langle\alpha, x\rangle, \text { for } x \in E_{\alpha},
$$

which shows that $E_{\alpha} \subset\{\alpha\}^{*}$. Since $\operatorname{grad} N_{f}=\beta$ in E_{β} we have a strict inequality $c_{\alpha}+\langle\alpha, x\rangle<N_{f}(x)=S(x)$ for $x \in E_{\beta}$ and all $\beta \neq \alpha$, which implies that $E_{\alpha}=\{\alpha\}^{*} \backslash \mathcal{A}_{f}$. If $x \in \mathcal{S}_{f}$ then there exist $\alpha, \beta \in A$ such that $x \in\{\alpha\}^{*} \cap\{\beta\}^{*} \subset \Omega \backslash \bigcup_{\gamma \neq \alpha} E_{\gamma} \backslash \bigcup_{\gamma \neq \beta} E_{\gamma}=\mathcal{A}_{f}$. Finally we note that the connected components of $\Omega\left\{\mathcal{S}_{f}\right.$ are precisely the sets $\{\alpha\}^{*}$.

Let us now turn to the question of how to compute the coefficients c_{α} corresponding to a given Laurent polynomial f. If Γ is a face of the Newton polytope of $f(z)=\sum_{\alpha \in C} w_{\alpha} z^{\alpha}$, where C denotes a finite subset of \mathbf{Z}^{n}, let $\left.f\right|_{\Gamma}$ denote the truncation of f to Γ, that is $\left.f\right|_{\Gamma}(z)=\sum_{\alpha \in \Gamma} w_{\alpha} z^{\alpha}$. It is well known that when $\alpha \in \Gamma \cap \mathbf{Z}^{n}$, the complement of the amoeba of f has a component of order α precisely if the complement of the amoeba of $\left.f\right|_{\Gamma}$ does (see [3] Prop. 2.6 and also [4]).

Proposition 2. Let f be a Laurent polynomial and let Γ be a face of the Newton polytope of f. If $\alpha \in \Gamma$ and the complement of \mathcal{A}_{f} has a component of order α, then $c_{\alpha}(f)=c_{\alpha}\left(\left.f\right|_{\Gamma}\right)$. In particular, if α is a vertex of the Newton polytope of f, then $c_{\alpha}=\log \left|w_{\alpha}\right|$.

Proof. Take an outward normal v to the Newton polytope at Γ. If $\alpha \in \Gamma$ and x is in the component of $\mathbf{R}^{n} \backslash \mathcal{A}_{f}$ of order α, it is known that $x+t v$ is also in that component for all $t>0$. Therefore

$$
c_{\alpha}(f)-c_{\alpha}\left(\left.f\right|_{\Gamma}\right)=\frac{1}{(2 \pi i)^{n}} \int_{\log ^{-1}(x+t v)} \log \left|\frac{f(z)}{\left.f\right|_{\Gamma}(z)}\right| \frac{d z_{1} \ldots d z_{n}}{z_{1} \ldots z_{n}}
$$

and here the integrand clearly tends to 0 when $t \rightarrow \infty$.

To further describe the dependence of the coefficients c_{α} on the polynomial $f(z)=\sum_{\alpha \in C} w_{\alpha} z^{\alpha}$ it is useful to introduce the functions

$$
\begin{equation*}
\Phi_{\alpha}(w)=\frac{1}{(2 \pi i)^{n}} \int_{\log ^{-1}(x)} \frac{\log \left(f(z) / z^{\alpha}\right) d z_{1} \ldots d z_{n}}{z_{1} \ldots z_{n}} \tag{5}
\end{equation*}
$$

where x is in the component of order α. This means that $c_{\alpha}=\operatorname{Re} \Phi_{\alpha}$. Notice that Φ_{α} is a holomorphic function in the coefficients w with values in $\mathbf{C} / 2 \pi i \mathbf{Z}$, defined whenever the complement of the amoeba of f has a component of order α.

Example. Suppose $f(z)=\left(z+a_{1}\right) \ldots\left(z+a_{N}\right)=w_{0}+\ldots+w_{N-1} z^{N-1}+z^{N}$ is a polynomial in one variable. Let $0 \leq k \leq N$ and assume that $0<\left|a_{1}\right|<$
$\ldots<\left|a_{k}\right|<r<\left|a_{k+1}\right|<\ldots<\left|a_{N}\right|$. Then one finds that

$$
\begin{aligned}
\Phi_{k}(w) & =\frac{1}{2 \pi i} \int_{|z|=r} \frac{\log \left(f(z) / z^{k}\right) d z}{z} \\
& =\sum_{j=1}^{k} \int_{|z|=r} \frac{\log \left(\left(z+a_{j}\right) / z\right) d z}{z}+\sum_{j=k+1}^{N} \int_{|z|=r} \frac{\log \left(z+a_{j}\right) d z}{z} \\
& =\sum_{j=k+1}^{N} \log a_{j}=\log \left(a_{k+1} \ldots a_{N}\right)
\end{aligned}
$$

In this case, we observe that $\Phi_{k}(w)$ may be continued as a finitely branched holomorphic function, whose branches correspond to various permutations of the roots of f. Incidentally, the sum of all branches of $\exp \Phi_{k}(w)$ is equal to w_{k}.

We now return to the general case and show that the functions Φ_{α} very nearly satisfy a system of GKZ hypergeometric equations. We remark that the functions Φ_{α}, or rather $\partial \Phi_{\alpha} / \partial w_{\alpha}$ were used in [2] in the study of constant terms in powers of Laurent polynomials. The main result was obtained by showing, essentially, that the second term in the representation (6) is non-constant along every complex line parallel to the w_{α} axis, provided that α is not a vertex of the Newton polytope of f.

Theorem 2. Let $f(z)=\sum_{\gamma \in C} w_{\gamma} z^{\gamma}$ be a Laurent polynomial with C being a fixed finite subset of \mathbf{Z}^{n}. Then the holomorphic functions Φ_{α} have the power series expansion

$$
\begin{equation*}
\Phi_{\alpha}(w)=\log w_{\alpha}+\sum_{k \in K_{\alpha}} \frac{\left(-k_{\alpha}-1\right)!}{\prod_{\beta \neq \alpha} k_{\beta}!}(-1)^{k_{\alpha}-1} w^{k} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{\alpha}=\left\{k \in \mathbf{Z}^{C} ; k_{\alpha}<0, k_{\beta} \geq 0 \text { if } \beta \neq \alpha, \sum_{\gamma} k_{\gamma}=0, \sum_{\gamma} \gamma k_{\gamma}=0\right\} \tag{7}
\end{equation*}
$$

The series converges for example when $\left|w_{\alpha}\right|>\sum_{\beta \neq \alpha}\left|w_{\beta}\right|$. Moreover, Φ_{α} satisfies the differential equations

$$
\begin{equation*}
\left(\partial^{u}-\partial^{v}\right) \Phi_{\alpha}=0 \quad \text { if } \quad \sum_{\gamma}\left(u_{\gamma}-v_{\gamma}\right)=0 \quad \text { and } \quad \sum_{\gamma} \gamma\left(u_{\gamma}-v_{\gamma}\right)=0 \tag{8}
\end{equation*}
$$

and

$$
\begin{align*}
\sum_{\gamma} w_{\gamma} \partial_{\gamma} \Phi_{\alpha} & =1 \tag{9}\\
\sum_{\gamma} \gamma w_{\gamma} \partial_{\gamma} \Phi_{\alpha} & =\alpha \tag{10}
\end{align*}
$$

Here we have used the notation $\partial_{\gamma}=\partial / \partial w_{\gamma}$ and ∂^{u} for $u \in \mathbf{N}^{C}$ is the obvious multiindex notation for a higher partial derivative.

Proof. Use the power series expansion of the logarithm function to write

$$
\log \left(f(z) / z^{\alpha}\right)=\log w_{\alpha}+\sum_{m \geq 1} \frac{(-1)^{m-1}}{m}\left(\sum_{\beta \neq \alpha} \frac{w_{\beta} z^{\beta}}{w_{\alpha} z^{\alpha}}\right)^{m}
$$

Now

$$
\begin{aligned}
\sum_{m \geq 1} \frac{(-1)^{m-1}}{m}\left(\sum_{\beta \neq \alpha} \frac{w_{\beta} z^{\beta}}{w_{\alpha} z^{\alpha}}\right)^{m} & =\sum_{m \geq 1} \sum_{\sum_{\beta}=m} \frac{(-1)^{m-1}}{m} \frac{m!}{\prod k_{\beta}!} \frac{\prod w_{\beta}^{k_{\beta}} z^{k_{\beta} \beta}}{w_{\alpha}^{m} z^{m \alpha}} \\
& =\sum_{L_{\alpha}}(-1)^{k_{\alpha}-1} \frac{\left(-k_{\alpha}-1\right)!}{\prod k_{\beta}!} w^{k} z^{\sum k_{\gamma} \gamma}
\end{aligned}
$$

Here all sums and products indexed by β are taken over $\beta \in C \backslash\{\alpha\}$ while γ ranges over all of C and $L_{\alpha}=\left\{k \in \mathbf{Z}^{C} ; k_{\alpha}<0, k_{\beta} \geq 0, \sum k_{\gamma}=0\right\}$. The constant terms in this expression, considered as monomials in the z variables, are precisely those corresponding to the set K_{α}, and we have proved (6).

To verify the differential equations, we differentate under the sign of integration defining Φ_{α}. By a simple computation,

$$
\partial^{u} \log \left(f(z) / z^{\alpha}\right)=-\left(\sum u_{\gamma}-1\right)!z^{\sum u_{\gamma} \gamma}(-f(z))^{-\sum u_{\gamma}}
$$

which depends only on $\sum u_{\gamma}$ and $\sum u_{\gamma} \gamma$. Also,

$$
\sum w_{\gamma} \partial_{\gamma} \log \left(f(z) / z^{\alpha}\right)=\sum w_{\gamma} z^{\gamma} / f(z)=1
$$

This verifies (8) and (9). Finally,

$$
\sum \gamma_{j} w_{\gamma} \partial_{\gamma} \log \left(f(z) / z^{\alpha}\right)=\sum \gamma_{j} w_{\gamma} z^{\gamma} / f(z)=\frac{z_{j} \partial f / \partial z_{j}}{f(z)}
$$

Comparing this to the definition (2) of the order of a component proves the relation (10).

Example. Let us consider the polynomial $f(z)=1+z_{1}^{n+1}+\ldots+z_{n}^{n+1}+$ $a z_{1} \ldots z_{n}$ in n variables. The Newton polytope of this polynomial is a simplex and the terms correspond to the vertices and the barycenter of the Newton polytope. The complement of the amoeba of f has at least $n+1$ components corresponding to the vertices of the Newton polytope, and in addition there may be a component corresponding to the single interior point $(1, \ldots, 1)$. Let K_{n} denote the set of $a \in \mathbf{C}$ such that $\mathbf{R}^{n} \backslash \mathcal{A}_{f}$ does not have a component of order $(1, \ldots, 1)$.
Proposition 3. Let $f(z)=1+z_{1}^{n+1}+\ldots+z_{n}^{n+1}+a z_{1} \ldots z_{n}$. Then $\mathbf{R}^{n} \backslash \mathcal{A}_{f}$ has a component of order $(1, \ldots, 1)$ if and only if \mathcal{A}_{f} does not contain the origin. Hence $\mathbf{R}^{n} \backslash \mathcal{A}_{f}$ has such a component precisely if

$$
a \notin K_{n}=\left\{-t_{0}-\ldots-t_{n} ;\left|t_{0}\right|=\ldots=\left|t_{n}\right|=1, t_{0} \ldots t_{n}=1\right\} .
$$

Proof. Let M be an invertible $n \times n$ matrix with integer entries and let $f(z)=$ $\sum_{\alpha} a_{\alpha} z^{\alpha}$ be any Laurent polynomial. Define a new Laurent polynomial $M f=$ $\sum_{\alpha}^{\alpha} a_{\alpha} z^{M \alpha}$ where a multiindex α is regarded as a column vector. It is not difficult to show that the linear mapping $x \mapsto M^{T} x$ (where T denotes transpose) takes the amoeba of $M f$ onto the amoeba of f.

Now let f be the special polynomial in the proposition and consider M which map the Newton polytope of f onto a translate of itself. The set of such M can be identified with the symmetric group S_{n+1} via its action on the vertices. Then $M f$ coincides with f up to an invertible factor, hence they have the same amoeba. In particular, M^{T} maps the component of order $(1, \ldots, 1)$ in the complement of \mathcal{A}_{f} (if it exists) onto itself. If x is any point in that component, then the convex hull of the points $M^{T} x$, where M ranges over S_{n+1}, contains the origin. Since every component in the complement of the amoeba is convex, it follows that the component of order $(1, \ldots, 1)$ contains the origin. Conversely, if some component E contains the origin, then $M^{T} E$ also contains the origin and hence coincides with E. This implies that E has order $(1, \ldots, 1)$.

Now, the amoeba of f contains the origin precisely if

$$
a=-\left(1+z_{1}^{n+1}+\ldots+z_{n}^{n+1}\right) / z_{1} \ldots z_{n}
$$

with $\left|z_{1}\right|=\ldots=\left|z_{n}\right|=1$, or equivalently,

$$
-a \in\left\{t_{0}+\ldots+t_{n} ;\left|t_{0}\right|=\ldots=\left|t_{n}\right|=1, t_{0} \ldots t_{n}=1\right\}
$$

We depict the sets K_{n} for a few small values of n. Note that the cusps on the boundary correspond to polynomials with singular hypersurfaces.

Figure 2: The sets K_{n} for $n=2$ and 3.

Let us in particular consider the case $n=2$. The coefficients c_{α} are equal to 0 when α is a vertex of the Newton polytope while

$$
c_{(1,1)}=\log |a|+\operatorname{Re} \sum_{k>0} \frac{(3 k-1)!}{(k!)^{3}}(-1)^{k-1} a^{-3 k}
$$

when $|a|>3$, by Theorem 2. In fact it can easily be checked that the series converges even when $|a|=3$. What happens with the spine when a approaches the boundary of K_{2} from the outside? For example, when $a \rightarrow-3$ a numerical
computation of the power series shows that $c_{(1,1)}$ converges to a limit with the approximate value 0.9693 . This means that the complement of the spine has a rather large component which suddenly disappears when a enters K_{2}.

3 Associated Monge-Ampère measures

Let f be a holomorphic function in $\log ^{-1}(\Omega)$ where Ω is a convex domain in \mathbf{R}^{n}. We have seen that N_{f} is a convex function which is linear in each component of $\Omega \backslash \mathcal{A}_{f}$. It might be interesting to measure how much this function deviates from being linear at points in the amoeba.

If u is a smooth convex function, its $\operatorname{Hessian} \operatorname{Hess}(u)$ is a positive semidefinite matrix which in a certain sense determines how convex u is near a given point. In particular, the determinant of the Hessian is a nonnegative function. The product of this function with ordinary Lebesgue measure is known as the real Monge-Ampère measure of u, and we will denote by $M u$. In fact, the MongeAmpère operator can be extended to all convex functions. In general, if u is a non-smooth convex function, $M u$ will be a positive measure, see [7]. We will denote the Monge-Ampère measure of N_{f} by μ_{f}. Hence μ_{f} is a positive measure supported on the amoeba of f. The following result motivates why it might be interesting to consider the Monge-Ampère measure of the Ronkin function.
Theorem 3. If f is a Laurent polynomial, then the total mass of μ_{f} is equal to the volume of the Newton polytope of f.

Proof. This is an almost immediate consequence of the definition. From the results in [7], it is known that when E is a Borel set $M u(E)$ is equal to the Lebesgue measure of the set of all ξ such that $u(x)-\langle\xi, x\rangle$ attains its global minimum in E. Let $u=N_{f}$ and $E=\mathbf{R}^{n}$, and denote this set by F. Also let G be the set of all $\xi \in \mathbf{R}^{n}$ such that $N_{f}(x)-\langle\xi, x\rangle$ is bounded from below on \mathbf{R}^{n}. It is easy to see that F is contained in G and that the interior of G is contained in F. Hence the claim will follow if we prove that G is equal to the Newton polytope \mathcal{N} of f.

Now, if ξ is in \mathcal{N} then $N_{f}(x)-\langle\xi, x\rangle \geq S(x)-\langle\xi, x\rangle$ where $S(x)$ is defined by (3) and (4), and this latter function is certainly bounded from below. Conversely, if ξ is outside \mathcal{N}, take $v \in \mathbf{R}^{n}$ so that $\langle\xi, v\rangle>\sup _{\zeta \in \mathcal{N}}\langle\zeta, v\rangle$ and a vertex α of \mathcal{N} where this supremum is attained. If x belongs to the complement component of order α, then $x+t v$ is also in that component for all $t>0$. Hence $N_{f}(x+t v)-\langle\xi, x+t v\rangle=c_{\alpha}-\langle\xi-\alpha, x+t v\rangle \rightarrow-\infty$ as $t \rightarrow \infty$, so ξ is not in G.

It is interesting to consider a generalisation of the Monge-Ampère operator. Notice that on smooth functions u, the operator M is actually the restriction to the diagonal of a symmetric multilinear operator \tilde{M} on n functions u_{1}, \ldots, u_{n}. Conversely, \tilde{M} can be recovered from M by the polarization formula

$$
\begin{equation*}
\tilde{M}\left(u_{1}, \ldots, u_{n}\right)=\frac{1}{n!} \sum_{k=1}^{n} \sum_{1 \leq j_{1}<\ldots<j_{k} \leq n}(-1)^{n-k} M\left(u_{j_{1}}+\ldots+u_{j_{k}}\right) . \tag{11}
\end{equation*}
$$

This expression still makes sense if u_{1}, \ldots, u_{n} are arbitrary convex functions, and by approximating u_{1}, \ldots, u_{n} with smooth convex functions it follows that
$\tilde{M}\left(u_{1}, \ldots, u_{n}\right)$ is a positive measure which depends multilinearly on the arguments u_{j}. We call \tilde{M} the mixed real Monge-Ampère operator.

The real Monge-Ampère operator is related to its complex counterpart as follows. Suppose u_{1}, \ldots, u_{n} are smooth convex functions on the domain Ω. Let U_{1}, \ldots, U_{n} be plurisubharmonic functions on $\log ^{-1}(\Omega)$ defined by $U_{j}(z)=$ $u_{j}(\log z)$. Then

$$
\begin{equation*}
n!\int_{E} \tilde{M}\left(u_{1}, \ldots, u_{n}\right)=\int_{\log ^{-1}(E)} d d^{c} U_{1} \wedge \ldots \wedge d d^{c} U_{n} \tag{12}
\end{equation*}
$$

where $d^{c}=(\partial-\bar{\partial}) / 2 \pi i$. This remains true if one of the functions U_{j}, say U_{1}, is allowed to be an arbitrary smooth plurisubharmonic function in $\log ^{-1}(\Omega), u_{1}$ being defined by

$$
u_{1}(x)=\frac{1}{(2 \pi i)^{n}} \int_{\log ^{-1}(x)} \frac{U_{1}(z) d z_{1} \ldots d z_{n}}{z_{1} \ldots z_{n}} .
$$

More generally, if U_{1}, \ldots, U_{n} are arbitrary smooth plurisubharmonic functions on $\log ^{-1}(\Omega)$, and

$$
\begin{equation*}
u_{j}(x)=\frac{1}{(2 \pi i)^{n}} \int_{\log ^{-1}(x)} \frac{U_{j}(z) d z_{1} \ldots d z_{n}}{z_{1} \ldots z_{n}} \tag{13}
\end{equation*}
$$

then

$$
\begin{equation*}
n!\int_{E} \tilde{M}\left(u_{1}, \ldots, u_{n}\right)=\int_{T^{n^{2}}} \int_{\log ^{-1}(E)} d d^{c} U_{1}\left(t^{(1)} z\right) \wedge \ldots \wedge d d^{c} U_{n}\left(t^{(n)} z\right) d \lambda(t) \tag{14}
\end{equation*}
$$

Here $T^{n^{2}}$ denotes the real n^{2}-dimensional torus $\left\{t=\left(t_{j}^{(k)}\right) ;\left|t_{j}^{(k)}\right|=1, j, k=\right.$ $1, \ldots n\}$ equipped with the usual normalized Haar measure λ, and each $t^{(k)}=$ $\left(t_{1}^{(k)}, \ldots, t_{n}^{(k)}\right)$ acts on \mathbf{C}^{n} by componentwise multiplication. These formulas can be checked by direct computation. A proof of (12) when $u_{1}=\ldots=$ u_{n} can be found in [6]. The general case follows by polarization since both sides are multilinear. Formula (14) follows by reversing the order of integration on the right. Since the inner integral is constant along certain n dimensional submanifolds of $T^{n^{2}}$ it is actually possible to omit some of the variables in the outer integration. This also proves the generalised version of (12) with U_{1} an arbitrary smooth plurisubharmonic function.
Theorem 4. Let E be any Borel set in Ω, and let Δ denote the Laplace operator. Then

$$
(n-1)!\int_{E} \Delta N_{f}=\int_{\log ^{-1}(E) \cap f^{-1}(0)} \omega^{n-1}
$$

where $\omega=\left(\left|z_{1}\right|^{-2} d \bar{z}_{1} \wedge d z_{1}+\ldots+\left|z_{n}\right|^{-2} d \bar{z}_{n} \wedge d z_{n}\right) / 2 \pi i$.
Proof. If u is any convex function, then $\Delta u=n \tilde{M}\left(u,|x|^{2}, \ldots,|x|^{2}\right)$ and $\omega=$ $d d^{c}|\log z|^{2}$. Since $d d^{c} \log |f|$ is equal to the current of integration along $f^{-1}(0)$ it follows from (12) that

$$
\begin{aligned}
n!\int_{E} \Delta N_{f} & =n \int_{\log ^{-1}(E)} d d^{c} \log |f| \wedge \omega^{n-1} \\
& =n \int_{\log ^{-1}(E) \cap f^{-1}(0)} \omega^{n-1} .
\end{aligned}
$$

The following theorem can be thought of as a local analog of Bernstein's theorem [1] relating the number of solutions to a system of polynomial equations to the mixed volume of their Newton polytopes.
Theorem 5. Let f_{1}, \ldots, f_{n} be holomorphic functions in $\log ^{-1}(\Omega)$ and let $E \subset$ Ω be a Borel set. Then $n!\tilde{M}\left(N_{f_{1}}, \ldots, N_{f_{n}}\right)(E)$ is equal to the average number of solutions in $\log ^{-1}(E)$ to the system of equations

$$
\begin{equation*}
f_{j}\left(t_{1}^{(j)} z_{1}, \ldots, t_{n}^{(j)} z_{n}\right)=0 \quad j=1, \ldots, n \tag{15}
\end{equation*}
$$

as $t=\left(t_{k}^{(j)}\right)$ ranges over the torus $\left\{t ;\left|t_{k}^{(j)}\right|=1, j, k=1, \ldots, n\right\}$.
Proof. If U_{j} are smooth plurisubharmonic functions which converge to $\log \left|f_{j}\right|$, then u_{j} defined by (13) converge to $N_{f_{j}}$. By the general properties of the real Monge-Ampère operator this implies that $\tilde{M}\left(u_{1}, \ldots, u_{n}\right)$ converges weakly to $\tilde{M}\left(N_{f_{1}}, \ldots, N_{f_{n}}\right)$. Also $d d^{c} U_{1}\left(t^{(1)} z\right) \wedge \ldots \wedge d d^{c} U_{n}\left(t^{(n)} z\right)$ converges weakly to the sum of point masses at the solutions of $f_{1}\left(t^{(1)} z\right)=\ldots=f_{n}\left(t^{(n)} z\right)=0$. Hence the theorem follows by passing to the limit in (14) if we only show that

$$
\int_{\log ^{-1}(E)} d d^{c} U_{1}\left(t^{(1)} z\right) \wedge \ldots \wedge d d^{c} U_{n}\left(t^{(n)} z\right)
$$

remains uniformly bounded as $U_{j} \rightarrow \log \left|f_{j}\right|$. Here we may assume that E is compact and that U_{j} is of the form $U_{j}=\psi\left(\left|f_{j}\right|\right)$ where ψ will converge to log. Let $f_{t}(z)=\left(f_{1}\left(t^{(1)} z\right), \ldots, f_{n}\left(t^{(n)} z\right)\right)$. Then $f_{t}(z)$ is a holomorphic function in z and t defined for z in a neighbourhood of $\log ^{-1}(E)$ and t in a complex neighbourhood of $T^{n^{2}}$. Using compactness arguments it is not difficult to show that there exists a constant C such that the number of solutions in $\log ^{-1}(E)$ to the equation $f_{t}(z)=w$ is bounded above by C for almost all $t \in T^{n^{2}}$ and $w \in \mathbf{C}^{n}$. Since $\eta=d d^{c} \psi\left(\left|w_{1}\right|\right) \wedge \ldots \wedge \psi\left(\left|w_{n}\right|\right)$ induces a positive measure on \mathbf{C}^{n} with total mass 1, it follows that

$$
0 \leq \int_{E} f_{t}^{*} \eta \leq C
$$

and this completes the proof.
If E is a compact component of $\mathcal{A}_{f_{1}} \cap \ldots \cap \mathcal{A}_{f_{n}}$, then for topological reasons, the number of solutions to (15) in $\log ^{-1}(E)$ does not depend on t. Hence we obtain the following corollary.
Corollary 1. Suppose K is a compact component of $\mathcal{A}_{f_{1}} \cap \ldots \cap \mathcal{A}_{f_{n}}$. Then $n!\tilde{M}\left(N_{f_{1}}, \ldots, N_{f_{n}}\right)(K)$ is a positive integer, which is equal to the number of solutions of the system $f_{1}(z)=\ldots=f_{n}(z)=0$ in $\log ^{-1}(K)$.

Let us now see what the measure μ_{f} looks like in some specific cases. First, if $n=1$, the amoeba is a discrete point set and μ_{f} is a sum of point masses. More precisely, $\mu_{f}(\{x\})$ is equal to the number of zeros of f on the circle $\log |z|=x$. In the case of two variables there is an interesting estimate on the Monge-Ampère measure.
Theorem 6. Let f be a holomorphic function in two variables defined on a circular domain $\log ^{-1}(\Omega)$. Then μ_{f} is greater than or equal to π^{-2} times Lebesgue measure on the amoeba of f.

Proof. We prove the inequality in a neighbourhood of a point $x \in \mathcal{A}_{f}$ where $\log ^{-1}(x)$ intersects $f^{-1}(0)$ transversely in a finite number of points. Since this is true for almost all x it will establish the inequality.

Write $\log z_{j}=x_{j}+i y_{j}$ for $j=1,2$ and assume that the hypersurface $f^{-1}(0)$ is given locally as the union of graphs $y=\phi_{k}(x)$. We shall express the Hessian of N_{f} in terms of the functions ϕ_{k}.

Differentiating the integral (1) defining N_{f} with respect to x_{1} we obtain

$$
\begin{aligned}
\frac{\partial N_{f}}{\partial x_{1}} & =\operatorname{Re} \frac{1}{(2 \pi i)^{2}} \int_{\log ^{-1}(x)} \frac{\partial f / \partial z_{1} d z_{1} d z_{2}}{f(z) z_{2}} \\
& =\frac{1}{2 \pi i} \int_{\log \left|z_{2}\right|=x_{2}} n\left(f\left(\cdot, z_{2}\right), x_{1}\right) \frac{d z_{2}}{z_{2}} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} n\left(f\left(\cdot, e^{x_{2}+i y_{2}}\right), x_{1}\right) d y_{2}
\end{aligned}
$$

Here $n\left(f\left(\cdot, z_{2}\right), x_{1}\right)$ is the number of zeros minus the number of poles of the function $z_{1} \mapsto f\left(z_{1}, z_{2}\right)$ inside the disc $\left\{\log \left|z_{1}\right|<x_{1}\right\}$ provided that it is meromorphic in that domain. In general, $n\left(f\left(\cdot, z_{2}\right), x_{1}\right)-n\left(f\left(\cdot, z_{2}, x_{1}^{\prime}\right)\right.$ is equal to the number of zeros in the annulus $\left\{x_{1}^{\prime}<\log \left|z_{1}\right|<x_{1}\right\}$ when $x_{1}^{\prime}<x_{1}$. The integrand in the last integral is a piecewise constant function with a jump of magnitude 1 at $y_{2}=\phi_{k, 2}(x)$. It follows that the gradient of $\partial N_{f} / \partial x_{1}$ is given by a sum of terms $\pm(2 \pi)^{-1} \operatorname{grad} \phi_{k, 2}$. The correct sign of each term can be found by observing that $n\left(f\left(\cdot, e^{x_{2}+i y_{2}}\right), x_{1}\right)$ is increasing as a function of x_{1}, hence all the terms contributing to $\partial^{2} N_{f} / \partial x_{1}^{2}$ should be positive. A similar computation applies to $\partial N_{f} / \partial x_{2}$.

Assume now that $f^{-1}(0)$ is given locally by an equation

$$
a \log z_{1}+b \log z_{2}+\text { higher terms }=\text { constant. }
$$

Solving for y in this equation yields that

$$
\frac{\partial \phi_{k}}{\partial x}=\frac{1}{\operatorname{Im}(a \bar{b})}\left(\begin{array}{cc}
\operatorname{Re}(a \bar{b}) & |b|^{2} \\
-|a|^{2} & -\operatorname{Re}(a \bar{b})
\end{array}\right)
$$

The crucial observation here is that

$$
\pm\left(\begin{array}{cc}
\partial \phi_{k, 2} / \partial x_{1} & \partial \phi_{k, 2} / \partial x_{2} \tag{16}\\
-\partial \phi_{k, 1} / \partial x_{1} & -\partial \phi_{k, 1} / \partial x_{2}
\end{array}\right)
$$

is a positive definite matrix with determinant 1 , and that $2 \pi \operatorname{Hess}\left(N_{f}\right)$ is a sum of such matrices.

The inequality now follows from the following lemma since $\log ^{-1}(x)$ intersects $f^{-1}(0)$ in at least two points for generic x in \mathcal{A}_{f}.

Lemma. If A_{1}, A_{2} are 2×2 positive definite matrices, then $\operatorname{det}\left(A_{1}+A_{2}\right) \geq$ $\operatorname{det} A_{1}+\operatorname{det} A_{2}+2 \sqrt{\operatorname{det} A_{1} \operatorname{det} A_{2}}$. Equality holds if and only if A_{1} and A_{2} are real multiples of one another.

Proof. To see this, write $A_{j}=\left(\begin{array}{cc}a_{j} & b_{j} \\ b_{j} & c_{j}\end{array}\right)$ and apply the Cauchy-Schwarz inequality to the vectors $\left(b_{j}, \sqrt{a_{j} c_{j}-b_{j}^{2}}\right)$ to obtain $b_{1} b_{2}+\sqrt{\operatorname{det} A_{1} \operatorname{det} A_{2}} \leq \sqrt{a_{1} a_{2} c_{1} c_{2}}$.

Then it follows that $\operatorname{det}\left(A_{1}+A_{2}\right)-\operatorname{det} A_{1}-\operatorname{det} A_{2}=a_{1} c_{2}+c_{1} a_{2}-2 b_{1} b_{2} \geq$ $2 \sqrt{a_{1} a_{2} c_{1} c_{2}}-2 b_{1} b_{2} \geq 2 \sqrt{\operatorname{det} A_{1} \operatorname{det} A_{2}}$. The conditions for equality are that $\left(b_{1}^{2}, a_{1} c_{1}-b_{1}^{2}\right)$ is proportional to ($\left.b_{2}^{2}, a_{2} c_{2}-b_{2}^{2}\right)$ and that (a_{1}, c_{1}) is proportional to (a_{2}, c_{2}) which clearly is equaivalent to A_{1} being proportional to A_{2}.

As an immediate consequence of Theorem 3 and Theorem 6 we have the following estimate.

Corollary 2. Let f be a Laurent polynomial in two variables. Then the area of the amoeba of f is not greater than π^{2} times the area of the Newton polytope of f.

On the contrary, when $n \geq 3$ the volume of the amoeba of a polynomial is almost always infinite.

Example. As an illustration of the last theorem we consider the polynomials $f\left(z_{1}, z_{2}\right)=f_{a}\left(z_{1}, z_{2}\right)=a+z_{1}+z_{2}+z_{1} z_{2}$ where a is assumed to be a real number.

We want to compute the number of points in $\log ^{-1}(x) \cap f^{-1}(0)$ for a given point $x \in \mathbf{R}^{n}$. For points z in this set it must hold that $\left|a+z_{1}\right|=\left|1+z_{1}\right| e^{x_{2}}$. Conversely, if this equation holds, then $\left(z_{1},\left(a+z_{1}\right) /\left(1+z_{1}\right)\right)$ is in this set. If $\theta=\arg z_{1}$, the equation can be rewritten $2 e_{1}^{x}\left(e^{2 x_{2}}-a\right) \cos \theta=a^{2}+e^{2 x_{1}}-e^{2 x_{2}}-$ $e^{2 x_{1}+2 x_{2}}$. From this it follows immediately that the amoeba of f is defined by the inequality $4 e^{2 x_{1}}\left(e^{2 x_{2}}-a\right)^{2} \geq\left(a^{2}+e^{2 x_{1}}-e^{2 x_{2}}-e^{2 x_{1}+2 x_{2}}\right)^{2}$. Moreover, the following can be deduced when we assume that $a \neq 1$. If x is in the interior of the amoeba, then $\log ^{-1}(x) \cap f^{-1}(0)$ has precisely two points. If x is in the boundary of the amoeba, and not equal to $(\log a, \log a) / 2$ when a is positive, then $\log ^{-1}(x) \cap f^{-1}(0)$ has exactly one point. If $a>0$ and $x=(\log a, \log a) / 2$, then $\log ^{-1}(x) \cap f^{-1}(0)$ contains a real curve.

By the preceding theorem, μ_{f} is greater than or equal to π^{-2} times the Lebesgue measure on the amoeba of f. Assume now that $a<0$. For x in the interior of $\mathcal{A}_{f}, 2 \pi \operatorname{Hess}\left(N_{f}\right)$ is a sum of two matrices of the form (16). Since f has real coefficients it follows that $\phi_{1}=-\phi_{2}$, hence the two matrices are equal. This means that all inequalities in the proof of Theorem 6 actually become equalities. It follows also from Theorem 5 that μ_{f} has no mass on the boundary of the amoeba. Hence the area of the amoeba is equal to π^{2}.

When a is positive and not equal to 1 , the same conciderations hold away from the special point $(\log a, \log a) / 2$. On the other hand, the amoeba of f_{a} is strictly smaller than the amoeba of f_{-a}. The remaining mass of $\mu_{f_{a}}$, which must have the same total mass as $\mu_{f_{-a}}$ resides as a point mass at $(\log a, \log a) / 2$.

In the particular case $a=1$, there is a factorization $f(z)=\left(z_{1}+1\right)\left(z_{2}+1\right)$ and the amoeba consists of the two lines $\left\{x_{1}=0\right\}$ and $\left\{x_{2}=0\right\}$. The MongeAmpère measure μ_{f} then degenerates into a single point mass at the intersection point of the two lines.

References

[1] David Bernstein: The number of roots of a system of equations, Functional Anal. Appl. 9 (1975), 183-185.

Figure 3: The amoebas of $a+z_{1}+z_{2}+z_{1} z_{2}$ for $a=-5$ and $a=5$.
[2] Johannes Duistermaat, Wilberd van der Kallen: Constant terms in powers of a Laurent polynomial, Indag. Math. 9 (1998), 221-231.
[3] Mikael Forsberg, Mikael Passare, August Tsikh: Laurent determinants and arrangements of hyperplane amoebas, Adv. in Math. 151 (2000), 45-70.
[4] Israel Gelfand, Mikhail Kapranov, Andrei Zelevinsky: Discriminants, resultants and multidimensional determinants, Birkhäuser, Boston, 1994.
[5] Grigory Mikhalkin: Real algebraic curves, moment map and amoebas, Manuscript, Harvard University, 1998. (To appear in Ann. of Math.)
[6] Alexander Rashkovskii: Indicators for plurisubharmonic functions of logarithmic growth. Available at http://xxx.lanl.gov/abs/math/9911240
[7] Jeffrey Rauch, Alan Taylor: The Dirichlet problem for the multidimensional Monge-Ampère equation, Rocky Mountain J. Math. 7 (1977), 345 364.
[8] Lev Ronkin: On zeros of almost periodic functions generated by holomorphic functions in a multicircular domain, To appear in "Complex Analysis in Modern Mathematics", Fazis, Moscow, 2000, pp. 243-256.
[9] Lev Ronkin: Introduction to the theory of entire functions of several variables, Translations of mathematical monographs, AMS, Providence, 1974.

