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A remark on amoebas in higher codimensions

Alexander Rashkovskii*

Abstract

It is shown that tube sets over amoebas of algebraic varieties of dimension
¢ in C? (and, more generally, of almost periodic holomorphic chains in C™) are
g-pseudoconcave in the sense of Rothstein. This is a direct consequence of a
representation of such sets as supports of positive closed currents.

1 Introduction

Let V be an algebraic variety in C = (C\ 0)". Its image Ay = LogV under the
mapping Log (21, ..., 2,) = (log|z1],...,log|zy,|) is called the amoeba of A. The no-
tion was introduced in [9] and has found numerous applications in complex analysis
and algebraic geometry, see a survey [11].

The amoeba of V' is a closed set with non-empty complement A, = R™\ Ay . If
V is of codimension 1, then each component of A is convex because Log ~*(A$)
is intersection of a family of domains of holomorphy. This is no longer true for
varieties of higher codimension; nevertheless, some rudiments of convexity do take
place. As shown by Henriques [10], if codimV = k, then Af, is (k — 1)-convex,
a notion defined in terms of homology groups for sections by k-dimensional affine
subspaces. A local result, due to Mikhalkin [11], states that Ay has no supporting
k-cap, i.e., a ball B in a k-dimensional plane such that Ay N B is nonempty and
compact, while Ay N (B + ev) = () for some v € R™ and all sufficiently small € > 0.

The notion of amoeba was adapted by Favorov [3] to zero sets of holomorphic
almost periodic functions in a tube domain as ”"shadows” casted by the zero sets to
the base of the domain; a precise definition is given in Section 4. In [2], Henriques’
result was extended to amoebas of zero sets of so-called regular holomorphic almost
periodic mappings. This was done by a reduction to the case considered in [10]
where the proof was given by methods of algebraic geometry.

In this note, we propose a different approach to convexity properties of amoe-
bas in higher codimensions. It is purely analytical and work equally well for both
algebraic and almost periodic situations. Moreover, we get our (pseudo)convexity
results as a by-product of a representation of an amoeba as the support of a certain
natural measure determined by ”density” of the zero set.
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Let us start with a hypersurface case. When V = {P(z) = 0} C C? is defined
by a Laurent polynomial P, the function

1

Np(y) = ——= / log |P(ev1 1 . e¥ntin)| dp,
(27r)n [—m,m"

known in tropical mathematics community as Ronkin’s function, is convex in R™ and
linear precisely on each connected component of Af,. This means that the support
of the current dd°Np(Im z) equals T4, = R" + i Ay, the tube set in C" with base
Ay . Since the complement to the support of a positive closed current of bidegree
(1,1) is pseudoconvex (as a domain of existence for a pluriharmonic function), this
implies pseudoconvexity of T'4¢, and thus convexity of every component of Ag,. Of
course, the function Np gives much more than simply generating the amoeba (see,
for example, [18], [8], [12]).

The same reasoning applies to amoebas of holomorphic almost periodic functions
f with Ronkin’s function Np replaced by the mean value M (y) of log | f| over the
real planes {z +iy: xz € R"}, y € R™.

What we will do in the case of codimension £ > 1, is presenting T4, as the
support of a closed positive current of bidegree (k, k) (namely, a mean value current
for the variety or, more generally, for a holomorphic chain) and then using a theorem
on (n — k)-pseudoconcavity, in the sense of Rothstein, of supports of such currents
due to Fornaess and Sibony [7]. In addition, we show that for a closed set I' C R",
Rothstein’s (n — k)-pseudoconcavity of 71 implies absence of k-supporting caps of
the set I' (Proposition 2.2).

We obtain our main result, Theorem 4.1, for arbitrary almost periodic holo-
morphic chains, which is a larger class than zero sets of regular almost periodic
holomorphic mappings, and the situation with algebraic varieties (Corollary 4.2) is
a direct consequence. Existence of the mean value currents was established in [4],
so here we just combine it together with the theorem on supports of positive closed
currents. In this sense, this note is just a simple illustration of how useful the mean
value currents are.

2 Rothstein’s ¢-pseudoconvexity

We will use the following notion of g-pseudoconvexity, due to W. Rothstein [19], see
also [14]. Given 0 < ¢ < n and «a, 8 € (0,1), the set

H={(z,w) €eC"IxC?: [|z]|oc <1, [[w]leo < @or B < |2l <1, ||w]oo <1}

is called an (n — g, q)-Hartogs figure; here ||z]cc = max; |z;|. Note that its convex
hull H is the unit polydisc in C". An open subset ) of a complex n-dimensional
manifold M is said to be g-pseudoconvex in M if for any (n — ¢, q)-Hartogs figure H
and a biholomorphic map ® : H — M, the condition ®(H) C Q implies ®(H) C Q.
If this is the case, we will also say that M \ Q is ¢-pseudoconcave in M.

Loosely speaking, the ¢g-pseudoconvexity is the Kontinuitatssatz with respect to
(n — q)-polydiscs; usual pseudoconvexity is equivalent to (n — 1)-pseudoconvexity.



Theorem 2.1 ([7], Cor. 2.6) The support of a positive closed current of bidimension
(¢,q) on a complex manifold M is q-pseudoconcave in M.

It is easy to see that for tube sets, (n — k)-pseudoconcavity implies absence of
k-caps in the sense of Mikhalkin.

Proposition 2.2 Let ' be a closed subset of a convex open set D C R™. If the tube
set Tr = R™ 44l is (n — k)-pseudoconcave in the tube domain Tp = R™ +iD, then
T has no k-supporting caps.

Proof: Assume I' has a k-supporting cap B. We assume that the vector v in the
definition of the cap is orthogonal to B (in the general case, one gets an image of a
Hartogs figure under a non-degenerate linear transform). Choose coordinates in R™
such that

B={(,y") eRFxR"": |y/]loc <1, ¥ =0},

{B<¥lle <1 llyllc <1} C D\L, B€(0,1),

and B4+ev C D\T for all € € (0,1), where v = (0,0”), |[v”||oc = 1. Since D is open,
v ylle <1, Iy - 31"l < a} € D\T for some a € (0,1). Therefore, the
5v"-shift of the corresponding (k,n — k)-Hartogs figure H is a subset of the tube set
Tp \ Tr. Since B is a subset of the shifted polydisc H + %v” and BNT # 0, the set
Tt is not (n — k)-pseudoconcave. O

3 Almost periodic holomorphic chains

Here we recall some facts from Ronkin’s theory of holomorphic almost periodic
mappings and currents; for details, see [15], [17], [4], [5], and a survey [6].

Let 7; denote the translation operator on R” by ¢t € R™, then for any function f
on R™, (T )(x) = [(Tia) = f(x +1).

A continuous mapping f from R"™ to a metric space X is called almost periodic
if the set {Z,* f }1erm is relatively compact in C(R"™, X') with respect to the topology
of uniform convergence on R™. The collection of all almost periodic mappings from
R™ to X will be denoted by AP(R"™, X).

As is known from classical theory of almost periodic functions, any function
f € AP(R",C) has its mean value My over R",

Mg = lim (25)™" [ fdmy,
S§—00 HS
where IIy = {2 € R" : ||z|x < s} and m,, is the Lebesgue measure in R".
Let D be a convex domain in R", Tp = R™ + iD. A continuous mapping
f:Tp — X is called almost periodic on Tp if {7 f }+crn is a relatively compact
subset of C(Tp,X) with respect to the topology of uniform convergence on each

tube subdomain Tp/, D' € D. The collection of all almost periodic mappings from
Tp to X will be denoted by AP(Tp, X).



The set AP(Tp,C) can be defined equivalently as the closure (with respect to
the topology of uniform convergence on each tube subdomain Tp/, D' € D) of
the collection of all exponential sums with complex coefficients and pure imaginary
exponents (frequencies). The mean value of f € AP(Tp,C) is a continuous function
of Im z. The collection of all holomorphic mappings f € AP(Tp, C*) will be denoted
by HAP(Tp, CF). In particular, any mapping from C" to C* whose components are
exponential sums with pure imaginary frequencies, belongs to HAP(C™, C*).

The notion of almost periodicity can by extended to distributions. For example,
a measure p on Tp is called almost periodic if ¢(t) = [(T)s¢pdp € AP(R",C) for
every continuous function ¢ with compact support in Tp. Furthermore, it can be
extended to holomorphic chains as follows.

Let Z =5 i GVj be a holomorphic chain on €2 C C" supported by an analytic
variety |Z| = U;Vj of pure dimension ¢. Its integration current [Z] acts on test forms
¢ of bidegree (g, ¢) with compact support in € (shortly, ¢ € D, ,(Q2)) as

([ZL ¢) - /Reg|Z| VZQb - Z “ /};eg \% ¢a

where the function ~y; takes constant positive integer values on the connected com-
ponents of Reg|Z|. The g-dimensional volume of Z in a Borel set Qp C Q is

VOlz(Qo) = / '}’Zﬂq

QoNReg|Z|

(the mass of the trace measure of [Z] in Q). If f is a holomorphic mapping on 2
such that |Z| = f71(0) and 7z(z) equals the multiplicity of f at z, the chain will be
denoted by Z;.

A g-dimensional holomorphic chain Z on Tp is called an almost periodic holo-
morphic chain if (T*[Z],¢) € AP(Tp,C) for any test form ¢ € Dy (Tp). Here
TS = arj(z+t)dz! Adz’ is the pullback of the current S = " ay;(2) dzy Adz;.

For any f € HAP(Tp,C), the chain (divisor) Z; is always almost periodic; on
the other hand, there exist almost periodic divisors (starting already from dimension
n = 1) that are not divisors of any holomorphic almost periodic function; when
n > 1, even a periodic divisor need not be the divisor of a periodic holomorphic
function [16]. The situation with higher dimensional mappings is even worse, since
the chain Z¢ generated by f € HAP(Tp, C*)), k > 1, need not be almost periodic
[4]. Tt is however so if the mapping f is regular, that is, if codim |Z,| = k or [Zy| =0
for every mapping g from the closure of the set {7;* f}ierm [4], [5]. A sufficient
regularity condition [15] shows that such mappings are generic.

Now we can turn to construction of the current that plays central role in our
considerations, the details can be found in [5]. Let Z be an almost periodic holomor-
phic chain of dimension ¢. For any test form ¢ € Dy 4(7Tp), the mean value My, of
the function ¢z (t) := (7;*[Z], ¢) € AP(R",C) defines the mean value current My
of Z by the relation

(Mz,6) = My,



The current is closed and positive. Since Mz is translation invariant with respect to
x, its coefficients have the form My; = m, ® M’ ;, where M’ ; are Borel measures
in D. In addition, if ¢ = Y trsdzr A dzy is a form with coefficients ¢;; € D(D)
and ;s is the characteristic function of the cube Il;, then there exists the limit

lim (25) 7" ([Z], xs¢) = (M2, %),

S—00
where M', =" M/ ;dyr ANdy; and o' = >~ Y ydyr A dy,.

The trace measure puy = Mz A B, can also been written as pz = m, ® /L'Z,

where 11, is a positive Borel measure on D. The following result shows that it can
be viewed as a density of the chain Z along R".

Theorem 3.1 ([4], [5]) Let Z be an almost periodic holomorphic chain in a tube
domain Tp. For any open set G € D such that ', (0G) = 0, one has
lim (25) " Volz (s +iG) = u'(G);

§—00

in addition, p',(G) =0 if and only if |Z| N Tg = 0.

Remark 3.2 For Z = Z; with regular f € HAP(Tp, C*), Theorem 3.1 was proved
in [15] (for £ = n) and [13] (k < n), without using the notion of almost periodic
chain. The current Mz, can be constructed as follows. The coefficients ay; of the
current log | f|(dd®log | f|)*~! are locally integrable functions on T, almost periodic
in the sense of distributions: (Z;*ars,¢) € AP(Tp,C) for any test function ¢ €
D(Tp). Therefore, they possess their mean values Ary = M,,,, and the current
./\/lzf = ddc(z Apgdzp A dZJ).

4 Amoebas

Following [3], if Z is an almost periodic holomorphic chain in Tp, then its amoeba
Ay is the closure of the projection of |Z| to D:

-AZ =Im Z’,

where the map Im : C" — R” is defined by Im (z1,...,2,) = (Imzq,...,Imz,).
When Z = Z; for a regular mapping f € HAP(Tp,CP), we write simply Ay.
Our convexity result is stated in terms of the tube set T4, = R" + ¢ Az.

Theorem 4.1 If Z is an almost periodic holomorphic chain of dimension q in a
tube domain Tp C C™, then Ty, = supp Mz, where Mz is the mean value current
of the chain Z. Therefore, T4, is q-pseudoconcave in Tp. In particular, for any
regular mapping f € HAP(Tp,CF), the set T4, is (n — k)-pseudoconcave.

Proof: By Theorem 3.1, Az = supp p,, which can be rewritten as

T4, = suppmy, ® 'y = supp Mz.



Since the current My is positive and closed, Theorem 2.1 implies the corresponding
pseudoconcavity. O

This covers the algebraic case as well by means of the map E : C" — C7,
E(21,...,2,) = (e7%,...,e”%n). For a Laurent polynomial P, the exponential
sum E* P is periodic in Tkn, and its mean value Mg g+ p| coincides with Ronkin’s
function Np. Furthermore, given an algebraic variety V' C CZ, its pullback E*V is

almost periodic (actually, periodic) in C" and Ag+y = Ay, which gives

Corollary 4.2 The set Ty, for an algebraic variety V. C CY of pure codimension
k is (n — k)-pseudoconver.
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