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Polynomial amoebas and convexity

Hans Rullgård

Matematiska institutionen, Stockholms universitet
SE-10691 Stockholm, SWEDEN

Abstract

The amoeba of a polynomial f in n complex variables is defined
to be the image of the hypersurface f−1(0) under the mapping Log :
(z1, . . . , zn) 7→ (log |z1|, . . . , log |zn|). Amoebas were introduced by Gelfand,
Kapranov and Zelevinsky, and have also been studied by Forsberg, Pas-
sare and Tsikh. An application to the topology of real algebraic curves
has been found by Mikhalkin. In this thesis a special convex function Nf ,
which we call the Ronkin function, is applied to the study of amoebas.
Using this function, two kinds of results are obtained. First, the Ronkin
function provides a connection between the amoeba and the Newton poly-
tope and makes precise a rather striking sense of duality between these
objects which was noticed by Forsberg in his doctoral thesis. Second, we
find that the Monge-Ampère measure of Nf has interesting properties.
Using this measure, we obtain an estimate on the area of the amoeba in
terms of the Newton polytope for polynomials in two variables. It turns
out that the amoebas with maximal area correspond to so-called Har-
nack curves. We also study the number of connected components of the
amoeba complement, or equivalently, the number of convergent Laurent
series expansions of the rational function 1/f .
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1 Introduction

1.1 Background

Consider the polynomial f(z) = z2 + z − 2 = (z − 1)(z + 2). Suppose we are
interested in expanding the rational function 1/f(z) in a Laurent series, that is,
an infinite linear combination of Laurent monomials zk where k is an integer. It
is not difficult to find such a Laurent series expansion: By the geometric series
(1− ζ)−1 = 1 + ζ + ζ2 + . . . we have

1

f(z)
=

1

−2
· 1

1− z2+z
2

= −1

2

+∞∑

j=0

(
z2 + z

2

)j
.

When the terms in the sum on the right are expanded, we see that only terms
where k/2 ≤ j ≤ k contain the monomial zk. So by expanding all terms and
collecting the finitely many monomials with the same exponent k, we obtain
a series

∑+∞
k=0 akz

k. It is not difficult to show that this series converges when
|z| < 1, and is then equal to 1/f(z).

Another expansion is obtained from the computation

1

f(z)
=

1

z2
· 1

1− 2−z
z2

=
1

z2

+∞∑

j=0

(
2

z2
− 1

z

)j
.

This time we obtain, after expanding the terms in the sum, a series containing
only negative powers of z. Some computations show that this series converges
when |z| > 2 and is then equal to 1/f(z).

Are there any other Laurent series expansions of 1/f(z)? Observing that the
two expansions we have found so far were obtained by dividing out the constant
term and the z2-term respectively, and then using a geomeric series, we try the
same trick with the z-term:

1

f(z)
=

1

z
· 1

1− 2−z2

z

=
1

z

+∞∑

j=0

(
2

z
− z

)j
.

This time we run into a difficulty which was not encountered in the previous
two computations. When the terms in the sum are expanded, we find that,
for example, a nonzero constant term is present whenever j is even. In order
to know whether the sum represents a Laurent series (let alone a convergent
Laurent series) we would have to check whether the sum of all these constant
terms converges, and similarly for all other powers of z.

A better understanding can be gained by regarding the problem from a
geometric point of view. The function 1/f(z) has two poles at z = 1 and z = −2.
Hence it is holomorphic in the disc |z| < 1 and in the unbounded annulus |z| > 2,
and this is precisely where the first two series we computed converge. It is also
holomorphic in the annulus 1 < |z| < 2, and by a familiar theorem in the
theory of holomorphic functions, it follows that 1/f(z) is represented there by
a Laurent series f(z) =

∑+∞
k=−∞ akz

k where

ak =
1

2πi

∫

|z|=r

z−k−1 dz

f(z)
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and 1 < r < 2.
From the geometric picture we thus see immediately that there are precisely

three convergent Laurent series expansions of 1/f(z). Moreover, we have seen
how two of these can be computed explicitly, to whatever degree we like, by a
kind of geometric series trick. More generally, if f(z) is any polynomial in one
variable, then the number of convergent Laurent series expansions of 1/f(z) is
equal to one plus the maximal number of nonzero roots of f having mutually
distinct absolute values.

Let us now consider polynomials in several variables. Such a polynomial can
be written f(z) =

∑
α∈A cαz

α. Here α = (α1, . . . , αn) ∈ Zn are multiorders,
zα = zα1

1 . . . zαn
n and cα are arbitrary complex numbers. The summation takes

place over a finite subset A of the lattice Zn. (Actually, if f is a polynomial, all
the components αj must be positive, but it is just as natural here to allow f to
be a Laurent polynomial where the variables may be raised to negative powers.)
Singling out one of the points in A, say β, we try to write the series

1

f(z)
=

1

cβzβ
· 1

1 +
∑

α∈A′
cα

cβ
zα−β

=
1

cβzβ

+∞∑

j=0

(
−
∑

α∈A′

cα
cβ
zα−β

)j
(1)

where A′ = Ar{β}. How can we know if the sum on the right, when each term
is expanded, can be rearranged as a Laurent series? Let us say that the sum (1)
is well behaved if every monomial zν occurs only in the expansions of a finite
number of terms

(
−
∑

α∈A′

cα
cβ
zα−β

)j
.

The problem of deciding whether the sum (1) is well behaved can easily be
understood from a geometric consideration. Imagine that we plot the points
in A in Euclidean space. The convex hull of these points is called the Newton
polytope of f . For example, if f(z1, z2) = 1+z5

1 +80z2
1z2 +z3

1z2 +40z3
1z

2
2 +z3

1z
4
2 ,

then A = {(0, 0), (5, 0), (2, 1), (3, 1), (3, 2), (3, 4)} and the Newton polytope of f
is the triangle shown on the left in Figure 1. The significance of the Newton
polytope here is that the sum (1) is well behaved if and only if β is a vertex of
the Newton polytope. In our example, the sum is well behaved if β is one of
the points (0, 0), (5, 0) or (3, 4), which are corners of the triangle, but not if β is
one of the other three points. If f is a polynomial in one variable, the Newton
polytope is just a segment, and the vertices are its endpoints. These correspond
to the monomials of lowest and highest degree in f respectively. Our first two
computations succeded, because there our β was one of these endpoints, but
the third computation ran into trouble (and would in fact have failed if we had
carried on) since β was a point inside the segment.

Let us now carry over the other way of understanding Laurent series expan-
sions to polynomials of several variables. The multidimensional analogue of an
annulus is a circular domain {z ∈ Cn; (|z1|, . . . , |zn|) ∈ E} where E is an open
connected subset of Rn

>0. If a function is holomorphic in such a circular domain,
then it can be represented there by a convergent Laurent series

∑
α∈Zn aαz

α.
For various reasons, it is more convenient to describe a circular domain in the
following way. Let Log(z1, . . . , zn) = (log |z1|, . . . , log |zn|), so that Log is a
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mapping from (C r {0})n to Rn. Then a circular domain can be written in
the form Log−1(E) = {z; Log(z) ∈ E} where E is an open connected set in
Rn. Notice that if one of the coordinates, say z1, is replaced by z−1

1 , which is
quite natural when we are dealing with Laurent series, the set E will simply be
reflected in the plane x1 = 0. Another nice property of this convention is that
we need only consider sets E which are convex. In fact, it can be shown that
if E is connected, then every function which is holomorphic in Log−1(E) can
automatically be extended to Log−1(convE) where convE denotes the convex
hull of E.

When f is a polynomial in more than one variable, the singularities of 1/f ,
which must be avoided by Log−1(E), are not discrete but spread out along the
surface of complex dimension n − 1 where f(z) = 0. The image of this surface
under the mapping Log is called the amoeba of f . Each connected component
E of the complement of the amoeba corresponds to a circular domain Log−1(E)
where f(z) is never zero and hence 1/f(z) is holomorphic. We conclude that
there is a one-to-one correspondence between the connected components of the
complement of the amoeba and the convergent Laurent series expansions of
1/f(z).

Figure 1 shows the amoeba of the polynomial f(z1, z2) = 1 + z5
1 + 80z2

1z2 +
z3
1z2 + 40z3

1z
2
2 + z3

1z
4
2 . The three “tentacles” of the amoeba extend outside the

picture to infinity. There are five clearly visible complement components of the
amoeba in the picture. Two of these are bounded, while the remaining three
are infinitely large. These three unbounded regions are where the three well
behaved Laurent series which we found by the geometric series computation
converge.

-1 1 2 3 4 5 6
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Figure 1: Newton polytope, triangulated Newton polytope and amoeba of the
polynomial f(z) = 1 + z5

1 + 80z2
1z2 + z3

1z2 + 40z3
1z

2
2 + z3

1z
4
2

Notice that there seems to be a kind of duality between the amoeba and the
Newton polytope. This feeling becomes even stronger if the Newton polytope is
triangulated by drawing lines as in the second picture. A more precise statement
is that the amoeba looks like a thickened graph, whose edges are perpendicular
to certain edges in the triangulation of the Newton polytope.

It is almost obvious from looking at these pictures that each unbounded
component of the amoeba complement is associated to a vertex of the Newton
polytope. One might also surmise, that the two bounded components belong to
the points (2, 1) and (3, 2) in the Newton polytope, corresponding to the terms
80z2

1z2 and 40z3
1z

2
2 in f(z). This is actually the case, in a sense made precise by

the concept of the order of a complement component introduced by Forsberg,
Passare and Tsikh. Notice that there seems to be no complement component
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corresponding to the term z3
1z2. It is tempting to attribute this to the fact that

its coefficient is so much smaller than the coefficients of z2
1z2 and z3

1z
2
2 . There is

some truth to this statement; a connection between the size of a coefficient and
the existence and size of a corresponding complement component does exist.
However, the connection is weaker than one might initially be lead to hope (see
Example 7 in section 9).

1.2 Outline of the thesis

There are three main problems with which this thesis is concerned. These are
treated in sections 4, 5 and 6. The treatment is based on the papers [21], [22]
and [27], where many of the results of the thesis can also be found.

In section 2 we give the definitions of the objects we will be dealing with,
together with a discussion of the complex torus which is the space in which these
objects live. Section 3 outlines some results, to the most part taken from [8],
[11] and [26], which are of fundamental importance in the following treatment.
We also introduce certain functions, which are very nearly hypergeometric in
the GKZ sense, which turn out to have several interesting connections with
amoebas.

After these foundations have been established, we explore in section 4 the
duality between the amoeba and the Newton polytope. Certain aspects of this
duality were found in [7], [8] and [11]. We obtain, in section 4, another manifes-
tation of this duality by exploiting a special convex function Nf associated to
the polynomial f . The idea of using this function in the study of amoebas comes
from the paper [26] It is defined by letting Nf (x) be the average of log |f(z)|
as z runs through Log−1(x). This function encodes information both about the
amoeba (Theorem 1) and the Newton polytope (Theorem 2).

In section 5 we consider the problem of finding the number of complement
components of the amoeba of a given polynomial. Lower and upper bounds on
this number, in terms of the Newton polytope, were found in [11] and [8]. We
show that these bounds are sharp and also give some partial ansers to certain
related problems.

Finally, in section 6 we study the convexity of the function Nf by means of
the Monge-Ampère operator, and find several relations between this function
and the hypersurface f−1(0). One rather remarkable consequence is that for
polynomials of two variables, the area of the amoeba is no greater than π2

times the area of the Newton polytope. Moreover, as was discovered jointly
with Mikhalkin, the polynomials for which the amoeba has maximal area are
those defining so-called Harnack curves which arise in real algebraic geometry.
The connection with real algebraic curves is outlined in section 7.

A possible generalization of the concepts treated in the thesis is outlined
in section 8. Section 9 contains some explicit examples, and in section 10 we
present a few open problems.

2 The complex torus

In this section we will define several objects related to a Laurent polynomial
which will be our main interest in later sections. First we shall discuss the
space where all these objects live, the complex torus.

6



The complex torus could simply be defined as the product space Cn
∗ , where

C∗ = Cr{0} is the multiplicative group of the complex field and n is a positive
integer. However, it is more natural to state the definitions in coordinate free
manner. Let therefore L be an n-dimensional lattice and L∗ = HomZ(L,Z) its
dual. The complex torus associated to L is the abelian group LC∗

= L ⊗ C∗

(where the tensor product is taken over Z). By choosing a basis for L, we obtain
an isomorphism between LC∗

and Cn
∗ . In particular, we see that LC∗

has the
structure of a complex manifold as well as an abelian group. Wherever it is
convenient, we shall assume that such a basis has been chosen so that expressions
may be written in terms of the coordinate functions on Cn

∗ . However, we shall
here establish notations which make it possible to avoid a particular choice of
basis most of the time.

The homomorphism ζ 7→ log |ζ| from C∗ to R determines a mapping Log =
id⊗ log | · | : LC∗

→ LR = L⊗R. If a basis is chosen for L, this mapping can
be written explicitly Log(z1, . . . , zn) = (log |z1|, . . . , log |zn|).

Since Log−1(0) is a compact subgroup of LC∗
, it has a unique Haar measure

η0 which is translation invariant and has total mass 1. If x ∈ LR and z ∈
Log−1(x), then multiplication by z maps Log−1(0) to Log−1(x). Any two such
mappings differ only by a translation in Log−1(0) and hence the direct images
of η0 under all such mappings coincide and therefore define a measure ηx on
Log−1(x). We shall drop the subscript and denote by η the probability measure
ηx on any fiber Log−1(x). The measure η can be computed by integrating the
differential form

1

(2πi)n
· dz1 ∧ . . . ∧ dzn

z1 . . . zn
.

Every α ∈ L∗ determines a function α ⊗ id : LC∗
→ Z ⊗ C∗ = C∗. This

function is usually denoted z 7→ zα and called a Laurent monomial. Similarly,
every a ∈ L gives rise to a function ζ 7→ ζa := a⊗ζ from C∗ to LC∗

. If e1, . . . , en
is a basis for L, then an isomorphism between LC∗

and Cn
∗ is given explicitly

by z 7→ (ze1 , . . . , zen). A finite linear combination of Laurent monomials is
called a Laurent polynomial. If f is a Laurent polynomial, we will let fα denote
the coefficient for zα in f . Hence, f(z) =

∑
α∈L∗ fαz

α. The set of all Laurent
polynomials clearly is a C-algebra, isomorphic to the group algebra C[L∗].

A Laurent series is a (formal) linear combination f(z) =
∑
α∈L∗ fαz

α where
there may be infinitely many nonzero terms in the sum. The Laurent series is
said to converge at z if the sum is absolutely convergent. Its domain of con-
vergence is the largest open set in which it converges at every point, and f is
called convergent if its domain of convergence is nonempty. If f is a convergent
Laurent series, it is well known that its domain of convergence is of the form
Log−1(Ω) where Ω ⊂ LR is a convex open set. A convergent Laurent series de-
fines a holomorphic function on its domain of convergence. Conversely, if f(z)
is a holomorphic function defined in Log−1(Ω) where Ω is open and connected,
then f(z) is represented by a Laurent series whose domain of convergence con-
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tains Log−1(Ω). The coefficients of the Laurent series are given by

fα =

∫

Log−1(x)

z−αf(z) dη(z)

for any x ∈ Ω. If f and g are convergent Laurent series, their sum f + g need
not be convergent and their product need not even be defined. If, however, their
domains of convergence have nonempty intersection, then f + g and f · g are
both holomorphic functions in the intersection of the domains of convergence of
f and g, and hence define convergent Laurent series.

Definition 1 (Gelfand, Kapranov, Zelevinsky [11]). If f is a Laurent poly-
nomial or a convergent Laurent series, then the amoeba of f , denoted Af , is the
set Log(f−1(0)).

If the domain of convergence of f is Log−1(Ω), the amoeba of f should be
considered as a subset of Ω. We will write Acf = Ω rAf for the complement of
the amoeba in Ω.

Definition 2. If f is a Laurent series, Pf will denote the convex hull in L∗R of
the set {α ∈ L∗; fα 6= 0}. If f is a Laurent polynomial, Pf is called the Newton
polytope of f .

Definition 3 (Ronkin [26]). If f is a Laurent polynomial (or a Laurent series
converging in Log−1(Ω)), the function Nf is defined in LR (or in Ω) by

Nf (x) =

∫

Log−1(x)

log |f(z)| dη(z). (2)

We will call Nf the Ronkin function of f .

A linear mapping T : L → M between two lattices, not necessarily of the
same dimension, induces in an obvious way mappings T ∗ : C[M∗] → C[L∗],
TR : LR →MR and TC∗

: LC∗
→MC∗

. It is easily verified that

T ∗f(z) = f(TC∗
z) (3)

TR(Log z) = Log(TC∗
z) (4)

for any z ∈ LC∗
and f ∈ C[M∗]. If moreover T ∗ : M∗ → L∗ is injective, then

both TR and TC∗
are surjective. In this case,

TC∗
ηL = ηM (5)

where ηL and ηM denote the Haar measures on the fibres of Log : LC∗
→ LR

and Log : MC∗
→MR respectively.

Let a ∈ L. The mapping ζ 7→ ζa from C∗ to LC∗
induces a homomorphism

of homology groups H1(C∗,Z) → H1(LC∗
,Z). The generator of H1(C∗,Z)

represented by the unit circle with its usual orientation, is mapped by this
homomorphism to an element in H1(LC∗

,Z) which we will denote ρ1(a). It is
not difficult to see that ρ1 : L → H1(LC∗

,Z) is a homomorphism. Similarly,
any α ∈ L∗ defines an element ρ1(α) in the cohomology group H1(LC∗

,Z)
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via the mapping z 7→ zα. In de Rham cohomology, ρ1(α) is represented by
the differential form (2πi)−1z−α dzα = (2πi)−1 d log zα. For every pair a ∈
L, α ∈ L∗, it is easy to see that 〈ρ1(α), ρ1(a)〉 = 〈α, a〉. Since H1(LC∗

,Z)
and H1(LC∗

,Z) are free abelian groups of rank n, it follows that ρ1 : L →
H1(LC∗

,Z) and ρ1 : L∗ → H1(LC∗
,Z) are in fact isomorphisms.

For any k = 1, . . . , n there is a Künneth map

H1(LC∗
,Z)⊗k → Hk((LC∗

)k,Z).

Together with the homomorphism induced in homology by the multiplication
map (LC∗

)k → LC∗
this defines a homomorphism H1(LC∗

,Z)⊗k → Hk(LC∗
,Z)

which is easily seen to be alternating. Hence, composition with ρ1 defines a
homomorphism ρk :

∧k
L → Hk(LC∗

,Z). Similarly, the multiplication in the
cohomology ring H∗(LC∗

,Z) =
⊕
Hk(LC∗

,Z) together with ρ1 determines a

homomorphism ρk :
∧k

L∗ → Hk(LC∗
,Z). In de Rham cohomology, ρk(α1 ∧

. . . ∧ αk) is represented by the differential form (2πi)−kz−α1−...−αk dzα1 ∧ . . . ∧
dzαk . The mappings ρk and ρk are all isomorpisms, and satisfy 〈ρk(α), ρk(a)〉 =

〈α, a〉 for all a ∈ ∧k L, α ∈ ∧k L∗.
If E is a contractible subset of LR, then there are canonical isomorphisms

Hk(LC∗
,Z) ∼= Hk(Log−1(E),Z) and Hk(LC∗

,Z) ∼= Hk(Log−1(E),Z), and we
may therefore identify these homology and cohomology groups for any E.

Let f be a Laurent polynomial or a convergent Laurent series and let E be a
connected component of Acf . We shall see that any such component is convex,

so in particular, it is contractible. Then f defines a mapping from Log−1(E) to
C∗, and hence a homomorphism f∗ : H1(C∗,Z) → H1(Log−1(E),Z). Let ω be
the generator of H1(C∗,Z) represented by the differential form (2πiζ)−1 dζ.

Definition 4 (Forsberg, Passare, Tsikh [8]). The vector α = ρ1−1
(f∗ω) is

called the order of the complement component E.

An alternative definition is that the order is the unique α ∈ L∗ such that
the mappings z 7→ f(z) and z 7→ zα from Log−1(E) to C∗ are homotopic. The
following relations are useful for computations with orders. If α is the order of
the complement component E and a ∈ L, then

〈α, a〉 = 〈f∗ω, ρ1(a)〉 =
1

2πi

∫

|ζ|=1

d log f(ζaz).

where z is any point in Log−1(E). In particular the coordinates of α with
respect to some basis of L∗ are given by

αj =
1

2πi

∫

|ζ|=1

d log f(z1, . . . , ζzj , . . . , zn), z ∈ Log−1(E)

=

∫

Log−1(x)

zj∂f/∂zj
f(z)

dη(z), x ∈ E.
(6)

9



If A is a subset of L∗, we will let CA denote the set of all Laurent polynomials
of the form f(z) =

∑
α∈A fαz

α. Usually A will be a finite set. Thus CA is a
complex vector space whose points are Laurent polynomials. There is a natural
choice of coordinates on this space, namely the coefficients fα. The space CA

can be treated just as any other complex manifold. For example, we will consider
holomorphic functions defined on CA. The fact that f is used both to denote a
point in CA and a function on LC∗

is not likely to cause much confusion.

This is a natural place to establish some terminology and notations concerning
toric varieties which will be needed in sections 7 and 8. The following paragraphs
are not needed for the main part of the thesis. For an extensive treatment of
toric varieties, we refer to [6] and [4].

Let σ be a cone in L∗R generated by finitely many vectors in L∗. Then
C[σ ∩ L∗] is the subalgebra of C[L∗] generated by all monomials zα with α ∈
σ ∩ L∗. The affine toric variety associated to σ is defined to be the maximal
spectrum of C[σ ∩ L∗], and will be denoted Xσ. This variety can be given a
concrete realization as follows. Take a set of generators α1, . . . , αk for σ and
consider the mapping φ : LC∗

→ Ck defined by φ(z) = (zα1 , . . . , zαk). Then
Xσ is isomorphic to the closure of φ(LC∗

) in Ck (with the metric or Zariski
topology, whichever one prefers). If σ ⊂ τ are cones, then there is a natural
injective mapping Xτ → Xσ.

A general toric variety is constructed by gluing together affine toric varieties.
To keep track of the operations it is useful to introduce the notion of a fan.

A fan Σ in a real vector space V is a finite collection of polyhedral cones
σ ⊂ V , such that (i) if σ, τ ∈ Σ, then σ ∩ τ ∈ Σ and (ii) if σ ∈ Σ and τ is
any cone contained in σ, then τ ∈ Σ precisely if τ is a face of σ. A fan is
said to be complete if the union of all its cones is the entire vector space in
which it lives. If C is a cone in V , then the dual of C is defined to be the cone
C∨ = {ξ ∈ V ∗; 〈ξ, x〉 ≤ 0, ∀x ∈ C}. If C is generated by finitely many vectors
from a lattice in V , then its dual is generated by finitely many vectors of the
dual lattice

Suppose now that Σ is a fan in LR whose cones are generated by finitely
many lattice vectors. For every σ ∈ Σ, consider the affine toric variety Xσ∨ .
From the disjoint union of all these varieties we form a new variety by identifying
Xτ∨ with its image in Xσ∨ whenever τ ⊂ σ are in Σ. The variety so obtained
is called a toric variety and will be denoted XΣ. The affine toric variety arising
from the zero cone σ = {0} deserves special attention. The dual of σ is the
whole space L∗R and its associated affine toric variety Xσ∨ is isomorphic to the
complex torus LC∗

. This space is contained as an open dense subset in XΣ.
The toric variety XΣ is compact if and only if Σ is complete.

Now let P be a polytope in L∗R with vertices in L∗Q. If F is a face of P , then
the normal cone to P at F is defined to be the cone nc(F, P ) = {x; 〈ξ − η, x〉 ≤
0, ∀ξ ∈ P, η ∈ F}. The cone dual to nc(F, P ) is cone(F, P ) = {t(ξ − η); t ≥
0, ξ ∈ P, η ∈ F}, which can be thought of as the cone of all vectors pointing
from F into P . The collection of all normal cones, as F runs over all faces of
P , is a complete fan Σ, and hence defines a compact toric variety XP = XΣ. If
F is any face of P then we write X(F ) = Xcone(F,P ) and let V (F ) denote the
closure of X(F )r∪G⊃FX(G) where the union is taken over all faces G properly
containing F . This system of subvarieties of XP looks like the polytope P , in
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the sense that dimV (F ) = dimF and V (F ) ⊂ V (G) precisely if F ⊂ G. We
remark that there is a mapping, known as the moment map, from XP to P ,
taking V (F ) onto F for every face F of P . If f is a Laurent polynomial whose
Newton polytope is P , then f defines a closed hypersurface V ⊂ XP . The image
of V under the moment map was called the compactified amoeba in [11].

Two familiar examples of toric varieties are obtained by taking the polytope
P to be the standard simplex conv(0, e1, . . . , en) or the unit cube [0, 1]n in Rn.
In the first case, XP is the projective space Pn. For example, if n = 2, then P
is a triangle and XP is the projective plane. When F is a side of the triangle
P , V (F ) is one of the coordinate axes or the line at infinity. In the second case,
XP is the product P1 × . . .×P1 of n copies of the Riemann sphere.

3 Foundations

This section contains a collection of results which are fundamental for the study
of polynomials from the amoeba point of view. A major part of the material
has appeared earlier in [7], [8], [11] and [26]. However, it seems that much is
gained by studying the interplay between different objects, namely the Newton
polytope, the amoeba and the convex function Nf , which have not been consid-
ered all at once in these earlier works. For this reason, a selection of previously
known results are presented here in an attempt to carry out a unified approach
to the subject. One new aspect in this presentation is that certain results are
generalized from Laurent polynomials to arbitrary convergent Laurent series.
Although a fairly straightforward generalization, it has not been carried out
earlier.

As our starting point we take Theorem 1, which is essentially due to Ronkin
[26], although it is stated here in slightly different terminology. The other main
results are Theorem 2, Theorem 3 which is due to Forsberg, Passare and Tsikh
[8], and Theorem 4 which was the main motivation for Gelfand, Kapranov and
Zelevinsky to introduce amoebas in [11]. The functions Φα, which are very
similar to GKZ-hypergeometric functions, appeared first in [22].

3.1 Some classical results

Theorem 1 (Ronkin [26]). Let f be a Laurent polynomial or a convergent
Laurent series. Then the following holds.

(i) The function Nf is convex.

(ii) Nf is affine linear in an open connected set E precisely if E is contained
in Acf .

(iii) If E is a connected component of Acf , then gradNf |E is equal to the order
of E.

Proof. The convexity of Nf follows from the fact that log |f | is plurisubhar-
monic. Indeed, Nf (Log z) is a superposition of plurisubharmonic functions, and
is therefore itself plurisubharmonic. This is easily seen to be equivalent to con-
vexity of Nf . (See also [25], Corollary 1 on p. 84.) If E ⊂ Acf then log |f | is

actually pluriharmonic in Log−1(E), and it follows that Nf is affine linear in
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E. Conversely, if Nf is affine linear in E, then Nf (Log z) is pluriharmonic in
Log−1(E) which implies that log |f | must be pluriharmonic in Log−1(E). But
then f(z) 6= 0 there, so E ⊂ Acf . Differentiation with respect to xj under the
integral sign in the definition (2) of Nf yields

∂Nf
∂xj

=
∂

∂xj

∫

Log−1(0)

log |f(z)| dη(z)

= Re

∫

Log−1(x)

zj∂f/∂zj
f(z)

dη(z)

which is precisely the real part of the second integral in (6). However, the
integral (6) is always real valued so ∂Nf/∂xj is the jth component of the order.
Hence gradNf is equal to the order of the complement component. �

An immediate consequence is the following corollaries which were proved by
other methods in [11] and [8].

Corollary 1. Every connected component of Acf is a convex open set.

Proof. It is clear that Af is closed, hence every complement component is
open. If E is a connected component of Acf of order α, then Nf (x) = c+ 〈α, x〉
in E by Theorem 1. By convexity of Nf it follows that Nf (x) ≥ c+ 〈α, x〉 for
all x. Hence the set K consisting of all x such that Nf (x) = c+ 〈α, x〉 is convex
and the interior of K does not intersect Af . It follows that E = intK is convex.
�

Corollary 2. Different components of Acf have different orders.

Proof. If E is a complement component of order α, then there exists a constant
c such that Nf (x) ≥ c + 〈α, x〉 with equality precisely in the closure of E. If
E′ is another component of order α, and c′ the corresponding constant, then it
follows that c = c′, and then that E = E′. �

Hence, if Acf has a component of order α, this component is uniquely deter-
mined by α.

Definition 5. When Acf has a component of order α, this component will be
denoted Eα or Eα(f). If Acf has no component of order α, we set Eα = ∅.

A simple and useful criterion for determining the order of a complement com-
ponent is that a dominating term in the Laurent polynomial determines the
order of a complement component. To make this precise we introduce the fol-
lowing notation. If f is a convergent Laurent series whose domain of convergence
is Log−1(Ω), and α ∈ L∗ we write

mα(f ;x) =

∑
β 6=α |fβ| exp〈β, x〉
|fα| exp〈α, x〉

and

mα(f) = inf
x∈Ω

mα(f ;x).
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Note that Ω = int{x;mα(f ;x) < +∞} for any α with fα 6= 0. The following
lemma is proved in [8].

Lemma 1. Let f(z) be a Laurent polynomial or a convergent Laurent series
and suppose that mα(f ;x) < 1 for some α ∈ L∗ and x ∈ Ω. Then x ∈ Acf and
the complement component containing x has order α.

Proof. By the triangle inequality,

|f(z)| ≥ |fα| exp〈α, x〉 −
∑

β 6=α

|fβ| exp〈β, x〉 > 0

for all z ∈ Log−1(x), so x ∈ Acf . Suppose the component containing x has order
β. By equation (6) and the argument principle,

βj =
1

2πi

∫

|ζ|=1

d log f(ex1 , . . . , ζexj , . . . , exn)

=
1

2πi

∫

|ζ|=1

d log

(
∑

ν

fν exp〈ν, x〉ζνj

)

=
1

2πi

∫

|ζ|=1

d log(fα exp〈α, x〉ζαj ) = αj

so α = β. �

Corollary 3. If α is a vertex of Pf , then mα(f) = 0, hence Acf has a component
of order α.

Proof. Since α is a vertex of Pf , there exists a y ∈ LR so that 〈α− β, y〉 > 0
for all β 6= α with fβ 6= 0. Take any x ∈ Ω, where Log−1(Ω) is the domain of
convergence of f and a positive number ε. Then mα(f ;x) < +∞, so there is
a finite set A ⊂ L∗ such that

∑
β/∈A |fβ | exp〈β, x〉/|fα| exp〈α, x〉 < ε. Now, for

any β ∈ L∗ ∩ Pf , exp〈β − α, x+ ty〉 is decreasing as a function of t and has the
limit 0 when t→ +∞. If t > 0 it follows that

mα(f ;x+ ty) =
∑

β∈Ar{α}

|fβ | exp〈β, x+ ty〉
|fα| exp〈α, x+ ty〉 +

∑

β/∈A

|fβ | exp〈β, x + ty〉
|fα| exp〈α, x+ ty〉

≤
∑

β∈Ar{α}

|fβ | exp〈β, x+ ty〉
|fα| exp〈α, x+ ty〉 + ε

≤ 2ε for large t.

Since clearly x+ ty ∈ Ω for all t ≥ 0, it follows that mα(f) = 0 as required. �

If u is a convex function defined in a domain Ω ⊂ LR, then by the gradient
of u at x0 ∈ Ω we will mean the set

gradu(x0) = {ξ ∈ L∗R;u(x)− u(x0) ≥ 〈ξ, x− x0〉, ∀x ∈ Ω}. (7)

When u is differentiable at x0, gradu(x0) consists of a single point which is just
the usual gradient of u. By the gradient image of a set E ⊂ Ω, we will mean
the set

gradu(E) =
⋃

x∈E

gradu(x). (8)
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Theorem 2. If f is a Laurent series converging in Log−1(Ω), then gradNf (Ω) ⊂
Pf . If f is a Laurent polynomial, then moreover relintPf ⊂ gradNf (LR).

Proof. Let ξ ∈ gradNf (x) for some x ∈ Ω. Assume that a ∈ L and k ∈ Z
are such that 〈α, a〉 ≥ k for all α ∈ L∗ with fα 6= 0. If z ∈ Log−1(x), then
ζ−kf(ζaz) is holomorphic as a function of ζ in the unit disc. Applying the
maximum principle to this function and taking ζ = e−t it follows that

sup
z∈Log−1(x−ta)

ekt|f(z)| ≤ sup
z∈Log−1(x)

|f(z)|

hence

Nf (x− ta) =

∫

Log−1(x−ta)

log |f(z)| dη(z) ≤ −kt+ sup
Log−1(x)

log |f(z)|.

It follows that

〈ξ,−ta〉 ≤ Nf (x − ta)−Nf (x) ≤ −kt+ sup
Log−1(x)

log |f(z)| −Nf (x).

Letting t→ +∞ it follows that 〈ξ, a〉 ≥ k, hence ξ ∈ Pf .
Suppose now that f is a Laurent polynomial and that ξ ∈ relintPf . Assume

first that Pf is n-dimensional so that ξ ∈ intPf . If α is a vertex of Pf , then
Acf has a component of order α by Corollary 3, so it follows from Theorem 1
that Nf (x) ≥ C + 〈α, x〉 for some constant C. Here we may assume that the
constant C is the same for all vertices. It follows that

Nf (x)− 〈ξ, x〉 ≥ C + max
α∈vertPf

〈α− ξ, x〉 → +∞ when x→∞.

Hence Nf (x) − 〈ξ, x〉 has a minimum at some x0, and then ξ ∈ gradNf (x0).
The case when dimPf < n is handled similarly. The only difference is that
Nf (x)− 〈ξ, x〉 is constant along subspaces orthogonal to Pf in this case. �

Theorem 3 (Forsberg, Passare, Tsikh [8]). The mapping which takes a con-
nected component of Acf to its order is an injection from the set of complement
components to Pf ∩ L∗.

Proof. By definition, the order of any complement component is in L∗. That
the order of any complement component is in Pf follows from Theorem 1 and
Theorem 2. The injectivity is just Corollary 2. �

The following estimates were obtained by Gelfand, Kapranov and Zelevinsky
[11] and Forsberg, Passare and Tsikh [8].

Corollary 4. The number of components of Acf is at least equal to the number
of vertices of Pf and at most equal to the number of lattice points in Pf .

There is much more to be said about the relation between the geometry of a
complement component and its order. For example, there is a strong connection
between the size of a complement component and the location of its order in
the Newton polytope. Thus, a component is bounded precisely if its order is in
the interior of the Newton polytope, while the largest components (in a certain
sense) are those which correspond to vertices of the Newton polytope. We refer
to [7], [8] and [11] for further results on these matters.
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3.2 A class of almost hypergeometric functions

Definition 6. If Eα(f) is nonempty, define

Φα(f) =

∫

Log−1(x)

log(f(z)/zα) dη(z), x ∈ Eα

=
1

(2πi)n

∫

Log−1(x)

log(f(z)/zα) dz1 ∧ . . . ∧ dzn
z1 . . . zn

.

(9)

Notice that the the function log(f(z)/zα) has a globally defined holomorphic
branch in Log−1(Eα). Hence the integral (9) defines a holomorphic function in
the coefficients of f with values in C/2πiZ. The second integral shows that
the definition is independent of the choice of x ∈ Eα. In fact, the integration
may be performed over any cycle γ homologous to Log−1(x) in LC∗

r f−1(0)
on which log(f(z)/zα) has a holomorphic branch. This can be used to define an
analytic continuation of Φα to all f ∈ CA whose principal A-determinant (see
[11]) is nonzero, where A ⊂ L∗ is a fixed finite set.

These functions Φα are interesting in several ways. An immediate observa-
tion is that Nf (x) ≥ 〈α, x〉 + Re Φα(f) with equality when x ∈ Eα. It follows
that

Nf (x) ≥ max (Re Φα(f) + 〈α, x〉)
with equality in the closure of Acf . The maximum is taken over all α such that
Eα(f) is nonempty. This approximation of the function Nf will be used in
section 4 to construct a polyhedral complex approximating the amoeba. We
note also that when mα(f) < 1 we have the estimate

|Φα(f)− log fα| ≤ − log(1−mα(f)) (10)

which follows immediately from the definition.

The following result was alluded to in the introduction. After giving the
precise statement we shall show that all the coefficients in a Laurent series
expansion of 1/f can be expressed in terms of the functions Φα.

Theorem 4 (Gelfand, Kapranov, Zelevinsky [11]). If f is a Laurent poly-
nomial, then the convergent Laurent series g such that fg = 1 are in bijective
correspondence with the connected components of Acf .

Proof. If E is a complement component of Af , then 1/f is a holomorphic
function in Log−1(E). This function is represented by a convergent Laurent
series g, and evidently fg = 1. Conversely, if g is a convergent Laurent series,
converging say in a domain Log−1(E), with fg = 1, then the holomorphic
function defined by g in Log−1(E) is equal to 1/f(z). It follows that f(z) 6= 0
in Log−1(E) which means that E ⊂ Acf . If E′ is the complement component
containing E, then g is equal to the unique Laurent series expansion of 1/f(z)
in Log−1(E′). This proves the theorem. �

Theorem 5. Assume Eα(f) is nonempty, and define cν = ∂Φα/∂fν(f) for all
ν ∈ L∗. Then

1

f(z)
=
∑

ν∈L∗

cνz
−ν ,
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the series converging in Log−1(Eα).

Proof. Differentiation under the integral sign in (9) yields

∂Φα
∂fν

=

∫

Log−1(x)

zν dη(z)

f(z)
.

This is precisely the coefficient for z−ν in a Laurent series expansion of 1/f
converging in a neighbourhood of Log−1(x). �

The following theorem shows that the functions Φα satisfy a system of dif-
ferential equations which is very similar to a so-called A-hypergeometric sys-
tem (see [10]). In fact, the only way the following equations fail to be of A-
hypergeometric type is that the right-hand sides of equations (14) and (15) are
nonzero.

Theorem 6 ([22]). Let f(z) =
∑
ν∈A fνz

ν be a general Laurent polynomial in
CA where A is a fixed finite subset of L∗. Then the holomorphic functions Φα
have the power series expansion

Φα(f) = log fα +
∑

k∈Kα

(−kα − 1)!∏
β 6=α kβ !

(−1)kα−1fk, (11)

where fk =
∏
ν∈A f

kν
ν and

Kα = {k ∈ ZA; kα < 0, kβ ≥ 0 if β 6= α,
∑

ν

kν = 0,
∑

ν

νkν = 0}. (12)

The domain of convergence of the series is the set of all f with mα(f) < 1.
Moreover, Φα satisfies the differential equations

(∂u − ∂v)Φα = 0 if
∑

ν

(uν − vν) = 0 and
∑

ν

ν(uν − vν) = 0 (13)

and
∑

ν

fν∂νΦα = 1 (14)

∑

ν

νfν∂νΦα = α. (15)

where ∂ν = ∂/∂fν and ∂u =
∏
∂uν
ν when u ∈ ZA≥0.

Remark. Notice that the power series in (11) only involves those coefficients
of f which belong to the smallest face of Pf containing α. In particular, if α is
a vertex of Pf , then Φα(f) = log fα.

Proof. Use the power series expansion of the logarithm function to write

log(f(z)/zα) = log fα +
∑

m≥1

(−1)m−1

m



∑

β 6=α

fβz
β

fαzα



m

.
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Now

∑

m≥1

(−1)m−1

m




∑

β 6=α

fβz
β

fαzα




m

=
∑

m≥1

∑

Σkβ=m

(−1)m−1

m

m!∏
kβ !

∏
f
kβ

β zkββ

fmα z
mα

=
∑

Lα

(−1)kα−1 (−kα − 1)!∏
kβ !

fkzΣkνν .

Here all sums and products indexed by β are taken over β ∈ A r {α} while
ν ranges over all of A and Lα = {k ∈ ZA; kα < 0, kβ ≥ 0,

∑
kν = 0}. The

constant terms in this expression, considered as monomials in the z variables,
are precisely those corresponding to the set Kα, and we have proved (11).

Next we compute the domain of convergence of the power series. Let

θk =
(−kα − 1)!∏

β 6=α kβ !
(−1)kα−1fk

be the term corresponding to k ∈ Kα. Using Stirling’s formula logm! =
m logm−m+O(logm) and the relations

∑
kν = 0,

∑
νkν = 0 we find that

log |θk| = −kα log(−kα) + kα −
∑

β

(kβ log kβ − kβ) +
∑

ν

kν log |fν |+O(log |kα|)

= −kα
∑

β

kβ
−kα

log
−kα
kβ

+
∑

ν

kν log(|fν | exp〈ν, x〉) +O(log |kα|)

= −kα
∑

β

kβ
−kα

log
−kα|fβ | exp〈β, x〉
kβ |fα| exp〈α, x〉 +O(log |kα|)

for any x ∈ LR. Assume now that mα(f) < 1 and take x so that mα(f ;x) < 1.
It follows then from Jensen’s inequality that

log |θk| = −kα
∑

β

kβ
−kα

log
−kα|fβ| exp〈β, x〉
kβ |fα| exp〈α, x〉 +O(log |kα|)

≤ −kα log
∑

β

|fβ | exp〈β, x〉
|fα| exp〈α, x〉 +O(log |kα|)

= −kα logmα(f ;x) +O(log |kα|).

Since the number of terms with a given kα increases polynomially with kα, it
follows that the series

∑
k∈Kα

θk is absolutely convergent.
To prove the converse, we may assume that α is in the relative interior of

Pf . Otherwise we simply replace f with its truncation to the smallest face
containing α. This operation leaves both mα(f) and the series (11) unchanged.
Then mα(f ;x) attains its minimal value. Take a point x where this minimum
is achieved, and note that

gradmα(f ;x) =
1

|fα| exp〈α, x〉
∑

|fβ| exp〈β, x〉(β − α) = 0.

Setting φβ = |fβ | exp〈β, x〉 and φα = −∑φβ , this means that
∑
φν = 0 and∑

νφν = 0, so that the vector φ belongs to the cone generated by Kα. Since Kα
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is a semigroup, there is a constant C such that for any t > 0 there is a k ∈ Kα

with |k − tφ| < C. For the corresponding term θk we then have

log |θk| = −kα
∑

β

kβ
−kα

log
−kα|fβ | exp〈β, x〉
kβ |fα| exp〈α, x〉 +O(log t)

= −tφα
∑

β

kβ
kα

log
−tφαφβ

φβ |fα| exp〈α, x〉 +O(log t)

= −tφα logmα(f ;x) +O(log t).

If the series is to converge, these terms must remain bounded as t→ +∞, which
implies that mα(f ;x) ≤ 1. Since the domain of convergence is by definition an
open set, it follows that it is defined by the inequality mα(f) < 1.

To verify the differential equations, we differentate under the sign of inte-
gration defining Φα. By a simple computation,

∂u log(f(z)/zα) = −
(∑

uν − 1
)
! zΣuνν(−f(z))−Σuν

which depends only on
∑
uν and

∑
uνν. Also,

∑
fν∂ν log(f(z)/zα) =

∑
fνz

ν/f(z) = 1.

This verifies (13) and (14). Finally,

∑
νjfν∂ν log(f(z)/zα) =

∑
νjfνz

ν/f(z) =
zj∂f/∂zj
f(z)

.

Comparing this to the second integral in (6) proves the relation (15). �

3.3 Functorial properties

For convenience, we record here how certain changes of coordinates affect the
amoeba and the Ronkin function.

Theorem 7. Let T : L → M be a linear mapping between two lattices such
that T ∗ : M∗ → L∗ is injective. Let f ∈ C[M ] be a Laurent polynomial.
Then T−1

R (Af ) = AT∗f , T−1
R (Eα(f)) = ET∗α(T ∗f), Nf (TRx) = NT∗f (x) and

Φα(f) = ΦT∗α(T ∗f).

Proof. Notice that TR and TC∗
are surjective since T ∗ is injective. From

the relation (3) it follows that (T ∗f)−1(0) = T−1
C∗

(f−1(0)). Applying Log to

both sides of this equality and using (4), it follows that AT∗f = T−1
R (Af ). In

particular, T−1
R (Eα(f)) is a connected component of AcT∗f . That the order of

this component is T ∗α can be seen directly from the definition. An alternative
is to use the gradient of the Ronkin function. From (5) it follows that

Nf (TRx) =

∫

Log−1(TRx)

log |f(w)| dηM (w)

=

∫

Log−1(x)

log |f(TC∗
z)| dηL(z)

=

∫

Log−1(x)

log |T ∗f(z)| dηL(z)

= NT∗f (x).
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Finally, if x ∈ ET∗α(T ∗f), then TRx ∈ Eα(f) and it follows that

Φα(f) =

∫

Log−1(TRx)

log(f(w)/wα) dηM (w)

=

∫

Log−1(x)

log(f(TC∗
z)/(TC∗

z)α) dηL(z)

=

∫

Log−1(x)

log(T ∗f(z)/zT
∗α) dηL(z)

= ΦT∗α(T ∗f). �

4 Patchworking amoebas

In this section, amoebas are compared to certain polyhedral subdivisions of the
space LR. It is shown that every amoeba can be approximated by a polyhe-
dral complex of a special kind (Theorem 8) and conversely, all such polyhedral
complexes can be approximated by amoebas if rescalings are allowed (Theorem
9). The construction is reminiscent of the patchworking technique invented by
Viro for constructing real algebraic curves with prescribed topology, hence the
title. The ideas in this section are inspired by the computer generated pictures
in [7, section 5], and provide an explanation for the empirical observations made
there.

4.1 Dual polyhedral subdivisions

Definition 7. Let K be a polyhedron in a real vector space V (possibly all of V ).
By a polyhedral subdivision of K we will mean a finite collection Σ of nonempty
polyhedra whose union is K and satisfying the following properties.

(i) If σ, τ ∈ Σ and σ ∩ τ is nonempty, then σ ∩ τ ∈ Σ.

(ii) If σ ∈ Σ and τ ⊂ σ is a polyhedron, then τ ∈ Σ precisely if τ is a face of
σ.

If σ is a polyhedron, and τ is a face of σ, we shall denote by cone(τ, σ) =
{t(x − y); t ≥ 0, x ∈ σ, y ∈ τ} the cone of vectors pointing from τ into σ. If
C is a closed convex cone in V , its dual is defined to be the cone C∨ = {ξ ∈
V ∗; 〈ξ, x〉 ≤ 0, ∀x ∈ C}. It is well known that C∨∨ = C. We shall therefore say
that two cones C1, C2 are dual if C∨1 = C2 or equivalently C1 = C∨2 .

Definition 8. Let Σ,Σ′ be polyhedral subdivisions of polyhedra K ⊂ V,K ′ ⊂ V ∗

respectively. We shall say that Σ and Σ′ are dual if there is a bijection σ 7→ σ∗

from Σ to Σ′ such that τ ⊂ σ if and only if σ∗ ⊂ τ∗ and whenever this is the
case, cone(τ, σ) and cone(σ∗, τ∗) are dual.

Next we discuss a particular method of constructing dual polyhedral subdi-
visions. Let K be a polyhedron in V and let s be a piecewise linear function
on K, by which we here mean that s is the maximum of finitely many linear
functions. The Legendre transform of s,

s̃(ξ) = sup
x∈K

(〈ξ, x〉 − s(x))
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is also a piecewise linear function on the polyhedron K ′ consisting of all points
ξ with s̃(ξ) < +∞. Define

S(ξ, x) = s(x) + s̃(ξ) − 〈ξ, x〉.

Let Σ be the collection of all sets of the form {x ∈ K;S(ξ, x) = 0} for some
ξ ∈ K ′ and let Σ′ consist of all sets of the form {ξ ∈ K ′;S(ξ, x) = 0} for some
x ∈ K.

Proposition 1. With notations as in the preceding paragraph, Σ and Σ′ are
dual polyhedral subdivisions of K and K ′.

Proof. If E is any subset of K, define E∗ = {ξ ∈ K ′;S(ξ, x) = 0, ∀x ∈ E} and
define E∗ similarly if E ⊂ K ′. Now it is clear that E ⊂ F ⇒ F ∗ ⊂ E∗, E ⊂ E∗∗

and E∗ = E∗∗∗. The main points in the proof are to show that if σ ⊂ K is
nonempty then σ ∈ Σ ⇔ σ∗∗ = σ and that if σ ∈ Σ and τ is a nonempty subset
of σ, then cone(σ∗, τ∗) = {ξ; 〈ξ, x〉 ≤ 〈ξ, y〉, ∀x ∈ σ, y ∈ τ}. From this it follows
that x ∈ {x}∗∗ ∈ Σ for any x ∈ K, so the union of all σ ∈ Σ is equal to K and
that if σ, τ ∈ Σ, then (σ∩τ)∗∗ ⊂ (σ∗∪τ∗)∗ ⊂ σ∗∗∩τ∗∗ = σ∩τ so that σ∩τ ∈ Σ.
It follows also that the mapping σ 7→ σ∗ is an inclusion reversing bijection from
Σ to Σ′. Moreover, if σ ∈ Σ and τ is a nonempty subset of σ then it follows that
τ∗∗ is the smallest face of σ containing τ . This shows that Σ is a polyhedral
subdivision. Finally, it is easy to see that {ξ; 〈ξ, x〉 ≤ 〈ξ, y〉, ∀x ∈ σ, y ∈ τ} is
dual to cone(τ, σ) and this shows that Σ and Σ′ are dual subdivisions. �

Remark. Polyhedral subdivisions which can be obtained from a piecewise
linear convex function are called coherent and play an important role in the
theory of discriminants. It is known that not all subdivisions are coherent.
Proposition 1 shows that every coherent subdivision of a polyhedron K ⊂ V is
dual to a subdivision of a polyhedron K ′ ⊂ V ∗. Conversely, it is easy to see that
if Σ is a subdivision which is dual to some subdivision Σ′, then Σ is coherent.

4.2 The spine of an amoeba

Let now f be a Laurent polynomial and let A be the set of all α ∈ L∗ such that
Acf has a component of order α. Take

s(x) = max
α∈A

(Re Φα(f) + 〈α, x〉) (16)

and take K to be all of LR. The Legendre transform s̃ is then finite precisely on
the convex hull of A which is equal to the Newton polytope of f . Let Σ and Σ′

be the polyhedral subdivisions constructed from these functions and let Sf be
the union of all polyhedra in Σ whose dimension is smaller than n. This last set
will be called the spine of Af for reasons which are obvious from the following
theorem.

Theorem 8 ([22]). Let f be a Laurent polynomial. Then Σ′ is a polyhedral
subdivision of the Newton polytope of f , and Σ is a dual subdivision of LR such
that Eα = {α}∗ ∩ Acf whenever Acf has a component of order α. Moreover, Sf
is a strong deformation retract of Af .
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Remark. Other choices of the function s may also produce a polyhedral sub-
division compatible with the amoeba in the sense of Theorem 8. For example,
the proof of Theorem 12 shows that, under the assumptions of that Theorem,
the constants ReΦα(f) in (16) may be replaced by log |fα|.

Proof. Since Re Φα(f) + 〈α, x〉 ≤ Nf (x) with equality precisely in the closure
of Eα and s̃(α) = −ReΦα(f) it follows immediately from the definition that
Eα = {α}∗∩Acf . Now let σ∗ be a polyhedron in Sf where σ ∈ Σ′ with dim σ ≥ 1.
Take two points α, β ∈ σ∩A. Then it follows that σ∗∩Acf ⊂ Eα∩Eβ = ∅, which
proves that Sf ⊂ Af . Since every connected component of the complement of Sf
is a convex polyhedron {α}∗ which contains exactly one nonempty component
Eα of Acf it follows easily that Sf is a strong deformation retract of Af . �

In most cases it is of course much easier to compute Φα(f) for all α ∈ A
than to compute the exact shape of the amoeba. Hence, the spine provides
an approximation to the amoeba which is much more convenient to compute
explicitly. It should be noted, however, that the spine cannot be used to find
the number of complement components of the amoeba, since the set A of orders
of the complement components is needed in the construction of the spine.

We now reverse the operation and construct amoebas approximating a pre-
scribed polyhedral subdivision. Let A be a finite subset of L∗ and cα be an
arbitrary real number for every α ∈ A. Let

s(x) = max
α∈A

(cα + 〈α, x〉),

let Σ and Σ′ be the polyhedral subdivision of LR and convA determined by s
and let S be the union of all polyhedra in Σ of dimension smaller than n. Also,
let A′ ⊂ A be the set of vertices of the subdivision Σ′. Let f t ∈ CA be a family
of Laurent polynomials such that log |f tα| = tcα for all α ∈ A. If dist(E,F )
denotes the Hausdorff distance between two sets E,F in LR (with respect to
any norm), then we have the following result.

Theorem 9. With notations as in the preceding paragraph, dist(t−1Af t ,S) → 0
and dist(t−1Eα(f t), {α}∗) → 0 for all α ∈ A′ when t→ +∞.

Remark. Note that the complements of these amoebas will be dominated
by the components whose orders are vertices of the dual subdivision Σ′ of the
Newton polytope. However, we are not asserting that these will be the only com-
ponents in the complement of the amoeba. In general, there will be components
which have other orders as well.

Proof. For every α ∈ A′ and δ > 0, let

F δα = {x; cα + 〈α, x〉 − δ ≥ cβ + 〈β, x〉, ∀β 6= α}

and
Gδα = {x; cα + 〈α, x〉 + δ ≥ cβ + 〈β, x〉, ∀β 6= α}.

Then F δα ⊂ {α}∗ ⊂ Gδα and F δα and Gδα converge to {α}∗ when δ → 0. If N is
the cardinality of A and x ∈ F δα, then it is easy to see that mα(f t; tx) ≤ Ne−tδ.
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It follows from Lemma 1 that F δα ⊂ t−1Eα(f t) for sufficiently large t. Moreover,
it follows that mα(f t) → 0 when t → +∞, hence by (10), t−1 Re Φα(f t) → cα
for all α ∈ A′. Let ctα = t−1 Re Φα(f t) and st(x) = maxα∈A′(c

t
α + 〈α, x〉). For

sufficiently large t it follows that t−1Eα(f t) ⊂ {x; ctα + 〈α, x〉 = st(x)} ⊂ Gδα.
Hence dist(t−1Eα(f t), {α}∗) → 0. Since t−1Af t ⊂ Rn

r ∪F δα and every line
segment with endpoints in F δα and F δβ where α 6= β intersects t−1Af t when t is

sufficiently large, it follows that dist(t−1Af t ,S) → 0. �

5 The complement components of an amoeba

Gelfand, Kapranov and Zelevinsky posed in [11] the following problem: Given
a polynomial f , find all connected components of Acf . At that time, the order
of a complement component had not been defined. In view of this concept
and Theorem 3, it is natural to reformulate the problem as follows: Given a
polynomial f , find all α ∈ Pf ∩ L∗ such that Acf has a component of order α.

The present section is concerned with variations of this problem. We give
some partial answers to certain questions relating to the original problem. In
this context, we should also mention the work of Sadykov [28] on the amoebas
of certain special functions.

We introduce the sets UAα of all Laurent polynomials f ∈ CA such that
Acf has a component of order α. The fact that these sets are semialgebraic
means that there exists, at lest in principle, a procedure for determining whether
Acf , for a given f , has a component of order α. Next we pose the following

problem: When is UAα nonempty? Theorem 11 gives one necessary and one
sufficient condition, although the gap between them is, for most sets A, very
large. Theorem 12 gives the complete answer for certain simple sets A, which
include cases where it is nontrivial to compute amoebas explicitly.

In the previous section it was shown that by choosing certain coefficients of
a polynomial f appropriately, the corresponding complement components can
be made very large. In the opposite direction, we show now that the coefficients
may be chosen in such a way that certain prescribed complement components
vanish altogether. This shows that the set of lattice points occuring as orders
of complement components of Acf , where the Newton polytope Pf is given, is
subject only to those restrictions imposed by Corollary 3 and Theorem 3. In
particular, the estimates on the number of complement components given in
Corollary 4 are sharp.

Finally, we prove a statement concerning the topology of the sets UAα .

Definition 9. If A ⊂ L∗ and α ∈ L∗, let UAα denote the set of all f ∈ CA such
that Eα(f) 6= ∅.

Theorem 10. All the sets UAα are open and semialgebraic.

Proof. In the product space CA × LC∗
, consider the algebraic surface V =

{(f, z); f(z) = 0}. By the Tarski-Seidenberg theorem, V is mapped onto a
semialgebraic set by the mapping φ : (f, z) 7→ (f, (|z1|2, . . . , |zn|2)). Now the set
{(f, x) ∈ CA×Rn

>0;
1
2 Logx ∈ Eα(f)} consists of certain connected components

of CA ×Rn
>0 r φ(V ), and hence is semialgebraic. Therefore its projection on

CA, which is precisely UAα , is also semialgebraic. �
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Let us next turn to the following problem. For which α is UAα nonempty? Let
aff A denote the affine lattice generated by A. Then we have

Theorem 11. A necessary condition for UAα to be nonempty is that α ∈ convA∩
aff A.

A sufficient condition for UAα to be nonempty is that there exists a line l
such that α ∈ conv(A ∩ l) ∩ aff(A ∩ l).

Proof. If f ∈ UAα it follows from Theorem 3 that α ∈ Pf ⊂ convA. Moreover,
we may assume that aff A contains 0, and then it follows from Theorem 7 with
T ∗ the inclusion mapping aff A→ L∗ that α ∈ aff A. This proves the first part.

Suppose now that l is a line with α ∈ aff(A ∩ l) ∩ conv(A ∩ l). Without
loss of generality we may assume that A ⊂ l. In fact, we may assume that
A ⊂ Z with aff A = Z and that the largest element in A is N and the smallest
element 0. Consider polynomials of the form f(z) = zN − 1 + εeiθg(z) where
g(z) =

∑
gαz

α and the sum is taken over A r {0, N}. Then the zeros of f are
given by ωj(1 − εeiθg(ωj)/N) + o(ε), j = 0, . . . , N − 1 where ω = e2πi/N . For
generic choices of the coefficients gα, all the numbers g(ωj) are distinct, hence
for suitable θ, Re(eiθg(ωj)) are all distinct. It follows that for sufficiently small
ε, all the zeros of f have different absolute values, so Acf has components of all
orders between 0 and N . �

Theorem 12. Suppose that A ⊂ L∗ has no more than 2n points and that no
k + 2 of these lie in an affine k-dimensional subspace for k = 1, . . . , n − 1.
If f ∈ CA has a component of order α, then α ∈ A. In other words, UAα is
nonempty if and only if α ∈ A.

Proof. Let f ∈ CA and take a point x ∈ Acf . Without loss of generality,

assume that x = 0. Write f(z) =
∑2n
j=1 cjz

αj with |c1| ≥ |c2| ≥ . . . ≥ |c2n|.
Suppose the complement component containing x has order α. We will show
that α = α1. There is no loss of generality in assuming that α1 = 0 and that
c1 ≥ 0, otherwise we divide f by c1z

α1 . For each k = 2, . . . , n + 1 choose
ak ∈ L orthogonal to α2, . . . , αk−1, αk+1, . . . , αn+1 (ak is uniquely determined
up to scalar multiplication) and a point zk ∈ Log−1(0) such that cjz

αj

k ≥ 0 for
j = 2, . . . , n+ 1, j 6= k. Since Re f(ζakzk) ≥ |c1|+ . . .+ |ck−1|+ |ck+1|+ . . .+
|cn+1| − |ck| − |cn+2| − . . .− |c2n| ≥ 0 whenever |ζ| = 1 it follows that

〈α, ak〉 =
1

2πi

∫

|ζ|=1

d log f(ζakzk) = 0.

Since a2, . . . , an+1 is a basis for LR it follows that α = 0 = α1 as required. �

Theorem 13. Let f ∈ CA and let B ⊂ A. Then there exists a polynomial
g ∈ CB such that Eα(f + g) = ∅ for all α ∈ B.

Proof. We may assume that Pf = convA. Suppose B contains some vertices
of Pf and let B0 = B ∩ vertPf . We begin by taking g ∈ CB0 so that gα = −fα
for all α ∈ B0. Then Pf+g does not contain any point of B0. If BrB0 contains
vertices of Pf+g the procedure can be repeated. Hence we can assume from
the beginning that B does not contain any vertices of Pf . This implies that
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mα(f + g) is continuous as a function of g ∈ CB (with values in R∪{+∞}) for
all α. Assume also that fα = 0 for all α ∈ B. Let

Xα = {g ∈ CB ;Eα(f + g) = ∅}

and
Yα = {g ∈ CB ;mα(f + g) > 1/2}

for all α ∈ B. By Lemma 1, Yα is an open neighbourhood of Xα. Let Vα be any
open neighbourhood of Xα in Yα and let φα be smooth functions defined in CB

which satisfy φα(g) = exp(−Φα(f + g)) outside Vα. Then φα is holomorphic
outside Vα and by (10)

|gαφα(g)− 1| ≤ Cmα(f + g), g /∈ Yα

where C is a constant (we may take C = 2e). Consider the differential form

ω =
∧

α∈B

(∂̄φα ∧ dgα) =
∧

α∈B

(dφα ∧ dgα).

Notice that ω has its support in ∩Vα. Hence, if it can be shown that ω 6= 0,
it will follow that ∩Vα 6= ∅. Since Vα were arbitrarily small neighbourhoods of
Xα and Xα are closed this implies that ∩Xα 6= ∅, which is precisely what we
want to prove.

To prove that ω 6= 0, we will evaluate its integral over CB . Order the
elements in B = {α1, . . . , αk} and let dg = dgα1

∧. . .∧dgαk
and φ = φα1

. . . φαk
.

Lemma 2. Let D ⊂ CB be a polydisc centered at the origin whose distinguished
boundary ∂′D does not meet ∪Yα, and let ψ be holomorphic in a neighbourhood
of D. Then

∫

D

ψω =

∫

∂′D

ψφdg.

Proof. Use induction on the number of elements in B. If k = 1 this is a
simple application of Stokes’ theorem. In the general case let B ′ = B r {α1},
ω′ =

∧
α∈B′(∂̄φα ∧ dgα), and write D = D1 ×D′ with D1 ⊂ C and D′ ⊂ CB′

.
Since mα is decreasing as a function of |gα| and increasing as a function of |gβ|
for any β 6= α, it follows that ∂D1 ×D′ does not intersect Yα1

and D1 × ∂D′

does not intersect ∩α∈B′Yα. Hence φα1
is holomorphic on ∂D1×D′ and ω′ = 0

on D1 × ∂D′. By Stokes’ theorem and the inductive hypothesis it follows that

∫

D

ψω =

∫

∂D

ψφα1
dgα1

∧ ω′ =

∫

∂D1

dgα1

∫

D′

ψφα1
ω′

=

∫

∂D1

dgα1

∫

∂′D′

ψφdg′ =

∫

∂′D

ψφdg. �

Returning to the proof of the theorem, let s : LR → R be a strictly concave
function which is positive on A. Let D(t) ⊂ CB be the polydisc {g ∈ CB ; |gα| <
ets(α)}. For large t, we then have ts(β) > log |fβ|. For every α ∈ A there is
some xα ∈ LR such that s(α)+ 〈α, xα〉 > s(β)+ 〈β, xα〉 for all β 6= α. It follows
that mα(f + g) ≤ mα(f + g; txα) → 0 uniformly for g ∈ ∂ ′D(t) as t→ +∞ for
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all α ∈ B. In particular, the hypothesis of Lemma 2 is satisfied for large t and
ψ ≡ 1. It follows that

∫

CA

ω = lim
t→+∞

∫

∂′D(t)

φ dg = lim
t→+∞

∫

∂′D(t)

dg

gα1
. . . gαk

= (2πi)k,

so that certainly ω 6= 0. This completes the proof. �

Corollary 5 ([27]). Let f ∈ CA and let B,C be disjoint subsets of A. Then
there exists a polynomial g ∈ CB∪C such that Eα(f + g) 6= ∅ for all α ∈ B and
Eα(f + g) = ∅ for all α ∈ C.

Proof. Assume that fα = 0 for all α ∈ B ∪ C. Let N be the number of
elements in A and take a strictly concave function s which is positive on A. For
every α ∈ A, take a point xα ∈ LR such that s(α) + 〈α, xα〉 > s(β) + 〈β, xα〉
for all β ∈ Ar {α}. After multiplying s by a large constant and modifying xα
accordingly, we may assume that

s(α) + 〈α, xα〉 > s(β) + 〈βxα〉+ logN (17)

and that s(α) > log |fα| for all α ∈ A. Now take a polynomial g1 ∈ CB such
that log |gβ | = s(β) for all β ∈ B. By Theorem 13 there is a polynomial g2 ∈ CC

such that Eγ(f + g1 + g2) = ∅ for every γ ∈ C. Write h = f + g1 + g2 and
take an α ∈ A with log |hα| − s(α) maximal. Then it follows from (17) that
mα(h, xα) < 1, so that Eα(h) 6= ∅. Hence α /∈ C, but then by the construction
of s and g1, log |hα| − s(α) ≤ 0. Since log |hβ | = s(β) for all β ∈ B, it follows
that Eβ(h) 6= ∅ for all such β. Therefore g = g1+g2 has the required properties.
�

Corollary 6. If P is a lattice polytope in L∗R and A is a subset of P ∩ L∗

containing all vertices of P , then there is a Laurent polynomial f , with Pf = P
such that Eα(f) is nonempty precisely if α ∈ A. In particular, the estimates in
Corollary 4 are sharp.

One might also try to prove statements about the topology of the sets UAα .
Since UAα is invariant under multiplication by nonzero scalars, it is reasonable to
consider the projective sets ŨAα = {[f ]; f ∈ UAα } ⊂ PCA. The following result
is most conveniently stated in the projective setting.

Theorem 14 ([27]). The intersection of the complement of ŨAα with any com-
plex line in PCA is nonempty and connected.

Remark. This is indeed a very special statement. However, it is just about
all that can be said about the topology of the intersection of a general ŨAα with
a general complex line. For instance, the intersection of ŨAα with a complex
line can have any number of connected components, as Example 5 in section 9
shows. It seems to be an open question whether UAα always is connected.

Proof. For any f ∈ CA, let

uα(f) = inf
x∈LR

(Nf (x)− 〈α, x〉)

= Re Φα(f) if f ∈ UAα .
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These are plurisubharmonic as a consequence of Kiselman’s minimum principle
(see [16]) and pluriharmonic in UAα .

Let l be a complex line in PCA. If l is contained in the complement of
ŨAα there is nothing to prove. Otherwise, take two points on l represented by
Laurent polynomials f and g with g ∈ UAα . Let K = {t ∈ C; f + tg /∈ UAα } and
write Φ(t) = Φα(f + tg) for t ∈ C \K and u(t) = uα(f + tg). We want to show
that K is connected. Suppose K ′ is a closed and relatively open subset of K.
Let ω be a bounded open set with smooth boundary such that K ′ = K ∩ω and
define

N(K ′) =
1

2π

∫

∂ω

d Im Φ.

Then N(K ′) is an integer, and if K ′,K ′′ are disjoint, N(K ′ ∪K ′′) = N(K ′) +
N(K ′′). We intend to show that N(K ′) ≥ 1 whenever K ′ is nonempty and that
N(K) = 1. From this it follows that K is nonempty and connected.

First, since u is subharmonic

1

2π

∫

∂ω

d Im Φ =

∫

∂ω

dcu =

∫

ω

ddcu ≥ 0

where dc = (∂ − ∂̄)/2πi. Equality occurs if and only if u is harmonic in ω.
In this case, Φ can be continued analytically across ω. For the same reason,
Φα(f + tg + szν) has an analytic continuation to t ∈ ω for all ν ∈ L∗ and
sufficiently small s. Set

cν(t) =
∂

∂s
Φα(f + tg + szν)

∣∣
s=0

and consider the Laurent series
∑

ν∈L∗ cν(t)z
−ν . When t ∈ ∂ω it follows from

Theorem 5 that this is a Laurent series expansion of 1/(f + tg) which converges
in Log−1(Eα(f + tg)). It follows from the maximum principle that the series is
convergent for all t ∈ ω. This implies that Acf+tg has a component of order α
for all t ∈ ω, which means that K ′ = ∅.

Hence N(K ′) ≥ 1 if K ′ is nonempty. From the fact that

Φ(t) = log t+ Φα(f/t+ g) = log t+ Φα(g) +O(|t|−1)

looks asymptotically like log t when t → ∞ it follows that N(K) = 1. This
completes the proof. �

6 Convexity of the Ronkin function

According to Theorem 1, the function Nf is affine linear precisely in the com-
plement of the amoeba of f . This section is concerned with the question of how
much Nf deviates from being linear at points in the amoeba.

If u is a smooth convex function, its Hessian

Hess(u) =

(
∂2u

∂xj∂xk

)

is a positive definite matrix which in a certain sense measures how convex u is.
The trace and determinant of the Hessian matrix are respectively the Laplace
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and the Monge-Ampère operator. We will see that the Monge-Ampère operator
has useful properties for studying convexity of the function Nf .

After a brief discussion of the Monge-Ampère operator we define the Monge-
Ampère measure µf of the function Nf . One motivation for choosing to work
with the Monge-Ampère operator is Theorem 15, which relates the total mass
of µf to the Newton polytope Pf . Next we relate the measure µf to local
properties of the hypersurface f−1(0). Finally, the Monge-Ampère measure is
used to derive an estimate on the area of amoebas in the two dimensional case.
It turns out, that the amoebas with maximal area, for a give Newton polytope,
correspond to polynomials defining so-called Harnack curves which arise in real
algebraic geometry.

6.1 The Monge-Ampère operator

Let Ω be a domain in Rn. The Monge-Ampère operator is defined on smooth
convex functions in Ω as the determinant of the Hessian matrix. More precisely,

Mu = det Hess(u) · λ (18)

is called the Monge-Ampère measure of u, where λ denotes Lebesgue measure.
The reason for defining Mu as a measure is that the definition can then be
extended to all convex functions without any requirements on smoothness. For
an arbitrary convex function u and a Borel set E,

Mu(E) = λ(gradu(E))

where gradu(E) is defined by (7) and (8). It can be shown, although it is not
entirely obvious, that this defines a positive Borel measure Mu for any convex
function u. Moreover, M is a continuous operator from the space of convex
functions with the topology of uniform convergence on compact sets, to the
space of measures with the weak topology. A good reference for the Monge-
Ampère operator is [24].

When n > 1, the Monge-Ampère operator is not linear. However, it can
be turned into a multilinear operator, taking n convex functions as arguments.
The construction is described in Proposition 2. This multilinear operator will
be called the mixed Monge-Ampère operator in analogy with the term mixed
volume in the theory of convex bodies.

Let A be a real n×n matrix whose entries are considered as indeterminates.
The determinant of A is then a homogeneous polynomial of degree n. From this
it follows that

det(A1, . . . , An) =
1

n!

n∑

k=1

∑

1≤j1<...<jk≤n

(−1)n−k det(Aj1 + . . .+Ajk ). (19)

defines a symmetric multilinear form on the space of all n × n matrices, with
the property that detA = det(A, . . . , A). It is known that when A1, . . . , An are
positive definite (in particular, symmetric) det(A1, . . . , An) is positive. In this
case it actually holds that (see [1])

det(A1, . . . , An) ≥ (detA1 . . . detAn)
1/n. (20)

From this it is easy to deduce
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Proposition 2. There exists a unique operator M̃ taking n convex functions as
arguments with the properties that M̃(u1, . . . , un) is a positive measure depend-

ing multilinearly and symmetrically on u1, . . . , un and M̃(u, . . . , u) = Mu for
every u.

Proof. If there exists an operator with the required properties, it is easy to
show that it must satisfy

M̃(u1, . . . , un) =
1

n!

n∑

k=1

∑

1≤j1<...<jk≤n

(−1)n−k M(uj1 + . . .+ ujk ). (21)

Hence uniqueness is established. To prove existence, we define M̃ by the formula
(21), and prove that it has the required properties.

If u1, . . . , un are two times differentiable and we set Aj = Hess(uj), it follows

that M̃(u1, . . . , un) = det(A1, . . . , An) · λ is a positive measure depending mul-

tilinearly and symmetrically on u1, . . . , un and that M̃(u, . . . , u) = M(u). The
general case follows by approximating uj with smooth functions and passing to
the limit. �

When u1, . . . , un are convex functions there is in general no geometric in-
terpretation of M̃(u1, . . . , un)(E) in terms of the gradient images graduj(E).
However, if E = Rn we have the following

Proposition 3. For a convex function u defined in Rn, let Ku be the closure
of gradu(Rn). Then Ku is convex, and if it is also compact, then the total mass
of Mu equals Vol(Ku). If Ku1

, . . . ,Kun
are all compact, then the total mass of

M̃(u1, . . . , un) is equal to the mixed volume Vol(Ku1
, . . . ,Kun

).

Proof. Assume without loss of generality that u(0) = 0. For t ≥ 1 define
ut(x) = u(tx)/t. Then ut is an increasing family of convex functions and
u∞(x) = suput(x) is a positively homogeneous convex function with values
in R ∪ {+∞}. Let K ′

u = {ξ; 〈ξ, x〉 ≤ u∞(x), ∀x ∈ Rn}. It is clear that K ′
u is a

closed convex set. If ξ ∈ gradu(Rn), then u(x) ≥ c+ 〈ξ, x〉 for some constant c,
hence ut(x) ≥ c/t+ 〈ξ, x〉 and u∞(x) ≥ 〈ξ, x〉. It follows that gradu(Rn) ⊂ K ′

u.
On the other hand, if ξ ∈ intK ′

u, then u∞(x) − 〈ξ, x〉 ≥ c|x| for some constant
c > 0. It follows that for sufficiently large t, ut(x) − 〈ξ, x〉 > 0 when x ∈ ∂B,
where B is the unit ball, so ξ ∈ gradut(B) ⊂ gradu(Rn). Similarly, if ξ ∈
relintK ′

u it follows that ξ ∈ gradu(Rn). Hence relintK ′
u ⊂ gradu(Rn) ⊂ K ′

u,
and it follows that Ku = K ′

u is convex. It follows also that the total mass of
Mu is equal to Vol(Ku). Moreover, it is clear that (u + v)∞ = u∞ + v∞ for
all convex functions u and v, and if Ku and Kv are compact this implies that
Ku+v = Ku + Kv. Hence M̃(u1, . . . , un) and Vol(Ku1

, . . . ,Kun
) both depend

multilinearly on u1, . . . , un. Since we have already shown that the total mass of
M̃(u, . . . , u) = Mu is equal to Vol(Ku, . . . ,Ku) = Vol(Ku) it follows that the

total mass of M̃(u1, . . . , un) is equal to Vol(Ku1
, . . . ,Kun

). �

There is also a complex version of the Monge-Ampère operator. If U is a
smooth plurisubharmonic function defined in Cn, then integration of the dif-
ferential form (ddcU)n (where dc = (∂ − ∂̄)/2πi) defines the Monge-Ampère
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measure of U . The multilinear version of the complex Monge-Ampère measure
is defined by integrating the form ddcU1 ∧ . . . ∧ ddcUn where U1, . . . , Un are
smooth plurisubharmonic functions. The complex Monge-Ampère operator can
be extended to a continuous operator from the space of continuous plurisubhar-
monic functions with the topology of uniform convergence on compact sets, to
the space of measures with the weak topology (see [2]).

If u is a convex function defined in Rn, we may define a plurisubharmonic
function in Cn

∗ by

U(z) = u(Log z). (22)

Similarly, if U is a plurisubharmonic function defined in Cn
∗ , then

u(x) =

∫

Log−1(x)

U(z) dη(z) (23)

is a convex function defined in Rn. The real and complex Monge-Ampère op-
erators are related by the following properties.

Proposition 4. If u1, . . . , un are convex functions and Uj(z) are defined by
(22), then

∫

E

M̃(u1, . . . , un) =
1

n!

∫

Log−1(E)

ddcU1 ∧ . . . ∧ ddcUn. (24)

for any Borel set E. If U1, . . . , Un are continuous plurisubharmonic functions
and uj(x) are defined by (23), then

∫

E

M̃(u1, . . . , un) =
1

n!

∫

Tn2

∫

Log−1(E)

ddcU1(t
(1)z) ∧ . . . ∧ ddcUn(t(n)z)dη′(t)

(25)

where Tn2

denotes the real n2-dimensional torus {t = (t
(k)
j ); t

(k)
j ∈ C, |t(k)j | =

1, j, k = 1, . . . , n} with the normalized Haar measure η′, and t(k) = (t
(k)
1 , . . . , t

(k)
n )

acts on Cn
∗ by componentwise multiplication.

Proof. We first prove (24) in the case where u1 = . . . = un = u is a smooth
function (see also [23]). Let U(z) = u(Log z). Since ddcU = i∂∂̄U/π we have

(ddcU)n = n!

(
i

π

)n
det

(
∂2U

∂zj∂z̄k

)
dz1 ∧ dz̄1 ∧ . . . ∧ dzn ∧ dz̄n.

Moreover, since

∂2U

∂zj∂z̄k
=

1

4zj z̄k

∂2u

∂xj∂xk

it follows that

det

(
∂2U

∂zj∂z̄k

)
=

1

4n|z1|2 . . . |zn|2
det

(
∂2u

∂xj∂xk

)
.
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Writing zj = exp(xj + iyj), we have dzj ∧dz̄j = −2i|zj|2 dxj ∧dyj and it follows
that

(ddcU)n =
n!

(2π)n
det

(
∂2u

∂xj∂xk

)
dx1 ∧ dy1 ∧ . . . ∧ dxn ∧ dyn.

Hence
∫

Log−1(E)

(ddcU)n

=
n!

(2π)n

∫

E

det

(
∂2u

∂xj∂xk

)
dx1 ∧ . . . ∧ dxn

∫

0<yj<2π

dy1 ∧ . . . ∧ dyn

= n!

∫

E

Mu.

The proof of (24) is complete in this special case. The case with arbitrary
convex u is obtained by a limiting procedure. Recall that both the real and
the complex Monge-Ampère operators can be extended in a continuous way to
all convex and continuous plurisubharmonic functions respectively. Finally, the
result is extended to arbitrary convex functions u1, . . . , un by observing that
both sides of (24) depend multilinearly and symmetrically on u1, . . . , un.

To prove (25), let Uj be continuous plurisubharmonic functions and let uj
be defined by (23). Also, write Ũj(z) = uj(Log z). Then it follows by reversing
the order of integration that
∫

Tn2

∫

Log−1(E)

ddcU1(t
(1)z) ∧ . . . ∧ ddcUn(t(n)z)dη′(t)

=

∫

Log−1(E)

ddcŨ1 ∧ . . . ∧ ddcŨn = n!

∫

E

M̃(u1, . . . , un). �

6.2 Monge-Ampère measures on amoebas

Throughout this section, Ω denotes a convex domain in Rn and f, f1, f2, . . .
denote holomorphic functions, all defined in Log−1(Ω) unless specified otherwise.

Definition 10 ([22]). Define µf to be the Monge-Ampère measure MNf , and

µf1,... ,fn
to be the mixed Monge-Ampère measure M̃(Nf1 , . . . , Nfn

).

Theorem 15. The measure µf has its support in Af , and µf1,... ,fn
has its

support in Af1 ∩ . . . ∩ Afn
. If f, f1, . . . , fn are Laurent polynomials, then the

total mass of µf equals Vol(Pf ) and the total mass of µf1,... ,fn
equals the mixed

volume Vol(Pf1 , . . . , Pfn
).

Proof. Since Nf is affine linear outside Af it follows from the definition of
the Monge-Ampère operator that suppµf ⊂ Af and that suppµf1,... ,fn

⊂ Af1 ∩
. . .∩Afn

. The statement about the total mass follows directly from Proposition
3 and Theorem 2. �

Theorem 16 ([22]). If E is a Borel set in Ω, then µf1,... ,fn
equals the average

number of solutions in Log−1(E) to the system of equations

fj(t
(j)
1 z1, . . . , t

(j)
n zn) = 0 j = 1, . . . , n (26)

as t = (t
(j)
k ) ranges over the torus Tn2

.
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In the proof we will need the following lemma.

Lemma 3. Let V be an analytic set in a neighbourhood of a compact set D1 ×
D2 ⊂ Ck ×Cm. Then there exists a constant C such that V ∩ {z} ×D2 either
has positive dimension or has at most C points for every z ∈ D1.

Proof. Take any point, say (0, 0) in D1×D2. It suffices to prove the statement
with D1 and D2 replaced by arbitrarily small neighbourhoods of (0, 0). Use
induction on m. If dim(V ∩ {0} ×D2) < m then V ∩D1 ×D2 can be properly
projected to D1 × D′

2 ⊂ Ck × Cm−1, and this way the problem is reduced
to a smaller m. So we may assume that the statement is already proved when
dim(V ∩{0}×D2) < m. Assume therefore that V ⊃ {0}×D2 and let fj(z, w) =∑
fj,α(z)wα be defining functions for V near the origin. Consider the ideal

generated by all fj,α in the ring of germs of holomorphic functions, and let
g1, . . . , gr be a finite subset of the fj,α generating the same ideal. Write fj,α =∑
φj,α,lgl. Since for every l there is some j, α with gl = fj,α we may assume that

the corresponding φj,α,l ≡ 1. Now consider the analytic set W in Ck×Cr×Cm

defined by the functions hj(z, ζ, w) =
∑
φj,α,l(z)ζlw

α. If ζ 6= 0, then some ζl 6=
0 and if j, α are such that φj,α,l ≡ 1, it follows that the function w 7→ hj(z, ζ, w)
is not identically 0 for any z. Hence dim(W ∩ {z} × {ζ} ×D2) < m whenever
ζ 6= 0. By the inductive hypothesis we may then assume that W ∩{z}×{ζ}×D2

either has positive dimension or has no more than C points for all z ∈ D1 and
all ζ with |ζ| = 1. But since hj(z, tζ, w) = thj(z, ζ, w), the same estimate holds
for all ζ 6= 0. By taking ζl = gl(z), it follows that V ∩ {z} × D2 either has
positive dimension or has no more than C points for any z ∈ D1. �

Proof of Theorem 16. If Uj are smooth plurisubharmonic functions which
converge to log |fj |, then uj defined by (23) converge to Nfj

. By the continuity

of the real Monge-Ampère operator this implies that M̃(u1, . . . , un) converges
to M̃(Nf1 , . . . , Nfn

) in the weak topology. Also ddcU1(t
(1)z)∧ . . .∧ddcUn(t(n)z)

converges weakly to the sum of point masses at the solutions of f1(t
(1)z) = . . . =

fn(t
(n)z) = 0. Hence the theorem follows by using (25) and passing to the limit

if we only show that
∫

Log−1(E)

ddcU1(t
(1)z) ∧ . . . ∧ ddcUn(t(n)z)

remains uniformly bounded as Uj → log |fj | for almost all t ∈ Tn2

. Here we
may assume that E is compact and that Uj is of the form Uj = ψ(log |fj |) where
ψ is a convex function, constant near −∞, which will converge to the identity
function. Let ft(z) = (f1(t

(1)z), . . . , fn(t
(n)z)). Then ft(z) is a holomorphic

function in z and t defined for z in a neighbourhood of Log−1(E) and t in a

complex neighbourhood of Tn2

. By Lemma 3 there exists a constant C such that
the number of solutions z in Log−1(E) to the equation ft(z) = w is bounded

above by C for almost all t ∈ Tn2

and w ∈ Cn. Since ω = ddcψ(log |w1|)∧ . . .∧
ddcψ(log |wn|) induces a positive measure on Cn with total mass 1, it follows
that

0 ≤
∫

Log−1(E)

f∗t ω ≤ C

for almost all t, and this completes the proof. �
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Theorem 16 can be thought of as a local analog of Bernstein’s theorem relating
the number of solutions to a system of polynomial equations to the mixed volume
of the Newton polytopes. In fact, Bernsteins result can rather easily be derived
from Theorem 16.

Corollary 7 (Bernstein’s theorem [3]). Let P1, . . . , Pn be integer polytopes
in Rn and let f1, . . . , fn be generic Laurent polynomials subject to the restriction
that Pfj

= Pj . Then the number of solutions in Cn
∗ of the system of equations

f1(z) = . . . = fn(z) = 0 is equal to n! Vol(P1, . . . , Pn).

Proof. We assume it is known that the number of solutions is equal to some
constant N when (f1, . . . , fn) is outside some subvariety in the space of n-tuples
of polynomials with Newton polytopes P1, . . . , Pn. If f1(z) = . . . = fn(z) = 0
has the generic number of solutions, then the same is true for f1(t

(1)z) = . . . =

fn(t
(n)z) = 0 for almost all t ∈ Tn2

. It follows from Theorem 15 and Theorem
16 that N = n! Vol(P1, . . . , Pn). �

Theorem 17. If u1, . . . , un−1 are convex functions defined in Ω and Uj(z) =
uj(Log z), then

n!

∫

E

M̃(u1, . . . , un−1, Nf ) =

∫

Log−1(E)∩f−1(0)

ddcU1 ∧ . . . ∧ ddcUn−1

for any Borel set E ⊂ Ω.

Proof. Since ddc log |f | is equal to the current of integration along f−1(0) it
follows from (24) that

n!

∫

E

M̃(u1, . . . , un−1, Nf ) =

∫

Log−1(E)

ddcU1 ∧ . . . ∧ ddcUn−1 ∧ ddcNf (Log z)

=

∫

Log−1(E)

ddcU1 ∧ . . . ∧ ddcUn−1 ∧ ddc log |f |

=

∫

Log−1(E)∩f−1(0)

ddcU1 ∧ . . . ∧ ddcUn−1. �

Corollary 8 ([22]). If ∆ denotes the Laplace operator and E is any Borel set
in Ω, then

(n− 1)!

∫

E

∆Nf =

∫

Log−1(E)∩f−1(0)

ωn−1

where ω = (|z1|−2dz̄1 ∧ dz1 + . . .+ |zn|−2dz̄n ∧ dzn)/2πi. Hence (n− 1)!∆Nf is
the direct image of ω|f−1(0) (considered as a measure) under the mapping Log.

Proof. This follows immediately from Theorem 17 since

∆Nf = n M̃(|x|2, . . . , |x|2, Nf )

and ω = ddc|Log z|2. �
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Finally, we shall give a formula for µf in the two-dimensional case which has
some interesting consequences. Let Ω be a convex domain in R2 and let f be a
holomorphic function in Ω. Let F be the set of critical values of the mapping
Log : f−1(0) −→ R2, and take a small open set V in Af r F . Let k be the
cardinality of f−1(0) ∩ Log−1(x) for x ∈ V . Then there exist smooth functions
φj , ψj , j = 1, . . . , k defined in V such that x 7→ (exp(x1 + iφj(x)), exp(x2 +
iψj(x))) are local inverses of Log, i.e. f−1(0) ∩ Log−1(V ) = ∪kj=1{(exp(x1 +
iφj(x)), exp(x2 + iψj(x)));x = (x1, x2) ∈ V }.

Theorem 18 ([22]). With notations as in the preceding paragraph, the Hessian
of Nf is given in V by the formula

HessNf =
1

2π

k∑

j=1

±
(
∂ψj/∂x1 ∂ψj/∂x2

−∂φj/∂x1 −∂φj/∂x2

)
. (27)

The summands in the right hand side are positive definite matrices with deter-
minant equal to 1.

Proof. Differentiating the integral (2) definingNf with respect to x1 we obtain

∂Nf
∂x1

= Re
1

(2πi)2

∫

Log−1(x)

∂f/∂z1 dz1 dz2
f(z)z2

=
1

2πi

∫

log |z2|=x2

n(f(·, z2), x1)
dz2
z2

=
1

2π

∫ 2π

0

n(f(·, ex2+iy2), x1)dy2.

If f is a Laurent polynomial, n(f(·, z2), x1) is the number of zeros minus the
number of poles of the function z1 7→ f(z1, z2) inside the disc {log |z1| < x1}. In
general, n(f(·, z2), x1) is an integer valued function such that n(f(·, z2), x1) −
n(f(·, z2), x′1) is equal to the number of zeros of z1 7→ f(z1, z2) in the annulus
{x′1 < log |z1| < x1} when x′1 < x1. Hence, the integrand in the last integral is a
piecewise constant function with jumps of magnitude 1 at y2 = ψj(x). It follows
that the gradient of ∂Nf/∂x1 is given by a sum of terms ±(2π)−1 gradψj . This
proves the first row of the identity (27), up to sign changes. The correct sign of
each term can be found by observing that n(f(·, ex2+iy2), x1) is increasing as a
function of x1, hence all the terms contributing to ∂2Nf/∂x

2
1 should be positive.

A similar computation involving ∂Nf/∂x2 proves the second row. However, we
have not yet shown that the choices of signs in the two rows are consistent.

We shall now prove that all the terms on the right hand side of (27) are
symmetric, positive definite matrices with deteminant equal to 1. Take a point
x and an index j. Differentiating the expression f(ex1+iφj (x), ex2+iψj(x)) = 0
with respect to x1 and x2 yields the equations

z1
∂f

∂z1

(
1 + i

∂φj
∂x1

)
+ z2

∂f

∂z2
i
∂ψj
∂x1

= 0

z1
∂f

∂z1
i
∂φj
∂x2

+ z2
∂f

∂z2

(
1 + i

∂ψj
∂x2

)
= 0.

Writing a = z1∂f/∂z1, b = z2∂f/∂z2, these equations have the solution
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(
∂ψj/∂x1 ∂ψj/∂x2

−∂φj/∂x1 −∂φj/∂x2

)
=

1

Im(āb)

(
|a|2 Re(āb)

Re(āb) |b|2
)
.

This matrix clearly has determinant 1. Changing the sign if Im(āb) < 0 we also
have that the diagonal elements are positive, so the matrix is positive definite.
Since we have already observed that the diagonal elements in the right hand
side of (27) must be positive, it follows that these matrices are positive definite
with determinant equal to 1. �

Corollary 9. If f is a Laurent polynomial in two variables, then µf ≥ π−2λ|Af

where λ denotes Lebesgue measure.

Proof. Since the set F of critical values of Log : f−1(0) → R2 is a null set
for Lebesgue measure it suffices to prove the inequality in the complement of
this set. If A1, A2 are 2 × 2 positive definite matrices, then it follows from
the inequality (20) that det(A1 + A2) = detA1 + detA2 + 2 det(A1, A2) ≥
detA1 + detA2 + 2

√
detA1 detA2. Repeated use of this inequality leads to√

det(A1 + . . .+Ak) ≥
√

detA1 + . . . +
√

detAk. Applying this inequality to
the sum (27), which contains at least two terms for every x ∈ Af r F , yields
the result. �

Theorem 19 ([22], [21]). If f is a Laurent polynomial in two variables, then
Area(Af ) ≤ π2 Area(Pf ). When Pf has positive area, equality holds precisely if
Log−1(x) intersects f−1(0) in at most two points for every x ∈ R2 and there
exist constants a, b1, b2 ∈ C∗ such that af(b1z1, b2z2) is a polynomial with real
coefficients.

Proof. The inequality Area(Af ) ≤ π2 Area(Pf ) follows immediately from
Corollary 9 and Theorem 15. Notice that equality holds if and only if µf =
π−2λ|Af

.

Suppose that Log−1(x) ∩ f−1(0) has at most two points for all x ∈ R2

and that af(b1z1, b2z2) has real coefficients. Without loss of generality we may
assume that a = b1 = b2 = 1. Then the sum (27) contains precisely two terms
for all x ∈ Af and since complex conjugation of the coordinates leaves f−1(0)
unchanged, we have φ2 = −φ1, ψ2 = −ψ1. This means that the two terms are
actually equal, and it follows that det Hess(Nf ) = π−2 and hence µf = π−2λ
in Af r F . Now F is a null set with respect to Lebesgue measure, so if we can
show that µf (F ) = 0 it will follow that µf = π−2λ|Af

, which is what we want
to prove.

Let F̃ be a real algebraic curve containing the set of critical values of the
mapping f−1(0) → R2 : (z1, z2) 7→ (|z1|2, |z2|2). Consider the product space
C2
∗ × T2 and let π1 : C2

∗ × T2 → R2 and π2 : C2
∗ × T2 → T2 be defined

by π1(z, t) = (|z1|2, |z2|2) and π2(z, t) = t. Let C = π−1
1 (F̃ ) ∩ {f(z1, z2) =

f(t1z1, t2z2) = 0}. Since Log−1(x) ∩ f−1(0) is a finite set for every x ∈ R2,
it follows that the projection π1 : C → F̃ has finite fibers, hence C is a real
curve. It follows that π2(C) is a null set in T2, which means that the system of
equations f(z1, z2) = f(t1z1, t2z2) = 0 has no solutions in Log−1(F ) for almost
all t ∈ T2. It follows from Theorem 16 that µf (F ) = 0 as required.
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Suppose now conversely that µf = π−2λ|Af
. First we show that f is irre-

ducible. If K,L are compact convex sets in R2, then it follows from the mono-
tonicity properties of mixed volumes that Area(K + L) ≥ Area(K) + Area(L)
with strict inequality unless either K or L is a point or K and L are two parallel
segments. If f = gh is a nontrivial factorization of f we therefore have

Area(Af ) ≤ Area(Ag) + Area(Ah) ≤ π2(Area(Pg) + Area(Ph))

< π2 Area(Pf )

contradicting the assumption that Area(Af ) = π2 Area(Pf ).
It follows from Theorem 18 that Log−1(0) ∩ f−1(0) has at most two points

for all x outside F and that the two terms in the sum (27) are equal. After
a change of coordinates (z1, z2) 7→ (z1/b1, z2/b2) we may then assume that
φ2 = −φ1, ψ2 = −ψ1 in a neighbourhood of some point x ∈ Af rF (such points
exist by the assumption that Area(Af ) = π2 Area(Pf ) > 0). But this means

that f(z̄1, z̄2) vanishes on an open subset of f−1(0). Since f is irreducible it
follows that f(z1, z2) and f(z̄1, z̄2) are equal up to a constant multiple. Hence
af(z1, z2) has real coefficients for a suitable constant a.

It remains to be shown that Log−1(x0) ∩ f−1(0) has at most two points for
all x0 ∈ F . To do this, we consider two cases. Consider a discrete point of
Log−1(x0) ∩ f−1(0) and a small neighbourhood U of it in f−1(0). Now, either
Log(U) contains a neighbourhood of x0, or there is an open half plane H with
x0 on its boundary such that Log−1(x) ∩ U has two points for all x ∈ H near
x0. If there are three discrete points in Log−1(x0) this implies that one can
find x outside F such that Log−1(x)∩ f−1(0) contains more than two points, a
contradiction. If instead Log−1(x0)∩ f−1(0) contains a real curve, then it must
be of the form zα = c for some α ∈ Z2 and c ∈ C, otherwise µf would have
a point mass at x0 by Theorem 16. But then f has a factor zα − c, which is
impossible since Area(Pf ) is positive and f is irreducible. �

7 Amoebas and real algebraic geometry

A relation between amoebas and real algebraic geometry has recently been dis-
covered by Mikhalkin, and who used amoebas to obtain results about the topol-
ogy of real algebraic curves (see [20]). In this section we briefly outline the
background to these results.

The study of the topology of real algebraic curves can be traced back to the
paper [12] by Harnack from 1876. The topology of real curves is also the subject
of Hilberts sixteenth problem. A more recent development in the theory is the
patchworking technique of Viro.

Throughout this section, P will denote a lattice polygon in R2, and F1, . . . , Fk
denote the edges of P , numbered in cyclic order. Let g be the number of lattice
points in the interior of P , and let the number of lattice points on Fj be dj + 1.
The polygon P detemines a toric variety XP which is a compactification of the
complex torus C2

∗. The closure of R2
∗ in XP is a real toric variety, which we

denote RXP . (See section 2 for the notations being used for toric varieties.)
Let f be a Laurent polynomial with real coefficients whose Newton polytope

is P , and let Vf = f−1(0) be the hypersurface defined by f in C2
∗. Also let V f

be the closure of Vf in XP and let RVf and RV f be the intersection of RXP

with Vf and V f respectively.
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Theorem 20 (Harnack [12], Khovanskii [15]). The genus of V f is equal
to g and the number of intersection points between V f and V (Fj) is equal to dj .
Moreover, RV f has at most g + 1 connected components.

Definition 11 (see [14], [20], [21]). A Laurent polynomial f is said to define
a Harnack curve if the following conditions hold.

(i) RV f consists of g + 1 connected components.

(ii) One of these components can be divided into k consecutive arcs γ1, . . . , γk
such that γj intersects V (Fj) in dj points and γj does not intersect V (Fl)
if j 6= l.

(iii) None of the other components of RV f intersects V (Fj), j = 1, . . . , k.

Let A denote the set of lattice points in P and let cα be a real number for
every α ∈ A. Set

s(x) = max
α∈A

(cα + 〈α, x〉)

and let Σ′ be the subdivision of P obtained by the recipe in section 4. Assume
that the numbers cα have been chosen so that the 2-dimensional polygons in Σ′

are all triangles and that all points in A appear as vertices in Σ′.
Let f t be a family of polynomials in RA such that log |f tα| = tcα and f tα is

negative if α ∈ 2Z2 and positive otherwise.

Theorem 21 (Harnack [12], Itenberg, Viro [14], Mikhalkin [20]). For suf-
ficiently large t, f t defines a Harnack curve.

Theorem 22 (Mikhalkin [21]). A nonsingular real polynomial f defines a
Harnack curve if and only if Log−1(x) intersects Vf in at most two points for
all x ∈ R2. In this case, RVf = Vf ∩ Log−1(∂Af ).

Combining this with Theorem 19 we obtain

Corollary 10 ([21]). A nonsingular real polynomial f defines a Harnack curve
if and only if Area(Af ) = π2 Area(Pf ).

Since Harnack curves exist for every polytope P by Theorem 21 we also have

Corollary 11 ([21]). The inequality Area(Af ) ≤ π2 Area(Pf ) in Theorem 19
is sharp.

8 Amoebas of varieties of codimension greater

than 1

In this section we discuss a possible generalization of the material in previous
sections. The ideas presented are rather tentative, and we do not prove any
results. The central problem will be how the definitions of the main objects
we have studied might be carried over to a more general situation where the
hypersurface f−1(0) is replaced by an arbitrary algebraic variety.

Let V be an algebraic variety in LC∗
. We assume that V is of pure dimension

k and let r = n− k be its codimension. By the amoeba of V we shall mean the
set AV = Log(V ).
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8.1 The amoeba complement

If f is a Laurent polynomial, and V = f−1(0) is a hypersurface, the amoeba
complement AcV consists of a number of connected components. Each such
component is convex, and in particular contractible. Therefore, the topology of
AcV is determined completely by the number of connected components.

The concept of the order of a complement component plays an important
role in the study of amoebas. Notice that the order of a complement component
cannot be defined only in terms of the hypersurface V . Indeed, if f is multiplied
by an arbitrary Laurent monomial zν , then V is not changed, but the order
of each complement component is translated by the vector ν. On the other
hand, the difference between the orders of two components does not change,
so this difference may be possible to define in terms of V alone. This can be
done as follows. Let Eα and Eβ be two components of AcV whose orders are
α and β (with respect to the defining polynomial f). Take arbitrary points
zα ∈ Log−1(Eα and zβ ∈ Log−1(Eβ) and let a ∈ L. Let Cα and Cβ be the
oriented curves parametrized by ζazα and ζazβ where ζ runs along the unit
circle T in the counterclockwise direction. If B is an oriented surface in LC∗

with boundary Cα − Cβ , then 〈α − β, a〉 is equal to the number of intersection
points (counted with signs) between B and V .

We now generalize this construction to the case where the codimension r of
V is greater than 1. In this case the connected components of AcV are no longer
convex (in general) so AcV may have nontrivial homology groups. We will focus
here on Hr−1(AcV ,Z), and define a homomorphism ord : Hr−1(AcV ,Z) →

∧r
L∗,

which seems to be a natural generalization of the order of complement compo-
nents. Let c ∈ Hr−1(AcV ,Z) and a ∈ ∧r L. Since Log−1(AcV ) is homeomorphic
(in a canonical way) to Log−1(0) × AcV , ρr(a) ⊗ c defines a homology class in
H2r−1(Log−1(AcV ),Z). Let C be a (2r − 1)-cycle representing this homology
class. Since c is null homologous in LR, there exists a 2r-chain B in LC∗

whose
boundary is C. The number of intersection points between B and V depends
only on a and c and not on the choices made in selecting C and B. Moreover, the
dependence on a and c is bilinear. Hence ord(c) may be defined as the unique
element in

∧r L∗ such that 〈ord(c), a〉 is equal to the number of intersection
points between B and V for all a ∈ ∧r L.

8.2 The Ronkin function

If we try to define the function Nf entirely in terms of V = f−1(0) we face
the same problem as with the orders of complement components; when f is
multiplied by a monomial the function Nf is changed but V remains the same.
In order to rescue at least some fragment of the Ronkin function we note that
with respect to the Monge-Ampère operator these changes are of no significance.
Theorem 17 gives an explicit formula for M̃(u1, . . . , un−1, Nf ) in terms of V
where u1, . . . , un−1 are arbitrary convex functions; if Uj(z) = uj(Log z), then

M̃(u1, . . . , un−1, Nf )(E) =
1

n!

∫

Log−1(E)∩V

ddcU1 ∧ . . . ∧ ddcUn−1.
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This can easily be generalized to the case where k = dimV is arbitrary. If we
define

M̃V (u1, . . . , uk)(E) =
1

n!

∫

Log−1(E)∩V

ddcU1 ∧ . . . ∧ ddcUk,

then M̃V (u1, . . . , uk) is a positive measure with support on AV depending mul-
tilinearly on u1, . . . , uk. The interpretation of µf1,... ,fn

given in Theorem 16 is
also open to generalizations.

8.3 The Newton polytope

Finally, we propose an approach to generalized Newton polytopes. We suggest
that the Newton polytope of a variety of arbitrary dimension should be found in
the polytope algebra discovered by McMullen. Since many readers are probably
not familiar with this intriguing structure, we give a brief description here,
refering to [18] and [19] for details. A relation between the polytope algebra
and toric varieties which seems to be of interest in this context has been found
by Fulton and Sturmfels [9].

The polytope algebra Π is an abelian group generated by all polytopes in a
real vector space, which in our case will be LR. If P is a polytope, its class in Π
is denoted [P ]. The generators are subject to the relations [P +x] = [P ] for any
translation vector x (translation invariance) and [P ] + [Q] = [P ∪Q] + [P ∩ Q]
whenever P,Q and P ∪Q are polytopes (the valuation property). The polytope
algebra is the universal group for functions which are translation invariant and
satisfy the valuation property: If φ is a function from the set of all polytopes
into an abelian group which satisfies φ(P + x) = φ(P ) and φ(P ) + φ(Q) =
φ(P ∪ Q) + φ(P ∩ Q), then φ can be extended in a unique way to a group
homomorphism on Π.

A multiplication is defined on Π by the rule [P ] · [Q] = [P +Q], where P +Q
denotes the Minkowski (or vector) sum of P and Q. This operation makes Π
into a commutative ring.

There is a direct sum decomposition Π =
⊕n

r=0 Ξr where each Ξr is an
abelian group. With respect to the multiplication in Π, Ξr · Ξs = Ξr+s (here
Ξr = 0 if r > n). Moreover, each Ξr with r ≥ 1 is in a natural way a real vector
space. Loosely speaking, Ξr carries information about the r-dimensional faces
of a polytope for r = 1, . . . , n.

The component Ξ0 is isomorphic to Z and is generated by the class of a
single point, while Ξn ∼= R. The Ξn-component of a polytope is proportional
to its volume.

The subgroup Z1 =
⊕n

r=1 Ξr is a nilpotent ideal in Π. For any p ∈ Z1 one
may therefore define

log(1 + p) =
∑

j≥1

(−1)j−1 p
j

j

and

exp p =
∑

j≥0

pj

j!
.
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The functions log and exp are inverses of each other and satisfy exp(p1 + p2) =
exp p1 · exp p2 and log((1 + p1)(1 + p2)) = log(1 + p1) + log(1 + p2). For any
polytope P , [P ]− 1 belongs to Z1 and log[P ] is the Ξ1-component of [P ]. The
set {log[P ];P a polytope}, is a convex cone in Ξ1.

If P is any polytope, we write h(P, x) = supξ∈P 〈ξ, x〉 and Px = {ξ ∈
P ; 〈ξ, x〉 = h(P, x)}.

If P is a polytope, then Π(P ) denotes the subalgebra of Π generated by all
polytopes Q which are Minkowski summands of P , that is P = tQ+R for some
t > 0 and some polytope R. Also, Ξr(P ) = Ξr ∩ Π(P ). If Q is a Minkowski
summand of P , there is a mapping F 7→ QF from the faces of P to the faces of
Q; if F = Px then QF = Qx. For any face F , QF is a Minkowski summand of
F and the mapping Q 7→ [QF ] ∈ Π(F ) is translation invariant and satisfies the
valuation property, hence it induces a homomorphism Π(P ) → Π(F ), which we
will denote p 7→ pF .

Suppose now that P is a lattice polytope. For any face F of P , let L∗F denote
the sublattice of L∗ which lies in the linear subspace of L∗R parallel to F , and let
LF be the dual lattice of L∗F , which is isomorphic to a quotient of L. If G is a
face of P and F is a facet of G, the set {a ∈ LG; 〈ξ−η, a〉 ≤ 0, ∀ξ ∈ G, η ∈ F} is a
semigroup isomorphic to Z≥0. Let xFG denote the generator of this semigroup;
it is a kind of outer normal to the facet F of G. A real valued function w on
the set of all r-dimensional faces of P is called an r-weight. An r-weight w is
called a Minkowski weight if it satisfies the Minkowski relation

∑

F⊂G

w(F )xFG = 0

for every (r+1)-dimensional face G of P , where the sum is taken over all facets
F of G. (We have deviated sligtly here from McMullens treatment, since he
uses an inner product on the vector space to define the outer unit normal to a
facet of a polytope, while we use a lattice for this purpose.)

Now let Q be a Minkowski summand of P . For every r-dimensional face F
of P , the lattice L∗F determines a volume form on subspaces parallel to F . Let
w(F ) be the volume of QF with respect this volume form. It can then be shown
that w is a Minkowski weight. Similarly, any p ∈ Π(P ) determines a Minkowski
r-wieght on P for any r = 0, . . . , n. Moreover, if P is a simple polytope (that
is, exactly n facets meet at every vertex of P ), then McMullen has shown that
the set of r-weights on P is isomorphic, via the above construction, to Ξr(P ).

We are now ready to define the Newton polytope of a variety V . Let P be a
simple polytope, and assume that the toric variety XP is nonsingular. Let V be
a k-dimensional subvariety of XP which intersects V (F ) transversely for every
face F of P . Let r = n− k be the codimension of V and define an r-weight on
P by letting w(F ) be the number of intersection points between V and V (F ).
Then w is a Minkowski weight, which can be seen as follows. If G is an (r+ 1)-
dimensional face of P and α ∈ L∗G, then zα defines a rational function on V (G)
whose divisor is −∑F⊂G〈α, xFG〉V (F ). Hence

∑
F⊂G〈α, xFG〉w(F ) is equal to

the number of poles minus the number of zeros of zα on V ∩ V (G), which must
be 0. Since this is true for all α ∈ L∗G, it follows that w satisfies the Minkowski
relations. Hence w can be identified with an element in Ξr(P ), which can be
thought of as a generalized Newton polytope. If f is a Laurent polynomial
whose Newton polytope is a Minkowski summand of P , the construction may
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be applied to the closure of f−1(0) in XP . The generalized Newton polytope
obtained in this case is log[Pf ], from which Pf can be reconstructed up to
translations.

9 Examples of amoebas

To calculate explicitly the amoeba and Ronkin function of a given polynomial is
very messy in all but the simplest cases. To motivate and exemplify the theory
in the previous sections we give here some examples of polynomials for which
certain calculations can be carried out without too much effort.

Example 1. First we consider a polynomial in one variable f(z) = f0 + f1z+
. . .+fm−1z

m−1+zm = (z+a0) . . . (z+am) where it is assumed that |a1| ≤ . . . ≤
|am|. The amoeba of f is then the discrete point set {log |a1|, . . . , log |am|}. A
typical complement component of Af is an interval (log |aα|, log |aα+1|) for some
α = 1, . . . ,m− 1. The order of this component is α. In addition, there are the
two unbounded components (−∞, log |a1|) and (log |am|,+∞), whose orders are
0 and m respectively.

Suppose Acf has a component of order α and let x be a point in that com-
ponent. Then it follows that

Φα(f) =

∫

Log−1(x)

log
f(z)

zα
dη(z)

=

α∑

j=1

∫

log |z|=x

log
z + aj
z

dz

2πiz
+

m∑

j=α+1

∫

log |z|=x

log(z + aj)
dz

2πiz

=

m∑

j=α+1

log aj

= log(aα+1 . . . am).

Note that Φα has a branched analytic continuation to all polynomials without
multiple roots. The branches of this continuation correspond to various (m−α)-
element subsets of {1, . . . ,m}. It is amusing to note that the sum of all branches
of expΦα(f) is equal to fα.

Recall that for any Laurent polynomial f we haveNf (x) ≥ maxα(Re Φα(f)+
〈α, x〉) with equality in the closure of Acf . If f is a polynomial in one variable,
then Acf is dense in R and so we have

Nf (x) = max
α

(log |aα+1 . . . am|+ 〈α, x〉).

This is just a different formulation of the classical Jensen formula

1

2π

∫ 2π

0

log |f(reiθ)| dθ = log |f(0)|+
α∑

j=1

log

(
r

|aα|

)

where α is the largest index such that |aα| < r.
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Example 2. Let us write up defining equations and inequalities for the set
UAα in the simplest nontrivial case, namely for quadratic polynomials in one
variable. Let f(z) = f0 + f1z + f2z

2. The zeros of f are

−f1 ±
√
f2
1 − 4f0f2

2f2

and these have the same modulus precisely if f1 and i
√
f2
1 − 4f0f2 are linearly

dependent over R. This happens precisely if f 2
1 and 4f0f2 − f2

1 are positive
multiples of each other, or equivalently

f̄2
1 (4f0f2 − f2

1 ) ≥ 0.

Hence f ∈ U{0,1,2}1 precisely if this relation is not satisfied.

Example 3. If A ⊂ L∗ is affinely independent, and f ∈ CA, then Af =
{x;mα(f ;x) ≥ 1, ∀α ∈ A}. When A = {0, e1, . . . , en} where e1, . . . , en is the
standard basis for Zn, Af is called a hyperplane amoeba. When f is a product
of such linear factors, Af is called an arrangement of hyperplane amoebas.
Arrangements of hyperplane amoebas were studied extensively in [8].

Example 4. Next we consider polynomials in two variables of the form f(z) =
a+z1+z2+z1z2, assuming to begin with that a is an arbitrary complex constant.
It can then be shown that the amoeba of f is the set of points satisfying

|a|4 − 2|a|2e2x1 + e4x1 − 2|a|2e2x2 − (2− 8 Rea+ 2|a|2)e2x1+2x2

− 2e4x1+2x2 + e4x2 − 2e2x1+4x2 + e4x1+4x2 ≤ 0. (28)

We now specialize to the case where a is real. It turns out that the amoeba
looks rather different depending on the sign of a. Consider first the case a < 0.
The inequality (28) can then be written

(ex1+x2 − ex1 − ex2 − |a|)(ex1+x2 − ex1 + ex2 + |a|)
× (ex1+x2 + ex1 − ex2 + |a|)(ex1+x2 + ex1 + ex2 − |a|) ≤ 0.

Each of the factors vanishes on the boundary of one of the complement com-
ponents of the amoeba. Moreover, Log−1(x) intersects f−1(0) in at most two
points for every x so µf = π−2λ|Af

and the area of Af is π2 by Theorem 19.
If a > 0, there is a similar factorization

(ex1+x2 − ex1 − ex2 + |a|)(ex1+x2 − ex1 + ex2 − |a|)
× (ex1+x2 + ex1 − ex2 − |a|)(ex1+x2 + ex1 + ex2 + |a|) ≤ 0.

Notice that the fourth factor is always positive, while the first factor vanishes
on the boundaries of two complements components (those of orders (0, 0) and
(1, 1) if a < 1 and those of orders (0, 1) and (1, 0) if a > 1). The remaining
factors define two curves, each of which constitutes part of the boundary of
two different complement components. The curves intersect at their common
point of inflection (log a/2, loga/2). Moreover, Log−1(x) intersects f−1(0) in
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Figure 2: Amoebas of the polynomial f(z) = a + z1 + z2 + z1z2 for a =
−5,−1,−1/5, 1/5, 1 and 5 together with their spines and dual subdivisions of
the Newton polytope.

at most two points except when x = (log a/2, loga/2). For this special x,
Log−1(x) ∩ f−1(0) is a real curve. It follows from Theorem 16 and Theorem 18
that the measure µf is equal to π−2λ|Af

plus a point mass at (log a/2, loga/2).
The size of the point mass can be computed explicitly by means of Theorem 16,
and one finds that it is

µa =
16

π2

∫ π/2

0

arcsin(a±1/2 cos t) dt.

where the positive sign is chosen in the exponent if a < 1 and the negative sign
otherwise. Consequently, the area of the amoeba is π2(1−µa). The area of teh
amoeba can also be computed directly.

If a = 1, then f(z) = (z1 + 1)(z2 + 1) and the amoeba is the union of two
lines.

Example 5. Consider Laurent polynomials in one variable of the form f(z) =
g(z+ z−1)−a, where g is an arbitrary polynomial and a is a constant. We shall
determine the set of a for which Acf has a component of order 0. Note that

f(z−1) = f(z), hence the amoeba of f is symmetric with respect to reflection in
the origin. In particular, if Acf has a component of order 0, then it is mapped
onto itself by this reflection. Hence a complement component of order 0, if
it exists, must contain the origin. Conversely, if a complement component of
order α contains the origin, then reflection in the origin maps it to a complement
component of order −α. Since these components have nonempty intersection,
it follows that α = 0. We conclude that Acf has a component of order 0 if and
only if 0 ∈ Acf . Now, 0 ∈ Af means that f has a zero on the unit circle. Since

z 7→ z+z−1 maps the unit circle onto the interval [−2, 2], it follows that Acf has
a component of order 0 precisely if a /∈ g([−2, 2]). Keeping g fixed and letting
a vary, we see that the set {a;E0(f) 6= ∅} may have any (finite) number of
connected components. The complement of this set is of course connected, in
accordance with Theorem 14.

Example 6. Another class of polynomials on which certain computations can
easily be carried out explicitly is polynomials of the form f(z) = 1 + zn+1

1 +
. . . + zn+1

n + az1 . . . zn where a is an arbitrary complex constant. The Newton
polytope of f is a simplex with precisely one lattice point, namely (1, . . . , 1),
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in its interior. It follows from Theorem 12 or Theorem 11 that the only lattice
points in Pf which can occur as orders of complement components, are the
vertices and the interior point (1, . . . , 1). Now, if α is a vertex of Pf there is
always a complement component of order α. We shall compute the set of a for
which Acf has a component of order (1, . . . , 1).

Figure 3: Amoeba and triangulated Newton polytope of the polynomial f(z) =
1 + z3

1 + z3
2 + az1z2 for a = −6 and the set of a for which E(1,1)(f) is empty.

For reasons of symmetry, as in the previous example, it can be shown that
a component of order (1, . . . , 1) must necessarily contain the origin, and con-
versely, if a complement component contains the origin, then its order must
be (1, . . . , 1). It is also clear that 0 ∈ Af precisely if −a belongs to the set
Kn = {t0 + . . .+ tn; |t0| = . . . = |tn| = t0 . . . tn = 1} ⊂ C. This set is contained
in the closed disc of radius n+ 1 and contains the disc of radius n− 1 centered
at the origin. The boundary of Kn has n + 1 cusps; the corresponding values
of a give rise to polynomials defining singular hypersurfaces, and are branch-
ing points for Φ(1,... ,1)(f). Finally, we note that the power series expansion of
Φ(1,... ,1)(f) computed in Theorem 6 takes the simple form

Φ(1,... ,1)(f) = log a−
∑

k≥1

((n+ 1)k − 1)!

(k!)n+1
(−a)(n+1)k.

Example 7. If f(z) =
∑
α∈A fαz

α is a Laurent polynomial where A has no
more than 2n elements, and these are in sufficiently general position, then by the
proof of Theorem 12, the order of a complement component of Af is determined
by the dominating term in f . The assumption about general position implies in
particular, that no three points in A are collinear. The following example shows
that the situation becomes quite different if A is allowed to have three collinear
points.

Let f be a Laurent polynomial of the form f(z) = a0 +
∑
α∈A aα(zα− z−α).

Here we assume that A is a finite set not containing the origin, and that all
the coefficients aα except a0 are real. For reasons of symmetry, a complement
component of Af containing the origin must have order 0, and conversely, a
component of order 0 must contain the origin. Now, if z ∈ Log−1(0), then
zα + z−α is real for any α. It follows that Acf has a complement component of
order 0 as soon as a0 is not real, no matter how small it is.
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10 Some open problems

Here are a few seemingly interesting and open problems related to the subject
of this thesis. After each problem we give some comments including elementary
observations, known results of a similar nature and some guesses about solutions.

Problem 1. Let A ⊂ Zn be a finite set and let α ∈ Zn be a point. Find
a necessary and sufficient condition for the existence of a Laurent polynomial
f ∈ CA with Eα(f) 6= ∅.

Theorem 11 gives one necessary condition and one sufficient condition. How-
ever, the gap between the two conditions is usually very large. For certain simple
sets A the complete answer is given by Theorem 12. A rather wild guess would
be that the second condition in Theorem 11 is also a necessary condition.

Problem 2. Given an integer polytope P ⊂ Z2, what is the minimal area of
the amoeba Af given that Pf = P?

This problem was suggested by Oleg Viro and communicated to the author
by Grigory Mikhalkin. If P is a zonotope, that is the Minkowski sum of line
segments, then f can be taken to be a product of binomials and the area of
the amoeba is zero in this case. If P is a triangle whose area is 1/2, the area
of Af will always be π2/2, whereas if P is an arbitrary triangle and the only
nonzero coefficients in f are those corresponding to the vertices of P , then
Area(Af ) = π2/(4 Area(P )). In view of this it seems reasonable to conjecture
that Area(Af ) ≥ c/Area(Pf ) for some constant c > 0 unless Pf is a zonotope.
The constant c can be no greater than π2/4. However, this estimate is probably
not sharp for most polytopes P .

Problem 3. Let f0, . . . , fm be Laurent polynomials. Classify all convergent
fractional Laurent series g satisfying the equation f0 + f1g + . . .+ fmg

m = 0.

A fractional Laurent series is an infinite linear combination of fractional
Laurent monomials zα, where α ∈ L∗1 and L1 ⊂ L is a sublattice of the same
rank as L.

If m = 1 and f0 = −1, Theorem 4 associates every such g with a connected
component of Acf1 , and each such component is associated with a lattice point in
Pf1 . Hence there is a bijective correspondence between the convergent Laurent
series g and a subset of L∗ ∩ Pf1 .

As demonstrated in the introduction, the Laurent series associated with a
vertex of Pf1 are most easily computed. The analogous series g for the equation
f0 + f1g + . . . + fmg

m = 0 were classified by McDonald in [17]. There it was
shown that they correspond in a natural way to certain edges of Pf ⊂ L∗R ×R,
where f(z, t) = f0(z)+f1(z)t+ . . .+fm(z)tm. It would be nice to find a similar
generalization of the non-vertex lattice points.
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11 List of notations

Symbol Explanation Defined on page

aff A Affine lattice generatd by A
Af Amoeba of f 8
Acf Complement of amoeba 8

Area Area in R2

C∨ Dual of cone C 10, 19
C∗ C r {0}
CA The space of Laurent polynomials

∑
α∈A fαz

α 10
cone(F, P ) Cone of vectors from F into P 10, 19
conv Convex hull
dc (∂ − ∂̄)/2πi 28
Eα Complement component of order α 12
η Haar measure 7
Hess Hessian matrix 26
int Interior of a set
λ Lebesgue measure
Log 7
M Monge-Ampère operator 27

M̃ Mixed Monge-Ampère operator 28
mα(f) infx mα(f ;x) 12
mα(f ;x)

∑
β 6=α |fβ/fα| exp〈β − α, x〉 12

µf MNf 30

µf1,... ,fn
M̃(Nf1 , . . . , Nfn

) 30
Nf Ronkin function of f 8
nc(F, P ) Normal cone to P at F 10
Pf Newton polytope of f 8
Φα 15
ρk, ρ

k 8
relint Relative interior of a convex set
Sf Spine of Af 20
T Unit circle in C
Tn T× . . .×T (n factors)
UAα {f ∈ CA;Eα(f) 6= ∅} 22
vertP Set of vertices of P
Vol Volume in Rn

XP , XΣ Toric varieties 10
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[13] Lars Hörmander: Notions of convexity, Birkhäuser, Boston, 1994.
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