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APPENDIX A

Currents on complex manifolds

A.1. Differential forms, currents, positive currents

A.1.1. Positive or strongly positive differential forms over a C- vector
space V. All C-vector spaces V admit a canonical orientation, the rule being that

the form
n

N\ d; nd¢; =\ (déx A dig)

j=1 k=1

(¢ =& +inj, j = 1,..,n) is the volume form. This canonical orientation is
preserved by any holomorphic change of coordinates. It implies (in particular,
when the C-vector space V is the complex tangent space T, (X’) at the point z of
a finite dimensional, complex analytic manifold X’) an orientation over X', which is
equivalent to the fact that there exists a positive, non-vanishing (n,n)-form over
the whole complex manifold X. The above notion of positivity', which is often
materialized through the interplay between holomorphic coordinates systems (i.e.
(¢1, .-, ¢n)) and anti-holomorphic ones (i.e. (¢q,...,¢,)) will be of great importance
to us; note that the methods of real differential geometry miss such a useful tool.

1
(20)"

DEFINITION A.1 (positive differential forms). If V is complex vector space
equipped with canonical orientation, a (p,p)-form ¢ € AP V* .= AP V* @ AP V*
is said to be positive? if and only if o A AT (ia; A@;) is a positive (n, n)-form for
arbitrary elements s, ..., ,—p in the dual V*. The form w is said to be strongly
positive if it can be expressed as a linear combination with positive coefficients of
forms of type /\?Zl(iﬁj A Bj), where B1,...,8, € V*. The form ¢ is said to be
negative (resp. strongly negative) if and only if —¢ is positive (resp. strongly
positive).

REMARK A.1. Any strongly positive form (as also, by duality, any positive form)
is real, i.e. satisfies p = . A (1,1)-form i}, h;rd(; AdC;, over the C-vector space
V' is positive if and only if the sesquilinear form

ZZhjk dG; @ dC, u= (ur,...,un) — Zhjkujﬂk

=1 k=1 g,k

induces a hermitian, semi-positive metric over V.

1A real differentiable manifold X of dimension N is called orientable if and only if the
determinant bundle /\N T*(X) admits a trivialization, that is, there exists a non-vanishing global
section section of this bundle to act as a volume form. The existence of such a volume form allows
the use of integration theory over the variety X.

20ne has to be careful here: we understand positive as non-negative ; dealing with other
concepts of positivity, in particular for bundles (see for example Appendix B, Section B.3.4),
positive will carry a stronger meaning, i.e. positive definite.

vii



viii A. CURRENTS ON COMPLEX MANIFOLDS

We note that any wedge product of forms, all of which are strongly positive,
is strongly positive. If all of them, but one, are strongly positive, then the wedge
product remains positive.

REMARK A.2. The notions of positivity and strong positivity for differential
(p, p)-forms differ when 2 < p < n — 2: a positive (p,p)-forme "B A B is strongly
positive if and only if 3 splits as the wedge product of p elements of V*, which is
not always the case as soon as 2 < p <n — 2.

A.1.2. Currents on complex analytic manifolds (positive currents).
In the present section, we will consider a complex analytic manifold A’ of dimension
n. We will also need to deal with a locally trivial complex vector bundle £ — X
(not necessarily holomorphic) with rank m. For every (p, q), 0 < p,q < n, denote as
D(n=Pn=a) (X E) the C-vector space of global, smooth ( C'>) sections with support
compact of the C-vector bundle (T 3"~ *)* ®g E (for the vocabulary about vector
complex bundles, we refer to Appendix B).

DEFINITION A.2 (notion of current). The dual space of the C-vector space
D=pr=a) (X E) is, by definition, the C-space of currents of bi-degree (p, q) (which
are also called (p, q)-currents, or currents with bi-dimension (n — p,n — q)) over X,
with values in the dual bundle E* — X.

The above dual is denoted all along the monography as 'D®9) (X, E*). When
E = X x C, we use the abridged notations D ~P"=9) (X, X x C) = D»~Pn=9)(X)
and '"DPD(X X x C) = "DPD(X). In case the vector bundle E — X is the
trivial bundle X x C — C, it happens useful to identify currents of bi-degree (p, q)
with differential (p, q)-forms, whose coefficients are distributions. If (eq, ..., e.) is
a local frame for the C-vector bundle E — X over the open chart (U,7) and if
¢ € D=Pn=9) (U, E), then one can express ¢ in local coordinates ((i,...,¢,) in
7(U) C C™ in the form ¢ = 377" | ¢; @ e;, where

pj = Z @j1xdCi NdCye ik € D(1(U),C),
1<j1 < <dp—p<n
1<k <o <hpq<n

with the convention J and K to be respectively (n —p)-uplets et (n —q)-uplets with
strictly increasing ordering of indices {j1,..., Jn—p}s {J1,--s Jn—q} and where

n—p n—q
¢y ==\ d¢j,, dip = )\ dC,,.
=1 =1

An element T' € DP9 (X, E*) is thus represented in the open neighborhood U (in
local coordinates in 7(U)) as T = z;n:l T7 @ €}, where each T can be developped
as
T = > 1R ag Nl , THE e D(7(U),C).
1<5] < <ip<n

1<ki<- <kl <n

Therefore, it is suitable to introduce the duality bracket (T, ¢):

m
(Top)=(=20)"> " D> e T (p50x),
PR QT —
|K|=n—q



A.1. DIFFERENTIAL FORMS, CURRENTS, POSITIVE CURRENTS ix

where J¢ := {1,...,n} \ J, K¢ := {1,..,n} \ K (ordered in a strictly increasing
manner ) and €y x = +1 is defined by

i"dCye ANdCpee Ny NdCre =2 ey x [\ (dSk A dni).
k=1
When E — X is the trivial vector bundle X x C — X, the notion of positive
current plays a crucial role.

DEFINITION A.3 (positivity concepts for currents). A current T € "D®») (X, C)
is said to be positive® if and only if (T,¢) > 0 for every (n — p,n — p) form
@ € D"=Pn=P)(X) such that, for every z in X, ¢(z) is strongly positive form
in [(Ty "™ ")" ®r Clx,.. The current is said to be strongly positive if this holds
for all forms ¢ € D™~P"=P)(X) which are just positive at every point z of X.

REMARK A3. If T = Z!LK T7Kdz; N dZx is a positive, (p,p)-current, then

the measures i?” T/ are positive measures (it suffices to test 7" on strongly positive
forms i("=P)dze A dz;c). The complex measures 77K satisfy TK+/ = T7K (by
duality argument, since T is real on positive forms) and, if Ay, ..., \,, are arbitrary
positive or zero coefficients, the very important inequality between measures :

(A1) MAgTPEp<ome N A TMM 0 A= AsiLcf1,..,n}
KNJCMCKUJ leL

(for such inqualities, we refer for example to [De0] (chapter 3)).

The fact that any positive, closed, (p, p)-current T' on complex analytic manifold
has necessarily measure coefficients (see Remark A.3) implies a useful observation:
it has order 0. If, in addition, it is closed (dT = 0), then it is identically equal to zero
as soon as its support® is carried by a closed analytic subset of X of codimension
strictly greater than p; this can be seen when testing the action of the current
in a neighborhood of a regular point of its support (which we assume here to be
of dimension strictly less then n — p). Every (p,p)-current of order 0 (i.e. with
measure coefficients) over X such that dT is also of order 0 is called normal ; any
(p, p) normal current supported by a closed analytic set with codimension strictly
greater than p is necesseraly equal to 0.

EXAMPLE A.l (plurisubharmonic functions). If w is a locally integrable and
locally plurisubharmonic function® in X, then the current dd®u := (i/2m)ddu is
positive and closed. Furthermore, every positive, closed (1, 1)-courant T over X can
be expressed locally as dd“u, where u is plurisubharmonic and locally integrable.

EXAMPLE A.2. Positive, closed, (1,1)-currents (which are locally of the form
dd®u, with u being plurisubharmonic function, see the example A.1), can be mul-
tiplied following a procedure of the type integration by parts, always under the
condition that the involved plurisubharmonic functions u;, j = 1,...,p are locally
bounded :

(A.2) dduy A -+ A dd°u; = dd° [upddcup,l Ao Addous ).

3The remark in the definition A.1 ; positive means always here non-negative.

4The support of a current is the complement of the largest open over which the action of the
currents is equal to zero.

5This means that the function wu is upper semi-continuous, has values in [—oo, +o0[, and is
subharmonic in the intersection of any complex line with its open domain of definition.
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Note that the term in the right hand side of (A.2) makes sense (as a distribution);
moreover, if T is a positive, closed current, then the same is true for the current
ddu AT := dd°[uT] when u is a locally bounded, plurisubharmonic function; this
can be proved using regularization of u by convolution, which allows to replace u by
a plurisubharmonic function u*) = wx py, where (py )y is some C°°- approximation
of the Dirac mass in C"; weak convergence of dd’[u®T] to dd°[uT] shows that
dd°[uT] is indeed a positive current. Thus, induction (A.2) allows to define positive,
closed currents
ddup A -+ A dduy

when the functions u;, j = 1, ..., p, are locally bounded, plurisubharmonic functions.

EXAMPLE A.3. [a geometric construction] It is important to get rid of the
restriction for the plurisubharmonic functions u; to be locally integrable in the
inductive construction (A.2). One particularly important example is the case when
X is the domain U C C" and T = dd°{log(|f1]|*> + - + |fm|?)], the functions
fis- -+, fm being holomorphic in U. The function log || f||? = log(| f1|* + - - - + | fm|?)
is almost everywere well defined in U; it is a plurisubharmonic function, which is also
locally integrable. In fact, the singularities are of log || f||?> are logarithmic, hence
integrable. For a justification of local integrability for log || f||?, we can invoke the
Lojasiewicz inequality: if f1, ..., f, are m holomorphic functions in a neighborhood
of the origin in C™, defining the closed analytic subset A in this neighborhood, then
there exists (see for example [BoR, Lo, Tou]) a minimal exponent a € Q* such
that, for every € > 0, the inequality
(A3) s [£(O] 2 RGN k>0,

j=1,....m

holds in a neighborhood of the origin; combined with the local description of an-
alytic subsets, as given in the Nether preparation theorem (see Appendix D, Sec-
tion D.1.4 and in particular Proposition D.1), this result implies the local inte-
grability of the function log ||f||. We take the opportunity here to emphasize the
role of Lojasiewicz inequalities in complex analytic geometry. This implies that
T = dd°log||f||? is an example of a (1,1) closed, positive current (see Example
A.1). However, the method presented in Example A.2 for the construction of the
successive wedge powers T, T AT, ..., of the current T' cannot be carried out here,
since log || f||? is not anymore a locally bounded function. Nevertheless, it remains
possible to proceed with integration by parts, as in Example A.2, in order to define
dd®up A --- ANdd®uy for k= 1,...,p, as soon as the sets Sing(u1), ..., Sing(u,) (that
is the complements of the sets about which the functions u; are locally bounded)
are such that Sing(u;) C A;, where A; is a closed, analytic subset of X', and

(A.4) Vk=1,.,p, V1<ji < - <jp<p, codim(4;, N---NA4;)<k.

For a proof of this difficult result (based for example on Chern-Nirenberg inequali-
ties), we refer the reader to Chapter 4 in [De0]. If T = dd°log||| f||%], f1, .-, fm being
m holomorphic functions in a domain U of C", the inductive method described in
Example A.2 can be carried out (of one admits the mentioned result here) to de-

fine wedge powers of T, up to the order p = codim{f; = --- = f,,, = 0}; in fact,
condition (A.4) remains then satisfied, since Sing(log || f||?) = {f1 =+ = fm =0}
and all sets A;, j =1,...,p are equal to {f1 = --- = f,,, = 0} in this particular case.

Note however that condition (A.4) cannot be invoked anymore for the construction
of T"* when k > p = codim ({f1 = -+ = fm = 0}).
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A.1.3. Trivial extension of positive, closed currents. This section is
devoted to the theorem of extension of positive closed currents due to H. E1 Mir
[E1M].

DEFINITION A.4. A subset of complex analytic manifold X is called pluripolar

if it can be locally defined by u~!({—o0}), where u is locally integrable, pluri-
subharmonic function.

The following example is among the most common to illustrate the above def-
inition.

EXAMPLE A.4. Every closed analytic subset A of a complex analytic manifold
X, defined locally as a set of common zeroes of m holomorphic functions fi, ..., fin,
is pluripolar since the function

log(|f1* + -+ + [ fm[*)
2
is locally integrable and plurisubharmonic (see Example A.3 above).

zlog|f] =

The important extension theorem by H. El Mir [EIM] asserts that pluripolar
sets do not constitute an obstacle for the (trivial) extension of positive, closed,
currents.

THEOREM A.1 (El Mir extension theorem). Let X be a complex analytic man-
ifold of dimension n, E be a closed, pluripolar subset, T be a positive (hence , with
measure coefficients), closed, (p,p)-current in the open set X \ E. If T has a fi-
nite mass in a neighborhood of every point of a E (i.e. the sum of total masses of
measure coefficients of iP°T s locally finite about any point in E), then the positive
current obtained by trivial extension of the measure coefficients of T (i.e. taking
them with no mass on E), remains a positive, closed current.

REMARK A.4. If T is a positive, closed current over X and if £ C X is a
pluripolar, closed subset, then the current obtained by the trivial extension (defining
it to be equal to 0) is the restriction of T" to the open set X \ E and is denoted
by T'- 1x\g. The positive, closed current T'- 1g := T — T' - 1\ g is thus a current
supported by the pluripolar set E. The restriction operation of a positive, closed
current over the manifold X to some closed pluripolar subset E, namely T'— T-1g,
is of particular importance for integration currents as well as residual currents
(which are neither positive nor in general closed anymore).

A.2. Lelong numbers of positive, closed, (p,p)-currents

Let X be a Stein manifold® . This amounts to assume that X’ can be written as
an increasing union of sets {ug < N}, N = 1,2, ..., which are relatively compact in
X, ug being a strictly plurisubharmonic function. Since we will essentially deal here
with local results and every complex manifold is locally Stein, such an hypothesis
on X (X Stein) will not be restrictive for our purpose.

Let T be a positive, closed, (p, p)-current over X and u : X — [—o00,00[ be a
plurisubharmonic, continuous function, which is semi-exhaustion over the support
of T, i.e. there exists R > 0 such that

(A.5) SuppT N{¢ € X;u(() < R} CC X.

6For a definition of Stein manifolds and a recap of fundamental properties of ideal sheaves
in this setting (Cartan’s theorems A and B), we refer to Appendix D.
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PROPOSITION A.l. If T and u below are fized and R is such that (A.5) is valid,
then the function

r €] — oo, R[— v(T,u,r) = / T A (ddu)™™P
{zeX ;u(z)<r}

is a positive, increasing function of r over | — oo, R[. The limit of this function
whenever r tends to —oo exists and is equal to

v(T,u) :/{ }T/\(ddcu)”fp.

This positive limit is called the generalized Lelong number of T associated to the
semi-exhaustion function u.

An interesting and typical example here is the following.

ExaMPLE A.5 (ordinary Lelong number). If z is a point of support of the
current T', X a local Stein chart about z, u(¢) := log|¢ — x| (in local coordinates
about x), the Lelong number such defined is called the Lelong number of the current
T at the point x and is denoted by v, (T). This is a strictly positive number( except
in the case when T is the zero current in the neighborhood of est ). The Lelong
number v, (7T") at the point x is also realized as the limit, whenever r decreases to
0, of the quotient of mass of T inside the euclidian ball (in (C?) with center at z
and of radius r

TP / oy
S E— T A (dd®|¢ — x|*)" P
(n —p)! Xn{|¢—z|<r} | )

by the (n — p)-dimensional volume of this euclidian ball
wr r2(n—p)
(n —p)!

That is,

1
A6 vy(T) := lim 7/ T A (dd°|¢ — z|?)"7P ).
o e <7’2("”) an{l¢—sl<r} e ==

Another useful approach of the Lelong number v,(T') of a (p, p) positive closed
current T over an n dimensional complex manifold X" is the following:

. — dlog|¢ — z|? _
_ 2\ c 2\p—1
(A7) v (T) = )\hr(r)lJr <3|C — 2z A — (dd°log|¢ — z|*)P~ A T).

The right-hand side of (A.7) is interpreted as the limit at A = 0 of a current
valued function of the complex parameter A which happens to be holomorphic in

{Re A > 0}. Formula (A.7) is obtained thanks to integration by parts: for any test
function ¢ in a neighborhood of z, one has (the product operations being defined



A.3. INTEGRATION CURRENTS ON ANALYTIC SUBSETS xiii

as in Example A.3)

va(T) = (T A (ddc log | — )", ) =

¢ ~ 2 1
_ . c . n—p— c
= Algg+< L7 A (ddotog ¢ — o) , dd ¢>
dlog |¢ — z|? : e
_ 2 c _ 2\n—p—1
hm < — z /\72”_ A (dd®log | — x|%) AT, <p>
+ lim (| —al* T A (dd°log|¢ — )", o)
1 _ |2
= hm <8|§ x| A W A (ddlog |¢ — /2" PTLAT, <p>

+(Teny oy - [T A (ddlog ¢ — 22)" 7], o)

dlog|¢ — xf?

= lim <5|4 — o AR

A (ddlog |¢ — z2)" P I AT, > 0.
Jim, (dd°log | — z[7) p)+

A.3. Integration currents on analytic subsets

A.3.1. Construction and elementary properties. If A is an irreducible
analytic subset of dimension n—p (1 < p < n) of a n-dimensional complex manifold
X, it follows from the local “a la Nether” representation of analytic subsets (see
Appendix D, Section D.1.4, in particular Proposition D.1), that the positive (p, p)
current defined over X \ Agng by

(Alrea, @) / / 1 o € DIPID (X Auny)

has a finite mass in a neighborhood of every point of Agng. This current (defined
in the open set X'\ Asing) is closed over this open set and the analytic subset Aging
is pluripolar (example A.4).

DEFINITION A.5 (integration current on an a closed analytic subset). If A
denotes an irreducible analytic subset of dimension n — p of an analytic complex
manifold of dimension n, the integration current [A] (or [A]req, in order to emphasize
the fact that it depends on the irreducible, hence reduced, cycle [A]) on the set A is
the (p,p) current defined through the trivial extension (in the sense of the theorem
A1) of the closed positive (p,p) current on X'\ A :

© € DTPITPI(X\ A)
X\Asing

The integration current [A] is positive and closed” over X, with support the irre-
ducible analytic subset A.
If C' denotes the (n — p,n — p)-cycle

C=> mC,
Y

It is the same here to say O and d-closed because the coefficients of in=p)’p verify T/ K =
TK.J (see Remark A.3).
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(where all C,, are irreducible cycles), the current of integration [C] over the cycle
C' is by definition the closed (p, p)-current (not positive anymore, but always with
measures coefficients) defined by

{[C],0) = m,[C,).

Note here that if A is an analytic subset of X, the current [C] 14 (see Remark
A.4) is the current

[CA=[C]-1a= Z my[C5].

Similarly
[C] 1x\a = Z my[C].
{v:Cyz A}
We remark here that this operation of cutting out is not such easy to describe from
the algebraic point of view. If C is an effective cycle, Z(C') being the associated
coherent sheaf of ideals, and if A is a coherent sheaf of ideals such that the quotient
sheaf Ox /A has A for support, the coherent sheaf Z(C¥\4) attached to the cycle

cM = > m,C,
{v:CyzA}
is
(A.8) Z(C*V) = [ J[Z(C) : A¥,
k=1

where [(I(C)). : A¥] denotes, for every x € X, the ideal Oy, (called carrier of A*
inside (Z(C)),.) consists of elements h € Ox , such that hAX C (I(C)),. Note that
(A.8) involves an asymptotic formulation. This cutting out operation appeals to the
important notion of gap sheaf (see e.g. [Mass|, Chapter 1) in algebraic geometry.

REMARK A.5 (currents on reduced analytic spaces). The definition A.5 fits
naturally in the setting where X is replaced with a reduced, complex, analytic space
(see Appendix D, Section D.4) We may assume that X is irreducible with complex
dimension n. Locally (in a neighborhood of a point z € X’), we can consider X' to
be an analytic subset A, of dimension n of an open set U, in CV+ (N, > n). If
Y is an irreducible closed analytic subset of X of dimension n — p and y € Y, the
subset Y NU, can be considered as a closed analytic subset of A, thus also a closed
analytic subset (with complex dimension n — p) of the open set U, in C"v. Hence,
one can define in the open set U, (and therefore globally) the integration current
[Y] = [Y]rea over the analytic subset Y N U,. A (n —p,n — p)- smooth differential
form on X (expressed in the open chart U,) is (by definition) an element of the
quotient of the space of (n—p, n—p)-forms defined in the neighborhood of A, inside
U, by the subspace of (n—p,n—p)-forms defined in a neighborhood of A, inside U,
and identically zero over the complex analytic manifold A, s (one should speak
rigorously about germs of differential forms on A). Thus, the integration current
[Y] = [Y]iea over Y C X introduced above defines an element of the dual space
of the space of (n — p,n — p)-forms over X, with compact support in X. It is, in
some sense which is easy to make precise, a closed positive current on X. More
generally, one may define (p, ¢)-currents on the complex (reduced) analytic space
(V,Oy) (see Appendix D, Definition D.10) as elements of the dual of the space of
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(n — p,n — q) smooth differential forms with compact support on (V,Oy), in the
sense precised above (in the particular case p = q).

The integration current is the fundamental building block for positive closed
currents. This will become profound in the last subsection A.4 together with the
formulation of the important stratification theorem of Y.T. Siu ([Siu], see Theorem
A5 in this Appendix), which we will comment and exploit. At this point we will
introduce some first results in this direction. Recall that (this is a theorem due
to Thie ) that the Lelong number of the integration current [A] over an analytic,
closed, irreducible set A coincides with the number p of branches in the Naether
representation of the closed, analytic subset A (see Appendix D, Section D.1.4): it
is precisely the number p which is approached (in the case T' = [A]) as the limit
of the quotients (A.6). Then, for z € A, the Lelong number v,([A]) is always a
positive integer. When p = 1 and A = {f = 0} with f being irreducible in Oy 4,
this number is equal to the multiplicity u.(f), that is to the valuation at { = 0 of
¢ flo+0),

If T is a positive, closed, (p,p)-current over X and A is an analytic subset of
X, then one can put

(A.9) vA(T) = inf{v,(T); x € A}.

The following proposition will be of use to us, because we will study the integration
currents through their approximations (see Section A.3.2 below).

PROPOSITION A.2. Let T be a positive, closed, (p,p)-current and A C X be an
irreducible, analytic subset of dimension n — p. Then, one has the equality

(A.10) T-14 = va(T)[4]

and, as a consequence, the inequality T > va(T)[A] holds. In particular, if the sup-
port of T is an analytic set of pure dimension n —p and the irreducible components
of A are denoted as A, then

(A.11) T=>Y va (T)[A].

A.3.2. Approximations of integration currents over analytic subsets.
A closed analytic subset A of a complex analytic manifold is locally defined as
the set of common solutions of a system of analytic equations s; = 0. In fact,
this description of analytic subsets is more algebraic than purely geometric (since it
involves the s;). Therefore, it is very important to be able to express the integration
current on such a closed analytic set A, that is when A = V(s) is the zero set of a
holomorphic section s of some holomorphic vector bundle of rank m, £ — X.

The algebraic information about s is then carried by the coherent sheaf of ideals
J[s] defined as follows. Let

1 0
|, :E*=\E*"— \E:=XxC

be the interior product induced by s, that is, when expressed in a holomorphic
frame (e, ..., e,,) for E — X (above some local chart U),

LLEeH () + -+ &men (O] ==Y &0;(0)
j=1
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whenever .

s(2) 1= 3 73(C)es (), Ve U
The ideal (J[s]), is defined as ~
(A.12) (T () = |, [OxalX. B

Thus V (s) is the support of Ox/J|[s], though J(s) does not necesseraly define V (s)
as a reduced closed analytic subset of X'. Additionally, we equip the vector bundle
E — X with an hermitian metric | |.

Above the open set X'\ V(s), we denote as Ex\y(s) — & \ V(s) the restriction
vector bundle (equipped with the hermitian structure induced by the hermitian
structure | |) and as Ly — X\ V(s) the holomorphic line bundle whose fiber above
the point « € X'\ V(s) is the complex line in E,, generated by s(x). This line bundle
Ly, — X\ V(s) inherits also the hermitian structure | | and so does the quotient
bundle

Elaws)
Ls
We also introduce the total Chern form (see the definition in Appendix B)

C(E|X\V(s)/st| |) = ch (E\X\V(S)/LS’| |)

k>0

— X\ V(s).

of the quotient bundle
ENZO)
L
for the Chern connection induced by the hermitian structure | |. This Chern form
is a C° closed differential form in the open set X \ V(s), which extends® to the
whole of X as a closed differentiable form with locally integrable coefficients still

denoted as C’(E‘X\V(s)/LS, | |>
We state in this geometric context a useful result obtained by J.R. King in 1970

([King, Meo2, And3]). Such a result implies the holonomy properties that will
presented in the next subsection A.3.3.

— X\ V(s)

THEOREM A.2 (approximation of the integration current via analytic continu-
ation). Let s be a holomorphic section of the holomorphic hermitian vector bundle
(B — X,||) of rank m above a complex analytic manifold X and J[s] be the
corresponding Ox -coherent sheaf (defined as (A.12)). Let (V,(s)), the irreducible
components of V(s) = s71(0) and p~, the Hilbert-Samuel multiplicity * of (J[s])a.,
at a generic point x, on V(s). Let C(TJ[s]) = >_ prs,y[Vylrea be the cycle associated

B

to J[s]. If p denotes the codimension of V (s), then the function
(A.13)
= 0l 2 /
re (Rea>> 0} Blsi A PBPE L (Byo/La ] 1) € D09 (1)
has a meromophic continuation over the whole complex plane. This continuation is
holomorphic in a half plane {Re X > —n} for some n > 0 and its value at A = 0 is

exactly the integration current [C(J[s])n—p) attached to the purely n—p dimensional

8This fact follows from the proof of theorem A.2 below.
9See Section A.3.4 below in this Appendix A.
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cycle C(T[s])n—p corresponding to the component of dimension n — p of the cycle
C(JIs]). Furthermore, if ¢ is any (n — p,n — p) test form, then
(A.14)
L €p J|s|? A 0]s|?
<[C(j[8])n—p]a 50> = 62%1 (22.7_(_ N —|S|2(|5|2 P Nep_1 (E|X\V(s)/Lsa | |) ANp .

REMARK A.6. When F — X is the trivial bundle X x C™ — X, one can
replace

Cp—1 (E\X\V(s)/L& | |>

with (dd“[log|s|?])P~!. This was in fact the way the result was formulated (in this
particular setting) by J. R. King in [King] : one has

(A.15) [C(T[sD)n—p] = Lvs) - (dd°log |s]*)?

where the wedge product on the right-hand side is defined thanks to the iterative
procedure introduced in Example A.3 ; the multiplication by 1y, was defined in
Section A.1.3 (see Remark A.4).

A.3.3. Some operational consequences of regular holonomicity. One
(indirect) important consequence of Theorem A.2 is a result, due J.E. Bjork [Bj3,
Bj4], concerning distribution coefficients (here positive measures) of the integration
current over an analytic set: they are regular holonomic, in some sense precisely
introduced in [Bj3, Bj4]. We will need here one operational aspect of the property
inherited from regular holonomy and mention it here, without entering the theory
of Dx-modules ; it is indeed a fact of crucial importance (see [Bj2]).

PROPOSITION A.3 (holonomy of the distribution coefficients for the integration
current). Let A be an analytic irreducible subset of codimension p in an open set U
of C™ and T4 be one of he measure coefficients of the integration current over the
analytic set A. Let (hy,...,h;) be a tuple of holomorphic functions in U, not all of
them identically equal to zero on the support of Ta, and |h|? := |hq1]? + -+ + |h|?.
For every z € U, the exists a functional equation (called a Bernstein-Sato equation)

(A.16) b:(N)[|h* @ 74] = Q.(\, ¢, (,8/9¢, 0/ [|h[*AV @ 74]

where b, denotes one polynomial, all of whose roots are strictly negative, rational
numbers, and Q. is a germ of differential operator with analytic coefficients, de-
pending polynomially on a parameter A\. The polynomial b,, which can be chosen
to be minimal, is called a Bernstein-Sato polynomial.

REMARK A.7. If | = 1, instead of (A.16), one has a formal holomorphic identity
(A.17) b.(N)[h @ 7] = Q. (N, ¢, 0/0C) [P @ 74],
or even a true identity (in the sense of distributions)

| (7 a7 [1r 22l

h ®TA} = Qz()‘1<-78/a<) [|h| E®TA}~
Here b, is a monic polynomial with strictly negative rational roots. Such iden-
tities reveal to be very useful to perform the integration by parts (for example,
when extending Proposition A.4 below to the restricted case, see the end of this
subsection).

(A.18) bz()\)[
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As a consequence of Proposition A.3, we uncover the following result : if [A] is
an integration current over an irreducible, analytic subset A of X and if W is an
analytic subset of A, whose dimension is strictly smaller than the dimension of A,
then one can define the currents

Lw-[A] = (=) (4]

Lo - [4] = [s*[4]]

[A=0

[A=0’

where s is a section of hermitian vector bundle E — X such that V(s) = W. We
remark that the current 1y - [A] is always the zero current, which really means that
the integration current [A] over an irreducible, analytic subset A has the standard
extension property (S. E. P.) respect to its support A. This property simply states
the fact (which is evident here) that the current [A] does not split its mass over
none of the proper analytic subset of its support (for example: the subset Aging).
This can be rephrased as follows: [A] is the standard extension of its restriction
over each open set X' \ W, where W is a proper analytic subset of A.

The holonomy property of distribution coefficients of an integration current
over some analytic subset (Proposition A.3) allows to extend the following result.

ProrOSITION A.4. Let X be an analytic,complex manifold of dimension n,
H C X be a closed hypersurface, f be an element of Mx(X), whose polar set is
included in the hypersurface H. The holomorphic function fix\g € Ox(X \ H)
extends as a distribution to the whole complex manifold X. Conversely, if H is an
hypersurface of an analytic, compler manifold of dimension n, and f is an element
of Ox (X \ H) which extends as a distribution over the whole manifold X, then f
extends as a global section of the sheaf My over X with polar set included in H.

REMARK A.8 (meromorphic forms and currents). Proposition A.4 extends to
the restricted case as follows. If A is an irreducible, analytic subset of X of codi-
mension p, and w is a (k, 0)-meromorphic differential form on A, (k < n—p), which
is holomorphic in A\ H 4, where H4 is a hypersurface of A containing the set Aging,
then the (p + k,p) current (w A [A])jx\p, (which is O-closed in X \ H,) has a
standard continuation as a current in the ambient manifold X. If H, := {h4 = 0},
this (p + k, p)-courant w A [A] over the whole manifold X is the weak limit, when e
tends to 07, of (x{|n,[>e3wA[A])es0. This follows from the regular holonomy of the
distribution coefficients 74 of the integration current [A] (see Remark A.7). When
the standard extension w A [A] satisfies [w A [A]] = 0 in the whole ambient manifold
X, w is called a holomorphic form on A in the sense of Barlet [Bal]. We can also
formulate the converse assertion : if w is a holomorphic (k,0)-form on the complex
manifold A\ Ha, such that w A [A] (defined as a O-closed current on the open set
X\ Hj) extends as a current to the whole manifold X, then the form w extends as
a meromorphic (k,0)-form on A (i.e. a meromorphic form in a neighborhood of A
in the ambient manifold X).

A.3.4. Hilbert-Samuel multiplicities and integration currents. Let X
be a complex, analytic manifold of dimension n and Z be a coherent sheaf of ideals
of the sheaf of the structure sheaf Oy. If x is a point of the support of Oy /Z, let
Mz be the maximal ideal of the local ring Rz, = Ox »/Z,. Given such a point
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x, one can consider the graded algebra

o0 k

M7
Gl“adgm-_,,x(OX,w/Im) = @ TIH
k=0 SmI-,r

Assume that the support of Oy /T is of pure dimension n — p in a neighborhood of
the point z. Then n — p is also the Krull dimension of the local ring Ox ,/Z,.

DEFINITION A.6 (Hilbert function). The Hilbert function of (Rz 5,z ;) is by
definition the function from N into N, which associates to d the integer dimg,, , /on, , (Rz,2/ 93?%7 2

An argument from commutative algebra (for example see [Hal], chapter 1
or [JP]) ensures that for d sufficiently large, the Hilbert function of (Rz ., Mz .)
takes the same value in d as does a polynomial with rational coefficients of degree
n—p <n (called the Hilbert-Samuel polynomial of (Rz 4, Mz ;) :

- o (Z)
B HPR, o, )(E) = Y mEF+ (n%p)'E”*p,
& !

n

(=)

where p,(Z) is a positive integer, called Hilbert-Samuel multiplicity of T at the point
x where Rz , is of dimension n — p. Note that for d > 1,

d—1

dimRI,m/mI,x (Rz’m/m%z) = Z dimRI,m/mI,x (m%z/mézl)
k=0

The key result concerning the Hilbert-Samuel multiplicity at the point x of the
support of Oy /T is that, by construction, it does not depend really depend on Z,
but on the integral closure I, (see [LeT], proposition 1.18) of Z, in Oy, (for the
notion of integral closure of a coherent ideal sheaf, see Appendix D).

The Lelong number v,([A]) of the integration current [A] = [A],eq Over an
irreducible analytic subset is interpreted as the Hilbert-Samuel multiplicity p,(Za)
at the point « of Z4 5, where 74 denotes the sheaf of ideals attached to the analytic
set A. This relates a rather simple geometric interpretation (the Lelong number
being understood as a limit of quotients of volumes, see (A.6)) to an algebraic
definition which involves also some asymptotic formulation (that of the Hilbert-

Samuel multiplicity above). The essence for this ubiquity is the key formula in
cm™

(A.19) ddlog ol = [ [{a¢) = 0l do(a).

aecP™(C)
where do denotes the normalized Fubini-Study metric dd®(log[|20]® + - - + |2n[?])
in P*(C). It reflects in the following proposition (which is an application of (A.7)
above to the particular case T = [4]).

PROPOSITION A.5. Let A be an irreducible, analytic set of dimension n —p of
X and ¢ = (C1, ..., G,) be the generators of the mazimal ideal My , in Ox 4 in the
neighborhood U, of the point x. The function
d|l 2
log <),
2

Ae{Re) >> 1} — 9)C|PA (dd°[log |C|2])* P~ A[A]ea € "D (U,)
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extends as a meromorphic function in C, which is holomorphic in a neighborhood
of the origin and with value at A\ = 0 given by

2
[aq” A BT 5 (o 277 A [ AL
A=0

1a- / [(o1,Q) = 0] A~ A [{an—p, C) = 0]do(ar) ® -+ @ do(an—p)
ag(Pryn—r
vo([A]) X [2] = pa(Za) x [z].

A.4. Siu stratification

Integration currents are the primary tools in order to express positive, closed
currents. The following major result is due to Y.T.Siu [Siu].

THEOREM A.3 (Siu analyticity theorem). Let T be a positive, closed (p,p)-
current over an analytic, complex manifold X. The level subsets

E(T)={xeX;v,(T)>c}, ¢c>0,
are analytic subsets of X and have a codimension at least equal to p.
The above theorem, has been generalized by J.P. Demailly in 1987 [Del] :

THEOREM A.4. Let X be a Stein manifold , Y be a complex analytic manifold,
u X XY r— [—o00,400[ be a plurisubharmonic, continuous function, which in
addition is locally Holder in y with exponent in |0,1]. If T is a positive, closed
current over X such that u be semi-exhaustive!® over the support of T, the level
subsets
Bu(Tu) = {y € Y (Tou(-y) = ¢}, ¢ >0,
are analytic subsets of V.

Theorem A.3, combined with Proposition A.2, implies the following result,
which could be called the stratification theorem for positive, closed currents.

THEOREM A.5 (Siu’s stratification theorem). Let T' be a positive, closed (p,p)-
current over a complex, analytic manifold X. Then, the current T is expressed as
a weak limit

M

(A.20) im (j_1 AlAs]) + N,

where the Aj;, j € N*, are irreducible, analytic subsets of X of dimension n — p,
the constants \;, j € N*, are strictly positive numbers, and N is a positive, closed
current, which can be considered as megligible, since for every ¢ > 0, the level
subsets E.(N) are of codimension strictly greater that p. Furthermore, any such
stratification is unique (up to the labelling of the A;). The part T — N of the
decomposition is called singular part of the positive current T .

10Recall here the terminology used in Section A.2: the fact that u is semi-erhaustive over
the support of 7' means that for every compact K of ), there exists R(K) such that

{(z,y) € SuppT x K ; p(z,y) < R(K)}

is relatively compact in X x ).



APPENDIX B

Hermitian bundles

In the present appendix we will present the necessary material on Hermitian
Geometry, whose aim is to make our monograph as self-contained as possible. The
main reference (and inspiration) is Chapter 5 in the book by J.P. Demailly [DeO].
An alternative, but equally valuable source is the book by R.O. Wells [We0].

B.1. Differentiable manifolds and real or complex vector bundles

B.1.1. Smooth real differentiable manifolds. A smooth real differentiable
manifold of real dimension N consists in the following data :

(1) a separable topological space X, which is countable at infinity (i.e. it is
an increasing countable union of compact sets) ;
(2) an atlas (U, 7,) of open charts U, in X, which cover X, and where 7,
is, for every «, an homeomorphism between U, and an open set V, in
RY, such that, for every pair of indices (a, ), Tag = Ta © (75)71 is a
C*°-diffeomorphism between 75(Vy N Vp) and 7,(V, N Vp).
The real tangent space T z(X) can be interpreted from three different points of

view ; we will see later on how this reflects on the interpretation of real vector
fields.

A) The first model is a geometric model : if U, is an open chart containing z, one
introduces the germs of C curvest € I =] — ¢, €[~ ~(t) € U, lying in X in
a neighborhood of z, passing through x (y(0) = = and 7, o v is of class C!) ;
elements in Tk ,(X) are then tangent classes at x of such germs (the tangent
class of the class of (I,7) being realized as do[7o ©7](1)).

B) The second model is an algebraic model ; it consists in interpreting the R-
vector space Tk ,(X') as the R-vector space of real derivations of the R-algebra
Ex o of germs of smooth real valued functions at the point z, a real derivation
being a real R-linear map from Ex , into itself that satisfies the Leibniz rule
D(fg] = f(a)Dlg] + g(a)D[f] ; in this frame-work, every element of Tk ,(X) is
described in terms of its action as a real derivation.

C) The third point of view is an even more algebraic model : first we still introduce
the R-algebra Ex , (viewed this time as a local ring) and its maximal ideal
My, ; then one interprets the elements of Tg ,(X') as the elements of the dual
space (My ../ (Mx ,)?)* ; an element in Tk ,(X) is then considered through its
action on the R-vector space My ./ (Mx ,)? as a R-linear form.

B.1.2. Real or complex, locally trivial vector bundle of finite rank.
Let X be a smooth real manifold of dimension n. A real, locally trivial, vector
bundle of rank m over X (we will frequently use the notation £ — X) is a smooth
real manifold F of dimension n + m, together with :

xxi
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(1) a C*®-map 7w : E — X, called projection, the set E, = 7~ 1({x}) being
the fiber above x ;

(2) a R-vector space structure of dimension m on each fiber E, = 7 1(x)
such that the vector space structure is locally trivial, which means there
exists an open covering {U, }ocr of X, together with C* diffeomorphisms,
known as local trivializations, 0, : 7 1(Us) > U,y x R™ such that

(B.1) Tr-1(.)(€) = pry, (Bale)), Veen '(Ua),
and, for every z € Uy, the map 0, realizes a R-linear isomorphism between
E, = 1({z}) and R™.
It follows from condition (2) above that, for every a, 8 € I, the map
Oop =00 005" : (Us NUs) x R™ — (Uy NUg) x R™

is a linear automorphism on each fiber {z} x R™. Hence one has

Oa,6(z,1) = (T, ga,5(x) - 1), (z,m) € (Ua NUpg) x R™,

where (ga,)(a,8)erxr is a collection of C'*°-GL(m,R)-valued maps on X', which
satisfies the 1-cocycle relation

(B.Q) 9o, ° 9B,y = Ja,y O11 Ua N U,B N U’y ) a,ﬁ,’y el

A (smooth) section of the bundle E — X over some open set U C X is a
C*-map s from U to E (both equipped with their structure of real differentiable
manifolds) such that, for any = € U, s(x) € E,.

EXAMPLE B.1 (the tangent real vector bundle Tr(X)). One defines a structure
of 2N-real manifold on |J, .y Tk,.(X) by defining the local charts

Tr1(Ua) (#,7) = (Ta(z), do(7a 0 )(1)) ;
we thus construct a structure of real, locally trivial, C°°-vector bundle of rank NV
over X. This is the real tangent vector bundle Tr(X) — X. The sections of T ,(X)
over the open set U in X of this bundle are called C*°-real vector fields over the
open set U. In the local chart U, = 7, 1(V,,) about some point x € X, we represent
the vector field in the form Zjvzl a;(z)
Voo = 7(Uq).

%, where aq, ...,ay are C*°-functions in

A more abstract approach to the notion of the real, locally trivial, C*°-vector
bundle is the following: any such bundle is given (up to isomorphim of locally
trivial bundles of the same rank') by an open covering (U, )acr of X, together with
a 1-cocycle in the sense of Cech, that is, for every (o, 8) € I x I, a C*°-map

9o, Ua NUsg — GL(M,R)

such that the 1-cocycle relations (B.2) hold. The structure of the locally trivial, C'*°-
vector bundle of rank m associated to this 1-cocycle (ga,5)(a,8)erx1 is obtained by
equipping the disjoint union of {U,} x R™ with the quotient topology, identifying
the pairs (z,v) et (x,gq,p(x).v), where «, 3 are arbitrary indices in I and = €
Us NUB.

ITwo R-vector bundles E1q ™ x and E> 2 x locally trivial and of the same rank are
isomorphic if and only if there exists a C° diffeomorphism f : X — X, a C*°-diffeomorphism
F : E; — E3 such that fomw; = mg 0o F' ; the same definition holds for C-vector bundles of the
same rank.
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B.1.3. Operations on isomorphism classes of vector bundles. The next
important feature about vector bundles is that one can define operations between
locally trivial vector bundles (up to isomorphisms of R-bundles of the same rank),
for example the addition Fy @ E5 of two vector bundles £ — X and Ey — X with
respective ranks my and mo (that is a vector bundle of the rank my +ms, which fiber
above z is identified with the direct sum E; , ®r E2 ), the exterior powers (until the
power m, known also determinant bundle) of a locally trivial vector bundle £ — X
of rank m. The p-th exterior power is a vector bundle of rank m!/(p!(m — p)!), if
p =0, ...,m; the power of order 0 is defined to be, by convention, the trivial vector
bundle X x R). One can also consider the dual vector bundle E* — X of a locally
trivial, real vector bundle £ — X of rank m, or the tensor product E; ® Fs of two
locally trivial, real vector bundles £; — X and Fy — X with respective ranks my
and mq (this is a bundle of‘rank m; X mgy, which fiber above z is identified with
E1» ®r Es ), etc. To perform such constructions, we work in any case with an
open covering of X which is the refinement of the two open coverings used to define
the 1-cocycles that determine the bundles F; — X and F; — X; then we define
operations on the attached 1-cocycles such as direct sum, tensorial product between
elements in GL(m,R) and GL(m2,R), wedge powers of an element in GL(m,R),
dual of such an element, etc.

The set of isomorphism classes of locally trivial real vector bundles of rank 1
(such bundles are also called real line bundles) can be equipped with a structure of
a commutative group (the addition being the tensorial product).

Furthermore, given locally trivial, real vector bundles £y — X and E; —
X with corresponding ranks m; and ms, one can define, up to isomorphism of
locally trivial vector bundles of the same rank, the locally trivial vector bundle
Hompg(E1, E2), whose fiber above the point z is Homg(E1 4, E2 ) (it is a locally
trivial vector bundle of rank my x ms which is isomorphic to Fs @ EY).

Exactly as above, we can also define the notion of locally trivial complex vector
bundle of (complex) rank m over a real differentiable manifold X'. The fibers E, are
now C- vector spaces and 0, realizes a linear isomorphism between 7~!({x}) and
{x} xC™ for any x in the trivialization open chart U, such that 7=1(U,) +» U, xC™
via 0,. If one adopts the point of view of 1-cocycles, then equivalence classes of
locally trivial, complex vector bundles of rank m are constructed starting with 1-
cocycles with values in GL(m,C). In order to construct, as an example, such a
complex vector bundle of rank N, one complexifies, for every z € X, the R-vector
space T ,(X). This will be seen in the forthcoming section B.3, dealing with, as
X, a complex analytic manifold of complex dimension n (that is with underlying
real structure with dimension 2n).

ExXAMPLE B.2 (the cotangent vector bundle T§ (X)). The real cotangent vector
bundle T (X) is the dual of the tangent real vector bundle. Smooth sections of
this bundle over some open set U are the differential 1-forms with C'*°-real valued
coefficients over U. These forms are expressed locally in the open chart U, as w =
Zjvzl w;dx;, where wy, ...,wy are C°°-functions in the open set V,, = 7,(Ua) C RV,
Smooth complex 1-differential forms are sections of the C-vector bundle T (X)@rC.

Given a locally trivial vector bundle E — X (real or complex) with rank m,
we introduce the vector bundles AP T3 (X) @gr E. A (smooth) section of this vector
bundle over the open set U is called a C*°-real differential E-valued p-form over U.
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The space of such F-valued p-forms over U will be denoted by

ce (U, /p\ T3 (X) O E) = C(U, B).

A (smooth) section over U of the bundle A" T3 (X) (that is of A* T3 (X) ® R) is
simply called C* real differential p-form over U; similarly, a (smooth) section over
U of the complex bundle AP T3 (X) ®g C is called a C* complex differential p-form
over U. We call p the degree of the differential form.

B.1.4. Connection on a locally trivial K-vector bundle.

DEFINITION B.1 (connection on a vector bundle). Let X be a differentiable
manifold of dimension N and let E — X be a locally trivial, real (resp. complex)
vector bundle of rank m above X. A C° connection D on E is a differential,
R-linear operator of order 1

N N

D :@PCr(X,E)— PCr(X,E)

p=0 p=0
acting from Cp°(X, E) into C25, (X, E), for every p = 0,..., N, which satisfies the
Leibniz rule:
(B.3) D[f Aw]=df Aw+ (=1)Pf A D[w] VfeCr(X,K), Vwe Cf(X, E),
where K = R or C (whether the bundle E is real or complex). Note that the
linearity which is imposed to D remains in any case R-linearity. Connections will
always for us be C*°.

It is very convenient to describe the action of the connection locally, in a open
neighborhood U, over which the vector bundle F is trivial. Let 6§ = 6, be the
trivialization morphism, as defined in (B.1). Compose with §~! the mappings
x — (z,€;), where (€1, ..., €y,) is the canonical base of the vector space K™. One
obtains thus a system (e, ..., e,,) of sections of E over U, which is called a frame .
An element s of C;°(U, E) (i.e. a smooth, differential p-form over U, with values
in E) can be expressed with respect to this frame in the form

m
s = Zaj R ey,
j=1
where o; € Cp°(U,K). If one writes
m
Dle;] = Zakj ek, j=1,....m,
k=1

where the ax; € C{°(U,K) are smooth 1-forms (with values in K) over U, then
(B.3) is expressed (in short) by

(B.4) D[iq@e]}zi(daj—&—zm:ajkAak)@ej.
j=1 j k=1

Jj=1
This means that, once the trivialization 6 is fixed, the action of D on C*(U, E) is
given by

(B.5) D[s]=gdo+ANo ifs:ZUj@)ej,
j=1
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where 0 = (071, ..., 0, ) denotes the coordinates of the K™-valued function represent-
ing s over U with respect to the frame provided by the trivialization 6, d represents
the de Rham connection over U for the trivial bundle U x K™ — U, and A (which
contributes to the correcting term A A o) is a matrix of real smooth differential
1-forms in U.

PROPOSITION B.1 (changing of frame). If (e1,...,em) and (€1, ...,em) are two

frames corresponding to two different trivializations 8 and 6 over the same open set
U of X and s is the section of E over U such that

m m
SZE aj®ej:E g; ®e;
j=1 j=1

with & = g - o, then the matrices A and A which represent (as in (B.5)) the action
of a given connection D on E within respectively the frame e and the frame € are
related by the so-called gauge transformation law

(B.6) A=g ' A-g+g" dg
B.1.5. Curvature tensor of a connection.

DEFINITION B.2 (curvature of a connection). Let E — X be a real or complex,
locally trivial, vector bundle (with rank m) above a real differentiable manifold X',
and D be a connection on this bundle, as in Definition B.1. The operator

D2 Cooo(XaE)*} 00—04-2<X7E)

is called the curvature operator of the connection D. The differential two-form
O(D) € C5°(X,Homg (E, E)) such that D?[s] = ©(D) A s is called the curvature
tensor of the connection D.

If (e1,...,em) denotes the frame induced by the trivialization 6 of E over the
open set U of the manifold X', and A denotes the matrix of 1-forms describing the
action of D relatively to the decomposition of a section with respect to the frame
(as in (B.4)), then applying the rule (B.5), one shows that the curvature operator
is expressed in terms of coordinates with respect to the above frame in the form :

(B.7) D2{20j®6j:|227j®€j where T=(dA+ANA)No.
j=1 j=1

Here o1, ...,0,, are smooth g-forms with values in K over the open set U. The
matrix of 2-forms

(B.8) ©=dA+ANA

is called the curvature matriz of the connection D over U, expressed with respect
to the frame (e, ..., e,,). This is also the matrix of the curvature tensor ©(D) with
respect to the frame.

B.1.6. Operations on bundles and connections. We present here briefly
how operations on bundles described in susection B.1.3 reflect in the constructions
of adapted connections and how to express their curvature tensors. Let Fy — X
and Ey — X be two locally trivial vector bundles (real or complex) with respective
ranks m; and meo, over the real differentiable manifold X. Assume that both
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E; — X and E; — X are equipped with connections (respectively Dg, and Dg, ).
Then

DElGBEz = DEI S2) DEz
defines a connection on Fy @ Fs, whose tensor of curvature is ©(Dg,) & ©(Dg,).
There is also a unique connection Dg, gg, on E; ® Ey such that
DEg ok, (81 A 52) = Dg, (81) N So + (—l)degslsl ADg, (Sg)

for every differential form s; of X with values in F1, and for every differential form
so of X with values in E5. Furthermore, the following identity is true

(B.9) G(DE1®E2) =0(Dg,)®1dg, +ldg, ® @(DEz)
If D is a connection on FE, then
(B.10) u€ CP(X,E*) — Dp-(u) :s+— d(u-s)— (—1)%8%y - Dg(s)

is a connection on the dual vector bundle E* with ©(Dg-) = —[0(Dg)]*, (* denotes
here the transposition operator from Homg(F, F) into Homg (E*, E*)). One can
construct a connection on Homg (Eq, F2) from the connections Dg, and Dg, on
the vector bundles Fy — X and Ey — & setting

(B.11) Ditomy(1,5) (V) 5+ Dp, (v~ 5) = (1) - Dp, (s)
forall all v € C$° (X, Homg (E1, Ez)). For this connection, one has
(B.12) O (Dttome(E1,2)) = ©(Dp,) @ Idp; —Idp, ® [8(Dp, )"

Such identity follows from (B.9) since there exists a natural K-isomorphism between
Homg (E1, E3) and Ey ® EY. In particular, one has the Bianchi identity
(B.13)

Ditomy(.5)(©(Dr)) = Dp(9(Dg)(-)) — ©(Dp)[Dp(-)] = Dy () — D() =0.

Finally, respect to wedge powers, given £ — X equipped with a connection D,
there is a unique connection Dx, on the vector bundle A” E (that can be defined
inductively), such that
»
D/\p(81 JARERWA Sp) = Z(—l)ngSl+"'+ngsj_181 JARERWAN Sj—1 /\D(Sj) AN Sj4+1 VARERWA Sp
j=1

for any s1,...,s, € C°(X, E). Its tensor curvature is given as
P
(B.14) O(Dpp) =D st A Asj 1t A[O(D) - sj] Asjpi A Asy.
j=1

In the particular case p = m, the curvature tensor ©(Dy,,) can be viewed as a
scalar (the determinant vector bundle has rank 1). This scalar is the trace of
©(D), considered as an element of C*°(X, Homg (F, E)).

B.2. Hermitian structure on a complex vector bundle

Let X be a differentiable manifold, £ — X be a locally trivial, complex vector
bundle on X of complex rank m. We can equip any such bundle with an hermitian
structure . This means that for every fiber F,, x € X, we can define a positive
metric

&— €12,
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in order that the map E —— [0, oo associating to (x,€) € E, the positive number
el2 is C.

Let E — X be a locally trivial, complex vector bundle of rank m over a
differentiable manifold X with real dimension N. Assume that the vector bundle F
is equipped with a hermitian metric. Denote the metric induced on the fiber E, as
| |z and the corresponding scalar product (, ),. For every 0 < p,q < N, the scalar
product induces a sesqui-linear mapping
(B.15) (, ) 1 COP(X,E) x O (X, E) — Cp (X).

p+q
One can express this mapping using trivializations. Actually, a local trivializa-
tion above an open subset U allows to express the forms with respect to a frame
(e1,...,em) over U. Then, the sesqui-linear mapping (B.15) is defined as

<Zaj(§) ®e;(C), ZTk(C) ® ek(g)> — Z
= k=1 j=1k

where o4, ..., 0, are smooth p-forms in U, and 74, ..., 7, are smooth g-forms in U.
This bracket operation makes sense globally since the metric is globally defined over
E.

m

(7;(€) ATk () (€ (€); en($))e
1

DEFINITION B.3 (compatibility of a connection with a metric). Let B — X be a
complex vector bundle of rank m equipped with a hermitian metric | |, inducing the
bracket operation (B.15) between smooth E-valued p-forms and smooth E-valued
q forms. A connection D on F is compatible with the hermitian structure | | on the
bundle E if and only if

(B.16) d[(s,)] = (D(s), 1) + (~1)P(s, D(¢)), Vs € C(X, E), Vt € C°(X, E).

If the frame (eq, ..., €,,) is orthonormal (respect to the hermitien metric | |) and
ifs=>,0®¢€j,t=73 Tk ® e, then

n
(s,t) = Zaj ATj.
j=1

Applying the operator d, one finds then
(B.17) d[(s,t)] = (do,T) + (=1)P(o, dT).

But D[s] =g do + AN o and D[t] =¢ dT + A A 7, where A represents the matrix of
the connection D respect to this frame (see (B.4) or (B.5)). Comparing (B.17) to
(B.16), one observes that

(B.18) A*=—A

where A is the connection matrix. Note also that 74 is a 1-form with values in the
C-vector space Herm (C{° (X, C)) of hermitian matrices with 1-complex differential
forms as coefficients. Using the fact that d o d = 0, one checks that

(O(D) s, t) = —(s,0(D) A1),

and hence i©(D) € C3°(Herm (E, E)).

In the case when m = 1 (the vector bundle is then called a line bundle), the
compatibility of D with the metric means just that the matrix A is a 1-form taking
real values. In this case i©(D) € C5°(X,R).
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B.3. Holomorphic hermitian bundles over complex manifolds

B.3.1. Complex manifolds. A complex manifold X of dimension n consists
in the following data:

(1) a topological vector space X which is countable at infinity;

(2) a collection of charts (Uy,, 7o) on X, where the (U,)q realize a covering
of X, and, for any «, 7, : U, < V, C C™ is an homeomorphism, such
that, for every pair of indices (v, ), the map 7o = 7o 0 (15)"! is a
biholomorphism between 73(V, N V3) and 7, (Vo N Va).

ExAMPLE B.3 (the example of the projective space). Besides C", the most com-
mon example of complex manifold is the projective space P™(C), which is realized as
the geometric quotient of C**1\{(0, ..., 0)} by the equivalence relation of co-linearity
between vectors in C"1 \ {(0,...,0)}. The homogeneous coordinates [zg : - -+ : 2]
represent points of the projective space. Open sets U; := {[z0 : -+ : z,]; 2z; # 0},
j = 0,...,n are the charts for this complex manifold with transition functions
¢i,j = z;j/2zi on U; N Uj. It is important to think here of P"(C) as a hyperplane at
infinity Uy == {[0: 20 : -+ : z,]} in P""1(C) (the homogeneous coordinates being
(7,20, -+, Zn ), in the following sense : if (2o, ..., 2,) is a point in C**1\ {(0, ..., 0)}, the
complex line {(0, Azp, ..., \z,); A € C} intersects the hyperplane at infinity of the
projective space P"T1(C) exactly at the point identified with [z : - - - : 2,] € P*(C).
We remark here that one of the most important (n+1, n)-kernels of the multidimen-
sional complex analysis, namely the Bochner-Martinelli kernel in C**1\ {(0, ...,0)},
can by deduced from the positive volume form (dd®log||z||?)™ on P*(C) (called the
Fubini-Study volume form ) by multiplication with dt/t, and then averaging along
the orbits issued from points in P*(C) viewed as points at infinity of P"*1(C). We
conclude this example by pointing out, since they play an important role in this
monography, that complex manifolds obtained (as P™(C)) by gluing together copies
of C™ via monomial transition functions, are known as smooth toric varieties (see
[Elh, Dan, Ew] for such constructions).

Consider now the underlying real differentiable structure Ag on X, and, for ev-
ery point x € X, the real tangent subspace T ,(Xr) (R-vector space of dimension
2n), equipped with its almost complex structure, that is with the linear involu-
tion J(z) of T »(Ar) whose action, described in local coordinates (§1,71, ..., Eny )
(where ¢, = & + ini for k =1,...,n) is given by

It induces a suitable decomposition of Tk ,(Xg) into two proper subspaces. It
also allows to equip Tr . (Ar) with a structure of C-vector space (with complex
dimension n). Namely the operator J will correspond to multiplication by i in
what will be the complex tangent space Ty (X) = T »(AR).

The three equivalent ways to think of Tk ,(Xr) as a complex vector space (it
will then be called the holomorphic tangent vector space and denoted as T(X')) are
the following ones.

A) The first model is a geometric model. If U, is an open chart containing z, one
introduces the germs of analytic disks v : £ +1in € D(0,¢) — ~v(§ +in) € Uy, at
z, lying in X in a neighborhood of 2 and passing through x (y(0) =  and 7,07
is holomorphic in V,,). Elements in T,,(X) are tangent classes at x of such germs
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(the equivalence class of (D,~) is realized by do[7 © 7](1)), the differentiation
here being the complex differentiation.

B) the second model, is an algebraic model. It consists in interpreting the C-vector
space T, (X) as the C-vector space of complex derivations of the ncetherian
C-algebra of germs of holomorphic functions Oy , at the point x. That is,
C-linear applications from Oy, to C satisfying the Leibniz rule : D[fg] =
f(a)D[g] + g(a)D[f]. This model describes an element of T,,(X) in terms of its
action (as a derivation of Oy ;).

C) the third model is also an algebraic model. One still introduce the C-algebra
Ox z, together with its maximal ideal My ,. The C-vector space T, (X) is
identified as the dual of the C-vector space My ./ (Mx . )?.

For every © € X, we have the following decomposition of the complexification of
T]R@(XR) = Tw(X)
CorT(X) = CorTre(Ar)=Tre(Xr) S iTR(Xr)
= LX) @ T (X) = Tu(X) @ Tu(X),

where T, (X) denotes the complex tangent subspace at the point  (equipped with
the structure of C-vector space of dimension n thanks to J) and T,(X) denotes
its conjugate (Tr . (AR) equipped with the conjugate complex structure —J), the
corresponding isomorphisms above being realized by

£ €T (X) « £ € Tr0(X)

2
€T (X) &’TJ(E) € T>H(X)

(recall that J denotes the operator of multiplication by ¢ on the fibers Tk ,(XR)).

Over the complex manifold X we then have at our disposal holomorphic tangent
bundle T}{’O ~ T'(X), whose sections over the open set U are the holomorphic vector
fields, that is, the vector fields £ which are written locally as

- 0
;%(C)afcj,

where aq, ..., a, are C*-complex valued functions in V, = 7,(U N Uy,). The fiber
over z (modulo the C-isomorphism mentioned in (B.19)) is the complex tangent
space T¢ o (X) = Tk (AR), equipped this time with its complex structure.

Similarly, we introduce the antiholomorphic tangent bundle Tf(’l whose sections
over the open set U are the antiholomorphic vector fields , that is, the vector fields
¢ locally expressed as

Z a] 3<

where ay, ..., a, are C*°-complex valued functions in V, = 7,(U N U,). The fiber
over & (modulo the C-isomorphism mentioned in (B.19)) is the conjugate complex
tangent bundle is the complex tangent, that is Tk ,(X®) equipped this time with
the complex structure associated to —J.
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Given a locally trivial complex vector bundle E — X, one can define the
complex vector bundles

P q
AT 9 AT | @c B= (1% 6c B, pgeN, p+g<2n.

Smooth sections of this bundle over the open set are C*° complex (p, q)-forms in
U, with values in E. We denote as Cp<, (U, E) the C-vector space of these sections.

REMARK B.1. Let E — X be a C-vector bundle over a complex manifold X
and D : CP(X,E) — C& (X, E) be a connection on £ — X. Because of the
R-linearity of D, it splits as D = D¢+ D¢, where D¢, : O35 (X, E) — O34 (X, E)
for any q and D¢, : CpS (X, E) — CJ5 41 (X, E) for any p.

B.3.2. Holomorphic bundles and Chern connection.

DEFINITION B.4. [holomorphic bundle] A locally trivial complex vector bundle
FE — X with rank m over a n-dimensional complex manifold X is called holomorphic
if and only if F is equipped with a structure of complex manifold of dimension n+m
such that:

e the projection 7 : (z,&) — 2z holomorphic from FE into X;

e there exists a covering (Uy)q of X such that for each a, E is trivializable
over the open set U, and the trivialization morphism ., is an holomorphic
map from 7~(U,) in U, x C™.

EXAMPLE B.4 (holomorphic line bundles and Picard group). As seen in Appen-
dix C, one can associate to a Cartier divisor (Uy, $o) on X the isomorphism class of
line bundle corresponding the 1-cocycle (sa/35)a.p € Z (X, (Un)a, O%). This map
is a surjective homomorphism from the group of Cartier divisors on X onto the
group of isomorphism classes of holomorphic line bundles. Its kernel coincides with
the subgroup of principal Cartier divisors. The Picard group of X (see Appendix
C), that is the quotient of the group of Cartier divisors by the subgroup of principal
ones, is then isomorphic to the group of isomorphism classes of holomorphic line
bundles, or also to the Cech cohomology group H'(X,0%) (since two l-cocycles
define the same isomorphism class if and only if they differ from an exact one).

EXAMPLE B.5 (some basic holomorphic line bundles on P*(C)). On P"(C),
the Cartier divisor (Uj, f;), j = 0,...,n, where U;j := {[z0 : --- : 2,]; 2z; # 0} and
fi(lzo = -+ : zn]) = 2zj/20 induces the Weil divisor —[z9p = 0] (see also Example
C.1 in Appendix C) . The corresponding isomorphism class in the Picard group
is denoted as Opn(c)(1). Holomorphic sections of (Opn(c)(1))®Y := Opa(c)(N) can
be expressed in homogeneous coordinates as homogeneous polynomials with total
degree N. The dual bundle Opn (cy(—1) := (Opn(c)(1))* corresponds to the effective
Weil divisor [z9 = 0]. Global holomorphic sections of the bundle Opn(cy(—N)
for N > 0 extend naturally to homogeneous functions with degree —IN on C"+!,
therefore are all trivial and equal to the zero section. The holomorphic line bundle
Opr(c)(—1) = (Opn(cy(1))* is isomorphic to the tautological line bundle on P™(C),
that is the subbundle of the trivial bundle P*(C) x C"*! which fiber above [z :

: 2] is the complex line C" ™! with (2o, ..., z,) as direction. The Picard group
of P*(C) is isomorphic to Z.

If E — X is a complex vector bundle of rank m and if Oy denotes the sheaf of
germs of holomorphic functions over X', then we note that the sheaf of holomorphic
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sections of F, denoted as Oy (E), is a locally free sheaf of rank m over the sheaf
Oy. That is, for every point x of X there exists a neighborhood U, of x such that
Ox(E)|y, is isomorphic to (Ox)y,)™ . For those readers who are interested to
know more about sheaf theory, they can consult the books by R. Godement [God],
by H. Grauert and R. Remmert [GrR] (see also [GRo]). We will present some of
this material on sheaf theory in the introduction of Section D.2 in Appendix C.

All operations involving complex vector bundles, such as described in Section
B.1.6, preserve the class of holomorphic vector bundles. In particular, when £ — X
is an holomorphic vector bundle, such is the case of course for E* — X.

Assume that F — X is a holomorphic vector bundle of rank m over a complex
manifold of dimension n and that s € C°, (X, E) (p,q € N with p+q < 2n). Let U,
and Ug be two open charts of X with nonempty intersection and over which exist
holomorphic trivializations (respectively 6, and 6g). Then, if o,[s] (resp. oga[s])
denotes the section of the trivial bundle U, x C™ — U, (resp. Ug x C™ — Up)
obtained by composition 8, o s (resp. g os) with the projections over C™, one has

oals](2) = ga,s(C) - o5[s](C) V(e Uy NUg.

As usual, (ga,8)a,s denotes here the l-cocycle (assumed to be here holomorphic
and not only C°°). The holomorphicity of this cocycle leads to

oals]] = gap - Olosls]] in U,NUs.

Hence, the collection of forms locally represented as (0o,[s])s fit together as a
global element D"[s] € C5% . 1(X, E). One defines thus a connection D" of type
(0,1) (that is from CJ5, (X, E) to Cp5, 1 (X, E), but, remember, R-linear) which is
intrinsically attached to the complex structure.

DEFINITION B.5 (the canonical connection attached to an holomorphic vector
bundle). The connection D" associated with the holomorphic vector bundle £ — X
equipped with its complex structure is called the (0, 1)canonical connection of the
holomorphic bundle £ — X. It depends only on the complex structure of £ — X.

This connection D" induces the definition of the Dolbeault complex

(X, BE) 2 B o (x,B) B o (L E) B
which will be in this monograph a tool of extreme importance.

DEFINITION B.6 (compatibility of a connection with a complex structure). Let
FE — X an holomorphic vector bundle with rang m over some complex manifold
X. A connection D on E — X is compatible with the complex structure of & — X
if its (0,1) component Df, in the splitting D = D, + D¢ (see Remark B.1) equals
the canonical (0, 1)-connection D" attached to the complex structure of £ — X.

Let us now equip holomorphic vector bundles with hermitian metrics (besides
their complex structure).

Note first a point that will be important to us respect to duality. Let (F —
X, |]) an holomorphic vector bundle equiped with an hermitian metric. This metric
induces a linear isometry (called complex conjugaison) between E — X and E* —
X : if s is an holomorphic section of F — X, the conjugate section s* : X — E*
of E* — X is defined by

(B.19) s (2)(§) = (& s(x))e, Vo X, VE € Ep.
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This isometry extends naturally to an isometry between spaces of differential forms
with values in £ and corresponding spaces of differential with values in E*.
The other crucial point is the notion of Chern connection.

PROPOSITION B.2 (Chern connection). Let (E — X, | |) be a holomorphic bun-
dle equipped with its complex structure (D" being the (0,1)-canonical connection),
together with a hermitian metric | |. There exists a unique connection D = Dp,| |
over E which is compatible at the same time with both the complex structure (see
Definition B.6) and the hermitian metric (see Definition B.3). This unique con-
nection is called the Chern connection of the holomorphic hermitian vector bun-
dle (E — X,||). Its curvature tensor © is called the Chern curvature tensor of
(E— X, ]).

REMARK B.2. If D denotes the Chern connection associated to the holomorphic
hermitian vector bundle (E — X,| |) (with the canonical connection D), then
D? = D¢, o D" + D" o Dy, since (D"”)? = (D¢)? = 0. The curvature tensor Op | |
of this Chern connection D = D | | is then a section of the bundle

(Tx")" ® (Ty")") ® Home (B, E) = (Ty")" ® (Ty')") © (B E7)

which can be represented, with respect to a frame, as a matrix of (1,1)-forms.
Furthermore, i©p | | has the hermitian symmetry (see Section B.2), which means
it can be expressed with respect to an orthonormal frame as

iOp, | Z Z (Zujk 1pdG A de) ej @ ey,

Jj=1k=1

with Uk = Ujkp. Be careful the frame needs to be orthonormal (which is gen-
erally impossible to realize with an holomorphic frame for an arbitrary non trivial
metric)!

We observe also that if £ — X is a complex holomorphic bundle of rank m
equipped with a metric | | and if H({) denotes the Gram matrix

H(C) 1= [(e5(0), exl)e

1<j,k<m

associated to the metric expressed in the holomorphic frame (eq, ..., €,,), then the
matrix of the Chern connection Dp | |, expressed with respect to the same frame,
is the matrix of (1, 0)-forms

Furthermore, a direct computation shows that the curvature matrix, expressed with
respect to this holomorphic frame (e, ..., e,,), is

O 1(0) = B((H(C) -1 Q).

We conclude this section with the following proposition, related to the specific
case of connections on the holomorphic tangent bundle T'(X).

PROPOSITION B.3 (torsion of a metric on the holomorphic tangent bundle). Let
T(X) — X be the holomorphic tangent bundle of a complex n dimensional manifold
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and | | = h be a hermitian metric on T(X) — X diagonalized in a smooth unitary
local frame (&5,...,&%) for (T(X))* as
h= ) §eE.
1<j,k<n

There exists a unique n X n matriz A of 1-complex differential forms satisfying
A* :='A = — A and such that

déy &

Sl =AN |+ €7,
gy, 34
where 1,[£*] denotes a column-matriz of (2,0)-complex differential forms called the
torsion matriz of the metric h (expressed with respect to the unitary frame £* =
(&3, ...,&5) for the vector bundle (T'(X))* equipped with the metric induced by h).

The matriz of the Chern connection Drpxy, | with respect to the basis (1, ...,&n),
dual to the basis (£5,...,&F), is equal to —tA.

(B.20)

B.3.3. Chern forms of a holomorphic bundle. Characteristic classes.
Let E — X be a holomorphic vector bundle of rank m over the complex manifold
X of complex dimension n. Suppose that £ — X is equipped with a hermitian
metric | | and denote by D the Chern connection constructed for the holomorphic
vector bundle (Proposition B.2). It is the unique connection over F — X which
is compatible both with the complex structure and the hermitian metric. Let us
denote O | | € C°(X,Home(FE, E)) the curvature tensor of this connection, or
equivalently, the Chern curvature tensor of the holomorphic vector bundle £ — X
equipped with the metric | |. If (eq, ..., e,) is a local frame, this curvature tensor is
expressed locally with respect to it as

m m

@E,\ | = ZZajkej ® €.

j=1k=1

One uses here the isomorphism from Hom¢(E, E) into E ® E*, where ¢,(¢) ® e} (¢)
corresponds to the C-endomorphism of E; expressed in the basis (e1(C), ..., em(())
by the matrix [0,k j/x/]1<j/ k’<m. The a; are elements of C5°(X,C) (i.e. complex
differential 2-forms over X). Using the same frame, we can write:

det (%QEJ ‘ —I—IdE) = det (;ﬂ(zz%kej X 62) + .Zlej & ej)
j=

j=1k=1

=1+ Y oElhe P cos@x0),

0<p<inf(m,n) p<inf(m,n)

(B.21)

where ¢,(E,| |) € C3(X,C), p = 1,2,... is a 2p-form (in fact a (p, p)-differential
form) over X.

DEFINITION B.7 (Chern forms). Let (E — X,| |) be a holomorphic vector
bundle of rank m over the complex manifold X, equipped with a hermitian metric
| [, with Chern curvature tensor © | |. The differential forms ¢, (E, | |), c2(E, | ), . ..
defined by (B.21) are called the Chern forms of the holomorphic vector bundle
E — X equipped with the hermitian metric | |.
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Explicit computations show that the total Chern form defined as the sum of all
Chern forms ¢,(E,| |), 0 < 2p < m, i.e.

CE|N):=1+ Y  Ell

p<inf(m,n)

is a closed form. We now turn to an essentially different interpretation, eventually
more convenient for us, of Chern forms (see [And3], Section 2). Our presentation
follows here the presentation in [And3].

We introduce for that purpose the exterior algebra over X

A=\ ((T}g“)* oIy oF® E*)

(we consider it as a bundle A — X). Any differential form s with values in E,
which is locally expressed in a local frame as

m
S = E 0]‘@6]',
Jj=1

will be identified with a unique section of A — X through the correspondence

m m

5220j®ej <—>s:=Zaj/\ej.
j=1 j=1

In the same way, any differential form S with values in Hom¢(F, E), expressed

locally as
m m
S = Zzzj,k(@t’fj ® e,
j=1k=1
will be identified with a unique section of A — X through the correspondence
m m _ m m
S = ZZEng@ej ®ep «— S:= ZZE;W Aej A er.
j=1k=1 j=1k=1
Any connection D over E becomes then a R-linear mapping from the space C*° (X, A)
(of smooth sections of A — X) into itself. This map, denoted by lN), is viewed as
an anti-derivation with respect to the exterior product®. The action of the D is the
following :

e it acts as D on the ¢; ;
e it acts as D* (dual connection of D, defined in (B.10)), on the e} ;
e it acts as the de Rham operator d over the factors from (Ti’o)* o (Tg’l)*.

We remark immediately that the action of D described as above leads to

(B.22) Diiome(2.1)[S] = DIS] VS € C°(X, Home(E, E)).

Bianchi identity (B.13) implies then, following (B.22), that D[@g, || = 0 provided
that ©p | is the Chern curvature tensor of (£ — X, | |). Again, following (B.22),

one has also that D[I] = 0 if

m
I:= Zej /\e;
=1

2In this case the Leibniz rule is D[F A %] = D[5] AT+ (—1)9°853 A DI[i].
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is the section of A\ — X identified with Idg. A section w of the bundle A — X can
be expressed in a unique way with respect to the frame (e, ..., e,,) in the form
~m
w=wAN—+u",
m!

where w’ has total degree strictly inferior to m in all entries e;en, 1 < g,k <m.
It is convenient to set
/ wi=uw,
e

in order to rewrite the total Chern form as

(B.23) C(E,| ) :/e(%ém |+7)m :/eexp (%ém +1).

REMARK B.3. It follows from the computation above that every Chern form
cp(E,| 1), p = 1,2,..., can be considered as an element of Cp% (X, E ® E*) with
hermitian symmetry, i.e. that can be expressed in a local orthonormal frame as

(B, ]]) = ZZ ( Z Ujk;LPACL /\@) ej Q ey,

where w;i.pr, = UjrLp-

We conclude by stating the following proposition (which also follows from the
reinterpretation (B.23) (see [And3], Section 2, for more details) :

PROPOSITION B.4. Let (E — X, | |) is a holomorphic vector bundle of rank m
over a complex manifold X with dimension n. Assume that E — X is equipped
with the hermitian metric | |. Then the total Chern class C(E, | |), therefore all the
Chern forms c,(E,| |) for 0 < p < inf(m,n), are d-closed forms. In addition, the
cohomology class of C(FE,| |) in the de Rham cohomology H®(X,C), therefore also
all the cohomology classes in H®(X,C) of the Chern forms cp(E,| |) for 0 < p <
inf(m,n), are independent of the hermitian metric.

DEFINITION B.8 (Chern characteristic classes). If E — X is a holomorphic
vector bundle over the complex manifold X, the de Rham cohomology class of
the total Chern form C(E,| |), where | | is a hermitian metric over the bundle
E — X, is called the characteristic class of the holomorphic bundle E — X. The
cohomology classes of the Chern forms ¢,(E,| |), p < inf(m,n), are called the
Chern characteristic classes of the holomorphic vector bundle £ — X. The total
characteristic class, as the characteristic classes, depend only on the holomorphic
bundle E — X and not on the hermitian metric.

B.3.4. Positivity of holomorphic hermitian bundles. We summarize here
(and compare) various concepts of positivity for holomorphic hermitian vector bun-
dles (EF — X,| |) over a n-dimensional complex manifold X.

Let (EF — X,| |) be such an holomorphic vector bundle with rank m, equipped
with an hermitian metric | |. It follows from Remark B.3 that the first Chern form
c1(E,| |), which can be expressed in an orthonormal local frame as

ZZ (Zujk;lpdCl A@) ej®ep, = ZZ Z (Zujk;lpdCZ AT@) (e;)* ® eg,
Lp

Jj=1k=1 J=lk=1 Lp

m
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where ;k.p1 = Ug;:p- Thus, it induces an hermitian form
e = E E Ujki1p(dG @ €5) ® (dCp @ ey)
1<), k<m 1<l,p<n

on T'(X) ® E if one sets

(B.24) Oe(l®ej,n®exr) = (Zujk;zpdCl /\TCp) &mn), 1<jk<m.
L,p
That is
9E<Z > fjla ®ej, ijz% ® ej) = > ke, -
j=1i=1 ! j=11=1 t 15k
s0Lpsn

REMARK B.4. When £ — X is an holomorphic line bundle, i.e. m = 1, the
fact that fr defines an hermitian semi-positive form on T(X) is equivalent (see
Remark A.1 in Appendix A) to the fact that ¢;(F,| |) is a positive form, or, which
is equivalent, to the fact that ¢;(E*,||) (with the metric induced by | | by duality)
is a negative form (its opposite is positive).

REMARK B.5. The first Chern form ¢ (E, | |) = (i/27)Op, | induces also an
hermitian form 6% on T*(X) ® E*, if one sets

(B25)  OpE@ ;@) = (D wnwda AdG)(ET), 1< gk <m.
L,p

Since ©g- | |+ = —Op,| |, the form 07 is hermitian positive (resp. semi-positive) if
and only if O« is hermitian negative (resp. semi-negative).

DEFINITION B.9 (three concepts of positivity). For an hermitian holomorphic
bundle (E — X, | |), one may introduce the three following concepts of positivity.
These three concepts coincide for line bundles.

a) The holomorphic hermitian bundle (E — X, | |) is said to be Nakano positive, i.e.
E >x 0 (resp. Nakano semi-positive, i.e. E >y 0) if and only if the hermitian
form Op associated to ¢1(E,| |) as in (B.24) defines a scalar product (resp. a
positive form) on each fiber of the bundle T(X) ® E — X. The holomorphic
hermitian bundle (E — X,| |) is said to be Nakano negative, i.e. E <x 0 (resp.
Nakano semi-negative, i.e. E <y 0) if and only if —0g defines a scalar product
(resp. a positive form) on each fiber of the bundle T'(X) ® £ — X.

b) The holomorphic hermitian bundle (E — X, | |) is said to be Griffiths positive ,
i.e. E >g 0 (resp. Griffiths semi-positive, i.e. E >¢ 0) if and only if

VEA0ETL(X), Ve, 20€ E,, 0p(§®er,E®ez) >0
(resp. VE € Tp(X), Ve, € B, Op(l e, ERe,) > 0).

The holomorphic hermitian bundle (E — X, | |) is said to be Griffiths negative,
ie. E <g 0 (resp. Griffiths semi-negative, i.e. E < 0) if and only if
VEETHX), €40, Ve, € Eyyen 20, Op(€ e, €@ ey) <0
(resp. V€ € To(X), Ve, € Ep, Op(§®er,E®@e,) <0).
¢) The holomorphic hermitian bundle (E — X, | |) is said to be Bott-Chern positive,
i.e. E >pc 0 (resp. Bott-Chern semi-positive, i.e. E >pc 0) if and only if the

hermitian form g~ associated to ¢1(E,| |) as in (B.25) defines a scalar product
(resp. a positive form) on T*(X) ® E*.
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REMARK B.6. Since iOp« | |« = —i'Op, | and

Op- (f ® <',6>,§/ ® <',€/>) = _QE(f ® e,§/ ® 6,)

and for any local sections &, &’ of T'(X), for any local sections e, e’ of E, the condi-
tions £ >¢ 0 and E* < 0 are equivalent.

REMARK B.7. The fact that E >p¢ 0 is also equivalent (see [And3]) to the
fact that there exist ®q,...,®5 in T*(X) ® E such that

M
alB,|) =iy & o],
=1
where ® — ®* denotes the conjugaison isometry introduced in (B.19). It then
follows from the method leading to (B.23) that, as soon as E >p¢ 0, all Chern
forms ¢, (R, | |), p = 1,2, ... are positive.

The three positivity notions introduced in Definition B.9 coincide for line bun-
dles (m = 1). Note that this is the only case where it happens in general. However
Nakano positivity (resp. Nakano semi-negativity) always implies Griffiths positivity
(resp. Griffiths semi-negativity).

EXAMPLE B.6. On P™(C), the line bundle Opn(c)(1), equipped with the usual
metric
€l

|§|Z:Ma Z:[ZO:"':Z’IL]a

is positive: its first Chern form is dd“[log ||z||?], which is the Kéhler form on P"(C).
The tautological line bundle Opn ¢y (—1), equipped with the metric induced by that
on Opn(cy(1) is negative, since its first Chern form is —dd“[log | z||?].

B.3.5. Positivity and algebricity.

DEFINITION B.10 (Projective algebraic manifolds). A compact n-dimensional
analytic manifold X is said to be algebraic projective if and only if there exists an
holomorphic embedding X < PV (C) for some N € N.

We recall here the important theorem of Chow, which can be viewed as a con-
sequence of Remmert-Stein Theorem : if A is a purely n + 1-dimensional closed
analytic subset of CNF1\ {(0,...,0)} with n > 0, its closure A in CN*! is a closed
analytic subset of CV*!. Chow’s theorem reflects the G. A. G. A. principle formu-
lated by J.P. Serre [Ser1].

THEOREM B.1 (Chow’s theorem). If A is a closed analytic subset of PN (C), A
is the zero set of an homogeneous polynomial ideal in C[ Xy, ..., Xn]. In particular, if

X is a n-dimensional submanifold in PN (C), one can find homogeneous polynomials
Py, ..., Py in C[Xy, ..., Xn] such that

X = {[2] € PY(C); Po(z) = -+ = Py(2) = 0},
{1 €PY(©); Puz) =+ = Pu(z) = Ay () =+ = A, (2) = 0} =0,
where A, ..., A, denote the minors with rank N —n of the jacobian matriz

1<j<M -

O(Py, ..., Pyr) _ {8Pj} .
0<k<N

8(2’0,...,21\1) 872:]C
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We conclude this Appendix with the theorem of Kodaira [Kod1], which pro-
vides a caracterization of projective algebraic varieties based on the concept of
positivity for line bundles.

THEOREM B.2 (Kodaira theorem). A compact analytic manifold X is projective

algebraic if and only if X carries a positive hermitian holomorphic line bundle
(E—X,[]).



APPENDIX C
Divisors and Chow groups

C.1. Cartier divisors and Cech cohomology on complex manifolds

The two notions of Cartier and Weil divisor coincide within the frame of a
smooth complex manifold. However, in a reduced complex analytic space (see
Appendix D, Definition D.10), these two notions differ. The first one is related
to the functional point of view (hence it is more analytic) and thus, intrinsically,
brings into the picture the notion of sheaf, together with related algebraic ideas and
methods. On the opposite side, the second one is related to the geometric point of
view. The two points of view merge in the context of complex geometry.

C.1.1. Cartier divisors and line bundles.

DEFINITION C.1 (Cartier divisor). We call Cartier divisor in a complex mani-
fold X (assumed to be connected) the collection {(Uy, fo)a}, where

(1) {(Uy)a} realizes a covering of X’ with open subsets ;

(2) for every «, the function f, is meromorphic and not identically equal to
0 in U,, such that for every pair of indices (a, 5), the function f./fs has
a holomorphic extension into U, N Ug with values in C*.

Defining a Cartier divisor in X amounts to define a global section of the quotient
sheaf M?* /O%. Here, M% denotes the multiplicative sheaf of non-zero sections of
M. The sheaf of Oy-modules My (sometimes called sheaf of regular functions on
X, besides the sheaf Oy of holomorphic functions on X) is the sheaf of meromorphic
functions in X, that is, its stalk My , at = is defined as the quotient field of the
integral domain Oy , of germs of holomorphic functions at the point  in X. In
terms of multidimensional complex analysis, when X = U is an open set in C",
defining a Cartier divisor in X = U amounts to define a set of data for the second
Cousin problem in U.

To any Cartier divisor d in X corresponds an holomorphic line bundle L — X,
called the associated line bundle, and denoted by O(d) (or [—d], as it will be justified
later on, see Remark C.2). Its transition functions, defined as

xelUyN U,B — gaﬁ(x) = fa<$)/fﬂ(m),

determine a 1-cocycle (Uy NUpg, (9a,8)a,p) (With go,3 € O%(Us NUg)). The collec-
tion of functions (f,)q corresponds then to the global meromorphic section of the
bundle O(d). The sheaf of holomorphic sections of O(d) = [—d] is identified with
the locally free sheaf K(d), where

(€1) K(d)p, = K(@(T) 1= 7-Ox(Ua).

XXXIX
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Its trivialization over the open set U, is the mapping
(RS K:(d)|UQ = K:(d)(Ua) — faO' (S OX(UQ)‘

Conversely, the choice of a global meromorphic section (f4)q of a line bundle
(such a section corresponds to a Cartier divisor in X) induces the construction of
1-cocycle (ga,p)a,s (9a,8 = fo/fs in Uy N Up), thus determining the line bundle
itself.

We can therefore identify the set of Cartier divisors on X’ either with the set
of holomorphic line bundles L — X, or with the set of locally free sheafs of Ox-
modules with rank 1. To any holomorphic line bundle L — X, one can attach the
sheaf O(L) of its holomorphic sections. If L — X corresponds to a Cartier divisor
d, then this sheaf is identified with the locally free sheaf K(d) introduced in (C.1).

The set of Cartier divisors in X is equipped with natural addition : the
sum of two Cartier divisors corresponding to the given divisors (Ui q, f1,0)a and
(U2,a5 f2,a ) 18 the Cartier divisor described by the collection (U1, oNU2 o, f1.0f2,a)a-
The set of the Cartier divisors in &X', equipped with this addition, inherits a group
structure and becomes the group of divisors of X, denoted by Div (X). One very
important subgroup of Div (X) is the subgroup of principal divisors. This is the
subgroup which consisting of Cartier divisors which are defined by a global non
zero section of the sheaf My (in X). The principal divisor div(f) attached to F
is the Cartier divisor associated to the open cover (Uy, Fiy, ), where (Uy)q is an
atlas of charts for X. Two Cartier divisors d; and ds in X are called equivalent if
and only if the divisor dq — da is a principal divisor. We denote by Pr(X) or by
Divg(X) the subgroup of principal Cartier divisors.

C.1.2. Cech cohomology (a brief review). Before stating the important
Proposition C.1, which specifies the algebraic correspondance between isomorphism
classes of holomorphic line bundles and Cartier divisors, we need to review basic
facts about Cech cohomology.

Cech cohomology is defined over a topological space X relatively to a sheaf of
abelian groups, though we will use here frequently sheaves of commutative rings
or Ox-modules '. The examples of sheaves of abelian groups which we use here
are those of the constant sheaves Z,Q,R,C, (F(U), U C X, being one of these
additive discrete or continuous groups) and the sheaves of rings Ex, Ox (considered
as sheaves of additive groups) or the sheaves £%,O% (considered as sheaves of
multiplicative groups).

Given an open covering (Uy )4 of X, a Cech k-cochain is by definition a mapping
which associates to any intersection of k£ + 1 open sets Uy, N --- N Uy, an element
hag,....a, € F(Uay N---NU,,), i.e. a section of the sheaf F over the open set
Uay N -+- N Ugy,. Due to the group structure of F(U), one can define a structure
of additive group on the set of k-cochains and thus obtain the group of k-cochains
Ck(Xx,U, F) subordinated to the covering U = (Uy)q.

Furthermore, the boundary morphism § = ¢ from the group Ck(X ,U, F) into
the group Ck“(é\f ,U, F) is the group homomorphism defined as follows. For k = 0,
take

(6Oh)a,/3 = 5Oh(Ua N Uﬁ) = h(Uﬂ)\UuﬁUﬁ - h(UOl)‘UuﬁUg'

LWWith respect to the notions of sheaf of abelian groups, sheaf of commutative rings, sheaf of
Ox-modules , one can found more material in Appendix D, Subsection D.2.1.
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For k =1, take

') 0 g~ = tR(U,NUNUS,) = |W(UsNU,)—h(UyNUy)+h(UuNU, ,
(0" R)ap o 1= 6 W(ULNUNT,) = [HUBNT,) = WUy U) +h(UanTp)] |
and continue in the same vein for ]c > 2. Itis easy to see that 04100, =005=0
and that, for £k > 1, the image B*(X,U, F) of CF=Y(X,U,F) by § = 0k_1 IS a
subgroup (called the k-th C'ech coboundary subgroup ) of the kernel Z*(X,U, F) of
§ = 0y, (called the subgroup of C'ech k-cocycles). The quotient group

H* (X, U, F) := XU )
T BF(X,U,F)

materializes the obstruction for a k-cocycle to be a k-coboundary and is called k-th
C'ech cohomology group of X, with values in F, subordinated to the open covering
U. To define the groups H* (X, F) independently of the covering U, one has to take
the inductive limit with respect to all possible coverings U of X (more and more
refined).

C.1.3. Isomorphism classes of holomorphic line bundles; the Picard
group. Let us recall from Appendix B (Section B.1.2, transposed here to the holo-
morphic context) the notion of isomorphism between holomorphic line bundles. We
say that two holomorphic line bundles L; = X and L, 33 X over a complex mani-
fold X are isomorphicif and only if there exist a biholomorphic function f : X — X,
a biholomorphic mapping F' : L1 — Lo such that f o m; = mg o F'. This definition
extends naturally to the notion of isomorphism between two holomorphic vector
bundles of the same rank F; — X and Ey — X. Thus, the set of isomorphism
classes of line bundles over X, can be equipped with the operation which consists
in making the tensorial product of representatives L1 — X and Lo — X of two
isomorphism classes. More specifically, it can be easily seen that the tensor product
(L1 ® Ly) — X gives a holomorphic vector bundle which is a representative of the
class obtained by tensoring any representant in the isomorphism class of L1 — X
with any representant in the isomorphism class of Ly — X. This induces a group
structure on the set of equivalence classes of holomorphic line bundles on X.

ProrosiTION C.1 (Picard group). The group of isomorphism classes of holo-
morphic line bundles over X is isomorphic to the quotient of the group of the Cartier
divisors Div(X) by the subgroup of the Cartier principal divisors Pr(X), or to the
cohomology group H' (X, O%) for the Cech cohomology, that is, it is isomorphic to
the quotient

71 *
H'(X,0%) = lim 7?31(26’“’ Ok)
w BUX. U, O%)

obtained as the inductive limit of the quotients of groups of 1-cocycles Z' (X, U, 0%,
attached to an open coveringU of X, by their 1-coboundary subgroups B! (X, U,0%).
The group of isomorphism classes of holomorphic vector bundles is called the Picard
group of the complex manifold X (and denoted as Pic(X)).

C.1.4. The first Chern class of a C'"° line bundle. We take the oppor-
tunity here to define the first Chern class of a line bundle L — X (non necessarily
holomorphic, but here just C*) over the complex manifold X. The case of holo-
morphic vector bundles will be a particular case.
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Exactly as in Proposition C.1 (in the holomorphic context), one can show (in
the C*° context) that there exists an isomorphism between the group of isomor-
phism classes of C* line bundles L — X over X and the Cech cohomology groups
H'(X,&%), where Ex (here instead of Oy used previously in the holomorphic case,
see Proposition C.1) denotes the sheaf of germs of C'*° functions over X : to the
isomorphism class of L — X, one associates the class in H (X, EL) of the 1-cocycle
(Ua NUg, ga,8)a,p corresponding to it. On the other hand, one has the long exact
sequence of coherent sheafs

(C.2) 03 7 —s &x “PEE0)
Furthermore, the Cech cohomology groups H'(X,Ex) and H2(X,Ex) are zero be-
cause of the flatness ofv the sheaf Fy. _Taking from (C.2) the long cohomology se-
quence, it follows that H! (X, £%) and H?(X, Z) are isomorphic (as additive groups).
Thus, it is natural to set the following definition.

DEFINITION C.2 (the first Chern class of a C* line bundle). If L — X is a C*°
C-line bundle over a complex manifold X, then we call first Chern class of the line
bundle L — X the image in H?(X,Z) of the class in H'(X,£%) of the 1-cocycle
(with respect to the sheaf £3%) attached to the C*° line bundle L — X.

REMARK C.1. When L — X was an holomorphic line bundle, we introduced
in Appendix B, Definition B.8, the notion of Chern characteristic class ¢1(L) of
L — X, as an element in H3z(X,R). In fact, the two groups H3g(X,R) and
H?(X,R) are isomorphic and the element in H?(X',R) which corresponds to ¢; (E)
via this isomorphism happens to define an element in H? (X,Z), which is precisely
the first Chern class of L — X" in Definition C.2.

Ex — L

C.2. Weil divisors on a complex manifold

A closed analytic hypersurface in a complex manifold X is, by definition, a
closed subset of X' defined in a local chart about each of its points x by a local
equation f, = 0, where f, € Ox .. It is called irreducible if it cannot be written
as a union of two hypersurfaces H; and Hy such that H; # H and Hs # H.

DEFINITION C.3 (Weil divisor). A Weil divisor in a n-dimensional complex
manifold &' (assumed here to be connected) is a locally finite?, linear combination
with integer coefficients of closed analytic irreducible hypersurfaces (H):

(C.3) D =Y myH,.

When all m., are positive or zero, the Weil divisor D is called effective . The set of
WEeil divisors inherits the structure of additive commutative group, called also the
group of (n — 1)-cycles in X.
To any Cartier d = (Uy, fo)o on X, one can naturally associate a Weil divisor
D= Z ordery(d) x H,
H hypersurface of X
where the order of d = (f,). along the hypersurface H is defined in a local chart

U, intersecting H as follows : use an arbitrary regular point « in U, N H such

2Locally finite means that, given an arbitrary compact subset K CC X, there are only finitely
many hypersurfaces H, intersecting K and such that m~ # 0 in the formal development (C.3).
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that one can assume that U, N H = {¢,, = 0} in local coordinates about this point.
The order p := ordery (d) is then defined as the exponent u = pg , € Z such that,
in a neighborhood of z, one has in local coordinates f,(¢) = (Fun((), un being
a meromorphic function which is not identically equal to zero on {¢, = 0}. This
exponent does not depend on the regular point x in H.

Furthermore, one can associate a Weil divisor (denoted also by div(F'), as that
was done for Cartier divisors in Section C.1) to a meromorphic function F which
is not identically zero in X', namely

div(F) = ordery (F) H.
H

One thus obtains so-called principal Weil divisors . The group of Weil divisors
quotiented by the subgroup of principal Weil divisors is denoted as A, _1(X) and
called the Chow group of order n — 1 of the complex manifold X.

On a complex manifold, it is possible, given a Weil divisor D = Z'v m~H,, to
associate to it a Cartier divisor. To this end, it is enough, given any irreducible
closed hypersurface H, and a point x € X, to construct a local chart U, , about
x and an irreducible equation {h,, = 0} defining (in a reduced way) H, in local
coordinates in U, , (one may have h, , =1 in case ¢ H,). Given a point = in X,
there are finitely many ~ such that m, # 0. Take then U, as the intersection of all

such H, and
fo =112
H

Then (U, fz)zex defines a Cartier divisor.

REMARK C.2. Note that, if s is an holomorphic section of the Cartier divisor
d = (Us, fz)s associated to the Weil divisor D = 3 m. H,, then s induces a Weil
divisor
div(s) = ZorderH(s) H
H

such that div(s)+ D is effective. This explains why the line bundle O(d) associated
to a Cartier divisor as in subsection C.1.1 is also denoted as [—d].

Therefore, on an analytic complex n-dimensional manifold X', the notions of
Cartier and Weil divisors coincide. It follows then from Proposition C.1 that the
Picard group Pic(&X) and the (n — 1)-Chow group A,,_1(X) coincide in this case.
In the framework of reduced complex analytic spaces, introduced in Appendix D,
Definition D.10, one can still define the two notions, but they to not coincide
anymore, even though X is normal: one can always attach to a Cartier divisor a
Weil divisor (as before, once one uses the normalization introduced in Appendix D,
Theorem D.4), but, with respect to the converse, there are in general obstructions:
one can attach to a Weil divisor D a Cartier divisor if and only if D can be expressed
locally as a principal Weil divisor.

ExXAMPLE C.1 (the projective space P"(C)). In the complex manifold P"(C),
the Cartier divisor, corresonding to the finite family (Uj, f;), j = 0, ...,n, where
Uj ={[z0: - :2n]; 2 #0} and f;([z0 : -+ - : z5]) = 2j/20 induces the Weil divisor
—[z0 = 0]. The isomorphism class of the line bundle corresponding to the Picard
group Pic(P"(C)) is denoted by O(1). It generates the Picard group of P"(C),
which is isomorphic to Z. The Weil divisor [zg = 0] = div(zp) is a generator for the
(n — 1) Chow ring A, _1(P"(C)) (see also Example B.5 in Appendix B).
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ExaMPLE C.2 (homogeneous coordinates on smooth complete toric varieties).
One important class of examples, extending naturally that of the projective space
P™(C), is the class of smooth, complete toric varieties, obtained by gluing copies of
the affine space C”, through identifications induced by monomial transformations.
The construction of the toric variety lies on a complete simple fan 3, which is a
finite family of cones, that satisfy the following conditions:

e cach cone o is strictly rational, that is, it is generated by elements of Z"
and does not contain any subspace of the vector space R", except the
trivial subspace 0.

e the fan ¥ partitions R™ in such a way that any face 7 € 7(0) of any cone
o € X still belongs to X, and the intersection of two cones 01,09 € X is a
face of both cones o and os.

e it is assumed that the cones o of dimension n in the family are generated
by a base of Z™. The n x n matrix formed by these base vectors is assumed
to have its determinant equal to £1.

In order to realize a compact complex manifold gluing together copies of C™ (in
correspondance with n-dimensional cones in the simple fan) with respect to the
choice of the fan, one makes the identifications through the following monomial
maps : to such a n-dimensional cone generated by primitive vectors (a vector with
integer coordinates is called primitive if its coordinates are relatively prime)

ny = (njla"'anjn)a ] = 17"'7”

one associates the monomial transformation
n n

(Cly ooy Co) ( e 11 g’j”)
j=1 j=1
(see [Dan, Elh, Ew]). The d = n+7r cones &1, ..., {4 of dimension 1 of the fan (also
called rays) are put into correspondence ([Col]) with homogeneous coordinates
Z1,..-, 24 in a such a manner that the complex manifold X of dimension n thus
constructed is materialized as the geometric quotient

Cd\{ZE(CdS.t. 11 zj:O;UGZ(n)}
§i¢r(o)

(C.4) X~ y
{(tl, wota) €CE5 T tﬁf’“ =1, k=1, ,n}

j=1

Cc\ {z € Cs.t. H zj=0;0¢€ E(n)}
§i¢r(0)
by the subgroup G (isomorphic to (C*)", r =d — n)

d
G= {(tl,...,td) e CY; Htf-jk =1, k=1, ...,n},
j=1
where & = (&1,...,&n) is a primitive vector generating the ray §;. A simple
illustration of the main ideas of the above construction is the realization of the
projective space P (C) as a geometric quotient in the case r = d—n = 1. The Picard
group of such a complex manifold is isomorphic to Z". If in addition one assumes
that the vectors &1, ..., &, generate one of the n-dimensional cones o € 3, then the
classes of the Cartier divisors related to the Weil divisors {z,1+1 = 0},...,{#n4» = 0}
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form a basis for the additive group Pic(&X’). The classes of the Weil divisors [z; = 0],
j=n+1,..,n+rin A,_1(X) generate A,,_1(X) as a free Z-module with rank r.
Remark also that the open subset of C**+"

C {z € C"" st H zj=0;0€X, dim(o) = n}

&; non face de o

(which is the complement of the zero set of a specific monomial ideal, called irrele-
vant ideal Ty, (X)) appears as a “bundle” with complex tori (C*)" as fibers (instead
of vectorial spaces as in the case of tautological sheaf over P"*(C), see Example B.5
in Appendix B) over the basis X.

C.3. Chow groups on a reduced analytic space

In this section, (X, Ox) denotes a n-dimensional reduced analytic space (Oy
being the structure sheaf) and My denotes the sheaf of meromorphic functions
on X, that is the stalk My , is the quotient field of the integral domain Oy .
The above setting allows to deal with singularities, think for example of X being
properly embedded as a purely dimensional analytic subset X in some ambiant
complex manifold X’ of dimension N > n).

The notion of Weil divisor on X" is defined exactly as it was defined in the case
where X’ was non singular. Definition C.3 remains valid. A Weil divisor is a locally
finite linear combination with integer coefficients

D=> myH,,
v

where the H, are irreducible analytic hypersurfaces. A closed analytic hypersurface
H C X is a closed subset of X that can be defined about each of its point = as
H = {f, = 0}, where f; € Ox,. The set of Weil divisors inherits naturally a
structure of abelian additive group.

Let us assume that (X, Oy) is normal (see Appendix D, Definition D.11. Then,
(X, Ox) is regular in codimension one at each point, which implies that, given any
meromorphic function F' € My (X) and any irreducible closed hypersurface H in
X, one can define the order ordery (F) as the valuation of F' along H at a generic
point of H. Therefore, as in Section C.2, one can associate to any global section F’
of My a Weil divisor

div(F) = ZorderH(F)H.
H

Such Weil divisors of the form div(F) are called principal. Let us come to the
notion of rational equivalence between cycles (see for example [Hal], Appendix 1,
[Fu]), or [Fu2], Chapter 5, for the specific example of toric varieties which will be
of particular interest for us in this monograph).

DEFINITION C.4 (the Chow group A,,_1(X)). Let (X, Ox) a reduced complex
analytic space and X = X be its normalization (see Appendix D, Theorem D.4).
Two Weil divisors D1 and Dy on X are said to be rationally equivalent as codimen-
sion 1-cycles on X if and only if D1 — Dy = m, (div(F)) for some F' € Mz (X), which
means (in terms of integration currents on the complex analytic spaces (X, Oy) and
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(X, O%)?) that [D; — Dy] = 7.[div(F)]. The group of Weil divisors modulo rational
equivalence is the Chow group A, _1(X).

When A is any irreducible closed analytic subset of a reduced complex analytic
set (X, Ox), one can view (A, (Ox)|4) as a reduced analytic space and therefore, in
view of Definition C.4, introduce the notion of principal Weil divisor on A. Then,
one can also consider the notion of rational equivalence between Weil divisors on
(A,(Ox)a)). Let A ™% A be the normalization of the reduced analytic space
(A,(Ox)ja). A Weil divisor Ds on A is called principal (with respect to A) if
and only if there is element Fy € M(A) such that [Da] = (74).[div(Fa)]. If ta
denotes the embedding of A in X, then the principal cycle D4 = 7, [div(F4)] induces
a codimension (codimA + 1)-cycle on X, namely (14)«(Da) = (14 0 ma)s[div(F4)].
We are then led to the following definition.

DEFINITION C.5 (the Chow groups A,(X), r = 0,....,n — 1). Let (X,0x) an
irreducible n-dimensional complex analytic space and 0 < r < n—1. Two r-analytic
cycles on X are said to be rationally equivalent if and only they differ by a locally
finite linear combination of cycles of the form (14, )+(Da,) = (ta, 0, )«[div(Fa, )]
(as introduced above), the A, being closed irreducible analytic subsets of X' with
dimension r + 1. The additive abelian group of r-analytic cycles on X modulo
rational equivalence is called the Chow group A, (X).

C.4. Chow groups in the algebraic context

Add the references [HaLT| and [Groth] (XII, Theorem 4.4), where it is men-
tionned (or proved) the equality of between the algebraic and analytic Picard group
for a complete integral (i.e irreducible and reduced) algebraic scheme. Is it also true
for Chow groups ?

ExaMPLE C.3 (simplicial complete toric varieties and orbifolds). Keep the two
first items for the definition of the complete simple rational fan ¥ as in Example C.2
but, instead of the last one, assume that any cone in X is rational simplicial, that
is, it is generated by a set of primitive vectors which can be completed as a basis of
R™ (not anymore of Z"). Such a rational fan is now called simplicial *. The object
realized as the geometric quotient (C.4) inherits a structure of reduced analytic set;
it is a singular algebraic variety, called a toric complete simplicial variety. The fact
that the transition maps are monomial makes indeed this structure more precise
from the algebraic point of view: it is called an orbifold structure. If &1, ..., &, are
n rays in the fan which generate one of the n-dimensional cones, and &,41, ..., {ntr
being the remaining ones, the corresponding classes of the Weil divisors [z,4,; = 0],
j = 1,..,r (expressed in homogeneous coordinates [z1 : -+ : z,4,] on X, one
coordinate being associated to each ray, see Example C.2) generate the Chow group
Ap—1(X)®z Q over Q. In this case A,,_1(X) has rank r, is not in general free, but
can be decomposed as A,_1(X)ior ® L, where L denotes a free group with rank r

3See Appendix A, Section A.3, in particular Remark A.5, for the notion of integration current
on a Weil divisor on a reduced analytic space.

4Note that any rational simplicial fan can be algorithmically refined (introducing additional
cones) in order to become simple. In fact, one can forget completely about the simpliciality
hypothesis (that is the third item among properties which are imposed to the fan) since any
rational fan can be refined (thanks to subdivisions of cones) in order to become simplicial (for a
description of the algorithmic procedure, see [MumK], or also [Fu2], Section 2.6).
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and A, —1(X)tor 18 a finite abelian group which corresponds to the torsion part of
A1 (X).

C.5. Ampleness for holomorphic line bundles

The notions of semi-ampleness and ampleness for an holomorphic vector bundle
E — X over a n-dimensional complex manifold are both notions of algebraic na-
ture. We restrict mainly ourselves in this section to the case of line bundles, in
correspondence (as seen from subsection C.1.1 above) with Cartier divisors.

DEFINITION C.6 (various notions of ampleness for holomorphic line bundles).
Let L — X be a holomorphic line bundle above the n-dimensional complex manifold
X. Let HY(X, L) be the C-vector space of global holomorphic sections of L — X.

(1) The line bundle L — X is said to be globally generated if and only if, for
any x € X, the evaluation map

s€ HY(X,L) — s(z) € L,

is surjective, i.e. any local holomorphic section of L — X can be expressed
as a linear combination of global ones.

(2) The holomorphic line bundle L — X is said to be semi-ample if and only
if, for any p € N large enough, the line bundle L®" — X is globally
generated.

(3) The holomorphic line bundle L — X is said to be very ample if and only
if the evaluation maps

OX730(L)

o 1 . 2 T
sEHUXL) [ ()] 1= (50 modulo % ,Oxa(D) € g Oxa (D)

se HY(X,L) +— s(x)+s(2)e L, ® L,

are both surjective® for any z,2’ in X such that z # 2/. Here My,
denotes the maximal ideal in the local ring Oy 5.

(4) The holomorphic line bundle L — X is said to be ample if and only if
L®" — X is very ample for p € N large enough.

REMARK C.3. Similar definitions hold for holomorphic vector bundles of rank
m > 1. One needs just to replace the tensorial product L®" — X in the second
and fourth items by S? E — X, where S? E — X denotes the p-symmetric power®
of B — X.

The relation between such algebraic notions and the metric notions of positivity
in the Griffiths or Nakano sense (see Appendix D, Section B.3.4, Definition B.9)
are illustrated by the following proposition.

ProOPOSITION C.2 (ampleness and positivity). Let E — X an holomorphic
vector bundle with rank m over a complex n-dimensional analytic manifold X.

50ne calls [j1(s)], the 1-jet of s at the point x ; if one replaces Dﬂg(,z by i)ﬁf;’rll, one gets the
k-jet of s at z, denoted as [§(s)].

6When V is a C-vector space of dimension m, the symmetric power SP(V') is the quotient of
V®” under the natural action of the symmetric group Sp: s - (11 ® - ® vp) = Us(1) ® - ® Ug(p)
for any arbitrary permutation s of {1,...,p}.
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o If E — X is globally generated, one may equip E — X with an hermitian
metric | | such that the hermitian holomorphic vector bundle (E — X,| |)
is semi-positive in the sense of Griffiths (or such that the dual hermitian
bundle (E* — X,| |) is semi-negative in the sense of Nakano).

e In particular, if L — X is a semi-ample holomorphic line bundle, one
may equip L — X with an hermitian metric | | such that the holomorphic
hermitian line bundle (L — X, | |) is semi-positive.

ExaMPLE C.4 (ampleness on P*(C)). Over P*(C), the line bundle O(1) —
P™(C), (see C.1) associated to the Weil divisor —[z9 = 0], is the prototype of a
very ample bundle. If X is a projective algebraic manifold (i.e. is embedded via ¢
in some PV (C) for N large enough), the line bundle :*O(1) — X (that is, if one
considers X C PV(C), the line bundle O(1)|x — X is a very ample holomorphic
bundle over X.

ExaMPLE C.5 (ampleness on smooth complete toric varieties). We illustrate
here the various notions of ampleness in the context of n-dimensional complete toric
manifolds, such as introduced in Example C.2 above. The presentation of such a
manifold as the geometric quotient (C.4) allows to associate to any homogeneous
coordinate 21, ..., Zn4, (that is to any ray &; of the simple rational fan” the effective
Weil divisor expressed in homogeneous coordinates as D; = [z; = 0] (see [Col] or
[CLOJ). Given the Weil divisor

D:a1D1+"'+an+an+rn A1y -y Appr EZ,

one can associate to it the convex polyedron Pp defined in the dual space RZI,.
as

(C.5) Pp:={z" € (R")" ;(z",&)+a; >0, j=1,..,n+r}

If f(xq,...,x,) is a generic Laurent polynomial with support Pp in which one sub-
stitutes

¥
LT

n—+s
Tp = H zlgjk , k=1,..,n,
P

one gets a rational function in (z1, ..., 2p4+,) Which denominator Mp is precisely
Z{t -z denote as F' the numerator of this rational function. Such a ratio-
nal function F/Mp can be interpreted as a global holomorphic section of the line
bundle O(D) = [~D], and the Weil divisor div(f) + 37" D; (that is the Cartier
divisor div(F)) is effective, see Remark C.2 above. Let Ap the convex polyedron
in (R*)?lf__r_’tnﬂ defined as the support of F' for f generic. If (&1, ...,&,) generate
one of the n-dimensional cones o of the simple fan ¥, let Ap , be the projection
of Ap on the space R}! ;. To any such n dimensional cone o in the simple fan
¥, one can associate in such a way a convex polyedron Ap , in (RT)". The line
bundle O(D) = [—D] is semi-ample if and only if, for any n-dimensional cone ¢ in
¥, the origin is a vertex of Ap ,, which means (assuming for the sake of simplicity
that o is generated by the rays &, ...,&,) that the vector

n
* Pp— . .
Up.o = — E a;&;
=1

"For the sake of simplicity, we also denote as £; the primitive vector in Z™ that generates the
ray &;.
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is, for any such o, a vertex of Pp, or that the Weil divisor
-
D, = Z(%H—j + <UB,U7£n+j>) Diy;
j=1

is effective. The line bundle O(D) is ample if and only if, for any n-dimensional
cone in ¥, the Weil divisor D, is strictly effective, i.e. any; + (u’b)a, &ntj) > 0 for
any j = 1,...,r. Note that it follows from Kodaira’s Theorem [Kod1] that such
a toric complete manifold X' (X) is projective (see Example C.4) if and only if it
admits an ample Weil divisor. The line bundle O(D) is very ample if additionally
the extremities (d;x)1<k<n, j = 1,...,n, of the vectors in the canonical basis of
R} .4, belong to the polyedron Ap s for any n-dimensional cone o in the fan
3. The various notions of ampleness can also be interpreted in another way. Any
point * in the affine space Rg;,...,z; can be expressed in a unique way ZjEJ x5, &Gy
where J C {1,...,n+7}, the cone generated by the £;, being the smallest cone in ¥
that contains z* (the uniqueness of such decomposition follows. One can associate

to the Weil divisor D the function ¥p : R7. .. — R defined as
(X w5) = - L
j€d !

The line bundle O(D) is semi-ample if and only if this support function ¥p is
convex, that is Wp(u* +v*) = Up(u*) + Up(v*) for any u*,v* in RE. ... The
line bundle O(D) is ample if and only if the function ¥p, is strictly convex, that is
Up(u* +v*) > Up(u*)+ Up(v*),
the equality being satisfied if and only if ©* and v* belong to the same cone in the
fan 3. When the line bundle O(D) is ample, the convex polyedron Pp defined in
(C.5) is an n-dimensional integral polytope in (R™)* which is combinatorially dual
to 2.






APPENDIX D

Analytic sets, Normalization and Log resolutions

D.1. Analytic sets
D.1.1. Analytic sets and corresponding ideal sheaves.

DEFINITION D.1 (closed analytic subset). Let X be a complex manifold of
dimension n, with Oy as structural sheaf. A subset A C X is a closed analytic
subset of X if A is a closed subset of X which is expressed locally (in an open chart
U about each of its points, with respect to local coordinates in this chart) as the
set of common zeroes of a finite family of elements in Ox(U). An analytic subset
A C X is said to be irreducible if it cannot be decomposed into a union of two
closed analytic subsets A; and As such that A; # A and A; # A.

If A C X is an analytic subset, then one can associate with it a sheaf of ideals
Za C Ox, where

(D.l) IA@ = {f € Ox,x ; f =0 ODA$},

where A, denotes the germ of the analytic set A at the current point x. For any
point x € X, the ideal Z4 , C Oy, is a radical ideal (i.e. it is equal to its own
radical). From the geometric point of view, the germ A, of the support of O, /Z4
is the union of its isolated components, which are germs at = of irreducible closed
analytic sets in a convenient neighborhood of x, which correspond to prime ideals
Pz, such that Ty, =), Ba,z,-

On the other hand, any ideal Z, in the ncetherian local ring Ox , admits a
finite primary decomposition (not necessarily unique)

(D.2) T = () Qe

where the ideals 9, , are primary ideals. While the above decomposition (D.2) is
not unique, it leads to the finite list of distinct prime ideals P, , := \/Q,,,, called
associated ideals of the Ox z-module Oy ,/Z,. This list is independent of the
primary decomposition (D.2). Among these associated primes, one distinguishes
the ones which (considered within the list) are minimal with respect to inclusion.
Denote them as ‘Bi;f)jl, j=1,..., M The corresponding germs at x of the closed
analytic sets

VIPrs) ={¢; f(Q) =0 YfePrG}, j=1,...M>,
are called isolated components of the germ of analytic set A, = Supp (O,/Z;). The
other prime ideals among the list of associated primes correspond, when taking into
consideration the germs at x of their zero sets, to germs of closed irreducible analytic

subsets, called embedded components of A, at the point x. Geometrically speaking,
these embedded components cannot be seen, since each of them is properly included

1i
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as a germ of subanalytic subset about z in one of the irreducible isolated components
of the support A, of O, /Z,. This really means that purely geometric methods are
unable to restitute the whole algebraic information carried by the ideal Z,, that is,
by the germ of closed analytic set A, (viewed through the radical ideal that defines
it, or equivalently, through its set of analytic defining equations { f, = 0},). On the
contrary, methods inspired by multidimensional complex analysis help to fill (at
least partially) that bridge between the rough geometric information provided by
the isolated primes (together with their corresponding Hilbert-Samuel multiplicities
recovered as Lelong numbers, see Appendix A, Section A.3.4) and the (sometimes
too much!) precise algebraic information carried by Z4 ., which definitely needs
some knowledge about the invisible embedded components of A,.

For every isolated component of the germ of the set A at the point z (corre-

sponding to the isolated prime ‘Bij‘;{ j), one defines the dimension of the component

at the point x as the Krull dimension of the quotient ring (’)X@/‘Bij‘il’j, that is, the
largest length max (k) of the strictly increasing chains of distinct prime ideals

BLEP G E P & O

The local dimension of A at the point x, denoted as dim, A, is defined to be the
maximum of the dimensions of the isolated components of A, at this point, that
is, the maximum of Krull dimensions of the rings OX,x/‘ij;l’j, i=1,.. f:l.

If f1,..., fa generate a prime ideal °B in the ring O¢n ¢ of germs of holomorphic

functions at the origin, and dim Ocn /P =n —p, i.e. dimp{fr =--- = fu =0} =
n — p, then all minors of rank p of the Jacobian matrix
(%)
OCr/1<j<M1<k<n

cannot vanish identically over the germ at the origin of {f; = --- = fas} (see for
example [Hal, GRo]). It follows that, if A is a closed irreducible analytic subset
of X, then the set Aging of singular points of A, that is, the set of points in A about
which A cannot be described as a submanifold, is a proper analytic subset of A such
that, for any = € Aging, dim(Aging), < dim A,. It implies that A\ Aging = Areg is
dense in A. Non singular points of the set A are called regular points of A . Since A
is irreducible, the function x — dim A, is constant on A,es. Its constant value on
Aseg is defined to be the dimension of the irreducible closed analytic set A. It takes
values between 0 and n —1 = dim X — 1. A closed analytic subset A C X is said to
be of pure dimension (or purely dimensional) if all its irreducible components are
of the same dimension.

To conclude the present section,let us mention the classical box principle. Sup-
pose 1, ..., Qp are M ideals in Oy 5 and hq, ..., hy be N elements in the same local
ring such that, for any j = 1, ..., M, there exists at least one hy so that hy ¢ 9Q;.
Then, for generic complex coefficients A1, ..., A, one has leil MNhy ¢ Q;. The
same result holds in the global setting (polynomial ideals in K[X7, ..., X,,] or homo-

geneous polynomial ideals in K[X, ..., X,;] provided K is an infinite commutative
field).

D.1.2. Complete intersection. Among configurations of analytic subsets of
pure dimension equal to n — p in the complex manifold X, the most interesting for
us is that of complete intersection. It is pertinent here to distinguish the local point
of view from the global one.
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DEFINITION D.2 (complete intersection : local and global notions). Let A be a
closed analytic subset with pure dimension n—m (1 < m < n) in an n-dimensional
complex manifold X.

e The analytic subset A is said to be locally complete intersection in X if
and only if it can be locally defined about each of its points x as the
intersection of exactly m hypersurfaces intersecting at x.

e The analytic subset A is said to be globally complete intersection in X if
and only if A is the set of common zeros of a global holomorphic section
s € H°(X, E) of an holomorphic vector bundle E — X of rank exactly m
over X.

REMARK D.1. Local and global aspects differ : in the first case, given two open
charts U, and Ug with non-empty intersection, it is possible for the set A to be
defined in Uy as {fa1 = -+ = fam = 0}, and in Ug as {fg1 = - -+ = fam = 0}, with
fa = @(fp) in Uy N Ug. Here @ is a (m,m) matrix of holomorphic functions in
Un,NUpg, whose determinant is not necessarily an invertible element of Ox (U,NUpg).
In case A is a globally complete intersection with U, and Ug being local charts over
which £ — X can be trivialized, then one knows that it is possible to choose f,
and fg so that they correspond to coordinates in the trivialisations above U, and
Ugs of the same holomorphic section s € H°(X,E). One has then fo = gas(f3),
where go5 € H°(X, GL(m,C)) (see Appendix B, Section B.3.2).

REMARK D.2. It is important to distinguish the notion of complete intersection
to that of regular sequence!! The fact that a (n — m)-purely dimensional closed
analytic set A is globally defined as a complete intersection, that is, as the zero set
of an holomorphic section s of a m-holomorphic vector bundle £ — X, does not
imply that (01,2, ...,0m.)) (Where s = 01 ®e1+- - -+ 0 @€y, When expressed in an
holomorphic frame about ) is a regular sequence in Oy ., unless z € s71(0). Take
for example as E the trivial bundle over C* and A = s~1(0) = {(0,0,0)}, where
s(€) = (G1(¢3 +1),¢2(¢3 + 1), ¢3). The sequence (81,4, 82,2, 3,2) is not regular (in
this order) about any point in the complex plane {(5 + 1 = 0}.

ExAMPLE D.1. Any closed analytic set in P™(C) is algebraic projective, that is
defined as the zero set of a finite number of homogeneous polynomials in zg, ..., zp
(see Appendix B, Theorem B.1). If Py,..., P, are m homogeneous polynomials
in 2, ..., 2z, with respective total degrees D, ..., D,,, then the section (P, ..., Py,)
of the m-vector bundle Opn ¢y (D1) @ - - - ® Opn(cy (D) defines a globally complete
intersection if and only if {[z] € P"(C); Pi(z) = --- = Py, (z) = 0} is purely (n—m)
dimensional.

We conclude this section with an heuristic remark. It is easier to describe
the notion of complete intersection in geometric terms than algebraically, as the
following equivalence shows. If fi,..., f,, are m holomorphic functions in an open
pseudoconvex domain of C™ (or more generally, m holomorphic functions over a
Stein manifold X, see the definition in Section D.2 below), then fi, ..., f, either
define a (n—m)- dimensional globally complete intersection in X or have no common

LA sequence (s1,...,5m) in a commutative ring R is said to be regular in R if and only if
s1 # 0 and, for any j =1,...,m — 1, s;41 is not a zero divisor in the quotient ring R/(s1, ..., s;).
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zero in X if and only if, for every k € N*, for every homogeneous relation

S O QS £ Q) € (o fi) 0x())

i1+ t+im=k

where a;, ... ;.. are holomorphic functions in X', one has that

Vilv"'vim7 ail,...,im S (flvvfm)OX(X) .

Thus one can see that the rather simple geometric concept of complete intersection
(here global) corresponds, expressed in algebraic terms, to a more involved asymp-
totic characterization (“for every k € N*, for every relation, etc.”). Compare also
to the two approaches (geometric or algebraic) to the notion of gap sheaf, where
the same phenomenon occurs (Appendix A, Section A.3.1) : a simple geometric
formulation on one side, an asymptotic more involved algebraic formulation on the
other side.

D.1.3. Local presentation of hypersurfaces. We give here a convenient
geometric “presentation” for a closed analytic hypersurface A in an n-dimensional
manifold X about one of its points. It is based on Weierstrass preparation theorem.
Without loss of generality, this local study reduces to the case when X = Q, Q
being a neighborhood of the origin in C".

Assume that A = {f = 0}, where f is an holomorphic function in a neighbor-
hood of the origin in C™, which is not identically zero there, such that f(0) = 0 and
reduced, that is A\ {df =0} = A in a neighborhood of 0. Denote the coordinates
as 21, ..., Zn—1,w. One can express this function in a neighborhood of the origin as

f(Zh sy Bn—1; U)) = fu(zla ey An—1; U}) + 0(|<Z1a ey Bn—1, U})|“),
where f,, is a homogeneous polynomial of degree u € N*. After a generic linear

change of coordinates, one may assume that in a disc d,,(0, €), with 0 < € < 1 being
sufficiently small,

7(0,0,...,0,w) = w*h(w), |[h(w)] >3 >0, Yw € 6,(0,¢) .
It follows from Rouché’s thoeorem, that for ||z|| = ||(21, ..., 2n—1)] sufficiently small
(depending on €, i.e. in a small poly-disc A,), the function w — f(z,w) has
exactly p zeros w;(z), j = 1, ..., 4, counted with their multiplicities, in the closed

disc d,,(0, €), all zeroes being in the interior of the open disc. For every k =1, ..., u,
the residue formula implies that

of

H 1 / 87(274-)
wi(2)]F = — ¢k Znidg
j;[ 52 2im Jig=e = f(z,0)
showing that the Newton sums
I
2o Bp(z) =) [wi(2)]", k=1,..p,
j=1

of the roots w;(z), j = 1, ..., u are holomorphic functions of z in a neighborhood of
the origin z = 0. It follows from Newton’s formulae?® that the same is true for the

2Note here that the fact to work over C, i.e. over a field with characteristic 0, is essential for
such formulae to hold.
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symmetric functions z — §1(2),..., z +— §5(z) of the roots of w — f(z,w). Consider
then the function

(z,w) = P(z,w) == w' — @y (2)wh ™ 4o+ (=D pu(2).

The function

f(z,w)

P(z,w)

is holomorphic and does not vanish in a neighborhood of the origin in C”. Describ-
ing the zero set of f in a neighborhood of the origin is equivalent to describe the
zero set of the function (z,w) — P(z,w). The set AN (A, X §,(0,¢€)) corresponds
then to the family of leaves of a p-to-1 covering m : AN (A, X 6,(0,¢€)) = A,. If
o(z) denotes the discriminant of X — P(X,z), then the set AN (A, X §,(0,€))
is a smooth manifold of dimension n — 1 over the set {z; o(z) # 0}. Since f is
reduced, o £ 0 in A,. The set {o(z) = 0} over which the covering is ramified (at
least two leaves cross) is called the discriminant locus ; its inverse image by 7 is
the ramification locus on A. The number u of leaves equals the multiplicity po(f)
of f at the origin. That is, i is equal to the degree of the homogeneous component
of lowest degree (or also the waluation) of (z,w) — f(z,w) at the origin. This
multiplicity is also equal to the Lelong number vy([A]cq) of the integration current
[A]rea at the origin (Section A.3.1 in Appendix A).

(z,w) —

D.1.4. E. Nceether local presentation of closed analytic sets. In this
section, we extend the local presentation for closed hypersurfaces described in Sec-
tion D.1.3 to the case of purely dimensional closed analytic subsets. E. Ncether’s
normalization lemma will be the counterpart for Weierstrass preparation theorem.

The following proposition ( [GrR]) plays an important role in what follows :

PROPOSITION D.1 (presentation of closed analytic sets). Let A C Q be a closed,
analytic subset of pure dimension n—m € {0,...,n—1} in the open neighborhood
of the origin in C™ such that 0 € A. There exists a neighborhood ' of the origin in
Q, m holomorphic functions f1, ..., fm in Q', defining in Q' a complete intersection

A={fi == fn =0},
in a such way that AN is a union a finite number pu = vo([Alrea) of irreducible

components %L of the analytic subset ﬁ, satisfying in addition dfy A -+ AN dfpy, Z 0
over the set A, for every t.

Proposition D.1 provides a useful geometric presentation of A about the origin.
If f1,..., fm are m holomorphic functions in a neighborhood (2 of the origin defining
there a complete intersection A, then it follows from the normalization lemma of
E. Neether that there is a linear change of coordinates ¢ = (21, ..., Zn—m, W1, ..y Wyy)
about the origin, such that if A,,, C Q C C, x C,, is a convenient open poly-
cylinder A, x d,, centered at (0,0), the projection

T i (z,w) € AN (A, X 6y) — z €A,

is a proper map. This linear change of coordinates may be chosen as generic, and
the degree of the corresponding proper map 7 remains generally constant, equal to

its minimal value, namely the Lelong number at the origin of [A]eq (see Appendix

A Section A.3.1). The number of irreducible components of A in a sufficiently
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small neighborhood of (0,0) is thus bounded from above by i = vo([A]req). Since
dfy A -+ Ndf, Z 0 over each A,, one has that

— 8(f17 sy fm)

J(zw) : AW, ey Wiy 70

over A, N (A x 8,) for every 1. Let {z € A, : 5(z) = 0} be the discriminant locus
of the projection 7 and the set {z € A, : o(2) =0} C {z € A, : 5(2) = 0} be
that of m 4. Note that {z € A, : o(z) = 0} is the image on A, by the proper
projection 7 of the set

ANn{(z,w) € A, X 0y : J(z,w) =0}.

Observe that above the set {z € A, : &(z) # 0}, AN (A, Ndy) consists in
disjoint leaves which are submanifolds of dimension n — m parameterized by the
coordinates z. The properness of 7 implies in fact that, for every z € A,

7 () N A= {(z,0D(2)), ., (2,07 (2))}
N2 NA={(z,wM(2)),..., (z,w"(2))}

where 1 = vo([A]red) and p = vo([A]rea) are the Lelong numbers of the respec-
tive integration currents [;{]rcd and [A],eq at the origin. Moreover, above the
A \{o(z) =0}, where {0 = 0} = 7((AN(A, X)) N{J(z,w) = 0}), AN(A, X dy)
consists in u disjoint leaves which are submanifolds of dimension n — m parameter-
ized by the coordinates z.

D.1.5. Weakly holomorphic functions ; Oka universal denominator.

DEFINITION D.3. Let A C X be a closed analytic subset in a n-dimensional
complex manifold and h be a function from A to C.

(1) The function h is weakly holomorphic function on A if and only if h4,,,
is holomorphic (as a function defined on A,cs equipped with its structure
of (n — 1)-complex manifold (Areg, (Ox))|a,.,)) and h is locally bounded
about any point x € A.

(2) The function h is c-holomorphic ((Whi, Chirk, Lo]) on A if and only if
hy4,., is holomorphic (see above) and h is continuous on A.

(3) The function h is strongly holomorphic on A if and only if it is the restric-
tion to A of a holomorphic function I in some open neighborhood of A in
the ambient manifold X.

While the two first notions are intrinsic (they do not depend on the embedding
ta A — X), the third one is not.
One has the following useful characterizations for the two first concepts.
PROPOSITION D.2. Let X be a complexr manifold, A C X be a closed analytic
subset.

o A holomorphic map h : A, — C extends as a weakly holomorphic
function to the whole of A if and only if the closure (in X x C) of its
graph

L (h) ={(z,h(2)); & € Areg}

over Areg is a closed analytic subset in X x C.
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o A function h : A — C is c-holomorphic on A if and only if it is continuous
on A and its graph T a(h) = {(z, h(z)); © € A} is a closed analytic subset
in X x C.

Weakly holomorphic functions (as well as c-holomorphic functions) on a closed
analytic subset A C X are restrictions to A of meromorphic functions in a neigh-
borhood of A in the ambient manifold X'. We have even a much more precise (and
important) result.

THEOREM D.1 (existence of the Oka universal denominator). Let X be a com-
plex manifold, A C X be a closed analytic subset, h be a weakly holomorphic func-
tion on A. Then, for any x € A, h can be expressed about x as the restriction
to A of a meromorphic function in a neighborhood of x in the ambient manifold
X. For x € A fized, the denominator of this meromorphic extension can be chosen
independent of h.

PROOF. Since the proof of this important result depends on the local Neether
presentation given in Section D.1.4, we give a sketch of it here (X = Q being a
neighborhood of = 0 in C™) based on the presentation described above. We start
from this presentation and keep the previous notations. There exist holomorphic
functions hji : A, X 0y X §,, — C such that

fi(z,u) = fi(z,w) = Zhjk(z,u,w)(uj —wj;), j=1,...,m.
k=1

This comes from Hefer division formulas for poly-cylinders (see below (D.4)) in
Section D.2). If h is a holomorphic function in the submanifold A,egN(A; xdy,), then
it can be extended holomorphically to a holomorphic function in the submanifold
Areg X (A, x ) by setting h = 0 on (Areg \ Areg) N (A, X 6y). One can see then
that the function

_ A

H :(z,w) € A, X §yy —> Zh(z,w(j)(z)) det[h ] (z,w,w™)(2)

=1

is holomorphic in both variables (z,w) € (A, \ {o = 0}) X 0. Its restriction to
AN((Az\{o = 0}) x 0y) equals hJ 4. If b is bounded in A,cy, Riemann’s theorem

shows that the function H has an analytic continuation to holomorphic function
defined in A, x §,, and

H(z,w)

J(z,w)

The last equality proves that h coincides with the restriction to AN (A, X d,,) of a
meromorphic function in A, N d,, with J (independent of h) as denominator. [

V(z,w) € AN (A, Nby), hz,w) =

D.2. Coherence and the theorems of Oka and Cartan

D.2.1. Sheaves of rings or Oy-modules ; coherence. Let us recall briefly
here the basic notions about sheafs. In order to define a pre-sheaf F of commutative
rings over a topological space X, one needs :

(1) First to set a collection of commutative rings {F(U)}ycx, U being an
arbitrary open subset of X'. The ring F(U) is called the ring of sections
of the sheaf F over the open set U.
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(2) Then to associate to every pair of open sets U,V satisfying U C V, a
restriction map pyy : F(V) — F(U) which is an homomorphism of
rings, so that py v o pv,.w = pu,w whenever U CV C W and pyy = Idg.

The pre-sheaf F becomes a sheaf of commutative rings if it satisfies in addition
the two following “gluing” axioms :

A) Let (Uy)q be a covering with open sets of an arbitrary open set U ; whenever
F,Ge FU) and py, .v(F) = pu,.v(G) for every a, then F = G.

B) Let (Uy)a be a covering with open sets of an arbitrary open set U ; if a collection
(Fo)a with F, € F(U,) satisfies

PUAUs Us(Fa) = puanus,us (Fp) Yo, B,
then there is an element F' € F(U) such that py_ v (F) = F, for any index a.

For any = € X, one defines the stalk F, of a sheaf of commutative rings at x
as the direct limit lin[} F(U). This means that an element of F,, can be represented
=)

as an element in F(U) for some neighborhood U of z, taking into account that two
such sections in F(U;) and F(Us) are identified if they coincide on a neighborhood
U of z lying in U; N Us.

DEFINITION D.4 (support of a sheaf). The support of a sheaf of commutative
rings on X is the set of points in X where F, # 0.

One may also consider sheaves of non-commutative rings, such as the sheaf Dy
of differential operators with holomorphic coefficients over a complex manifold X
of dimension n. The commutators [0}, zx] are equal to the Kronecker symbols ;.
One may also consider the sheaves of left Dy-modules. Basic references concerning
the theory of Dy modules are the books by J.E. Bjork [Bj1, Bj2].

We introduce here the fundamental notion of coherence for a sheaf F of Oy-
modules on a n-dimensional complex manifold X'.

DEFINITION D.5 (coherence of a sheaf). A sheaf F of Oxy-modules on a n-
dimensional complex manifold X is said to be coherent (or Ox coherent) if and
only if it fulfills the two following conditions :

(1) for any x in X, there exists an open neighborhood U, of x and ¢, elements
81, ..., 8q, in Ox(Uy) such that, for every o’ € Uy, the Ox y-module F/
is generated by the germs s; .+, j = 1,...,¢; ; one phrases this condition
saying that F is locally finitely generated ;

(2) for any open subset U of X, for any choice of sections sq, ..., s, of F(U),
the (Ox)|y-sub-sheaf of (O%q)w of relations Ry (s1, ..., 8q¢), that is, the
kernel of the sheaf homomorphism

q
&)
(91.¢r - 90.0) €OF% — Y gicsic € Fe, (€T,
=1

is also locally finitely generated.

The main examples, which we will meet throughout this monograph, are the fol-
lowing :

(1) The sheaf Oy itself is a coherent sheaf on X' (as a sheaf of Ox-modules

over itself). This is Oka coherence theorem . The same is true for locally
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free sheaves® of @x-modules, in particular for the sheaf of holomorphic
sections Oy (E) of any holomorphic, locally trivial, vector bundle £ — X’.
Locally free sheaves with rank 1 (one can take m, = 1 for any z) are said to
be invertible ; invertible sheaves are in correspondence with holomorphic
line bundles through the operation that assigns to a line bundle its sheaf
of holomorphic sections (see Appendix C).

(2) If A is a closed analytic subset of X, the sheaf of ideals T4 C Oy defined
in (D.1) is a coherent sheaf on X' (this is a theorem of H. Cartan). Since
one has the exact sequence of sheafs of Oy-modules

O—>IA—>Ox—>Ox/IA—>O,

the same holds for the quotient sheaf Oy /Z4.
(3) If 7 : X = X is a proper morphism between two complex manifolds and
F is a coherent sheaf of O z-modules on &, the sheaf m,[F], which is the

direct image of the sheaf F by m, is a coherent sheaf of Ox-modules on
X [Grau).

D.2.2. Stein manifolds ; Cartan Theorems A and B. We now turn to a
natural class of complex manifolds (in a sense that they carry enough nonconstant
holomorphic functions, which is not for example the case of a compact complex
manifold such as P*(C)), that of Stein manifolds. A complex manifold X of dimen-
sion n, with structural sheaf Oy is a Stein manifold if satisfies the following the
three following properties :

(1) it is holomorphically convex, that is the holomorphic conver hull
Koy ={z € X, |f(@)| <sup|f], V] € Ox (X))

of any compact subset K CC & remains compact;
(2) it carries enough holomorphic functions in order to separate points, that
is, for any points z,y € X, © # y, there exists an element f € Oy such
that f(z) # f(y).
It is known that any Stein manifold X of dimension n can be holomorphically
imbedded into C?"*!. One has also two extremely powerful results, due to H.
Cartan.

THEOREM D.2 (Cartan Theorem A). Let X' be a Stein manifold of dimension n.
Any coherent analytic sheaf of Ox-modules on X is spanned by its global sections,
that is, for any open set U C X, py x[F(X)] generates F(U) as a Ox(U)-module.
In particular, for each x € X, one can find global sections fi 4, ..., fnz in F(X)
such that (f1,z, ..., fn,z) defines a local system or coordinates about x.

THEOREM D.3 (Cartan Theorem B). Let X be a Stein manifold of dimension
n. If F is a coherent analytic sheaf of Ox—fnodules on X, then for each q¢ > 0,
HY(X,F) =0, where H1(X,F) denotes the Cech cohomology group with values in
F.

3A sheaf of Oy-modules is locally free if any point z in X admits a neighborhood U, such
that F(Uy) is isomorphic to the O(Uy)-module (O(Uy))®™= for some m, € N*. This means that
there exist elements s1, ..., sm in F(Usz) such that, for any z’ € Uy, the mapping

Smg
(0‘171/, ...,O'mx@/) c OX,I’ = 01,2/ 51,2/ —+ -+ Omg,z’' Smy,z’

is an isomorphism of Oy ,/-modules.



Ix D. ANALYTIC SETS, NORMALIZATION AND LOG RESOLUTIONS

One of the most remarkable consequences of Theorem A for us will be the
following : if F, f1,..., fm are m + 1 holomorphic functions on a Stein manifold
X, such that locally, at every point x € X, Fy, € (fi,,--., fm.z) Ox, at the level
of germs, then there exist holomorphic functions a,...,a,, on X such that F =
Z;'n:1 a; f; over all of X. An important example occurs when X = QxQ C C? xC7,
where € is a pseudo-convex domain of C7 (that is a Stein open subset of C™) and
fi(z,w) == zj —wj, j =1,...,n. One could as well replace {2 by a Stein manifold
X. If f is a holomorphic function in €2, then there exist n holomorphic functions
iy .-, gn o0 £ X Q) such that
(D3) F(2) = Fw) = 3" (2 — w))gy(zw) ¥ (z,w) € 2 x Q.

j=1
This formula is called Hefer division formula . Hefer formula can easily be obtained
when 2 is convex, since one can use in this case Taylor formula with integral

remainder, actually
(D.4)

1 n 1
d af

£) = fw) = [ Gl 0= Owldt =D —wy) [ gL+ (1= D)

This simple argument does not go through in the case of a pseudo-convex domain

Q.

Theorem B implies that every coherent sheaf 7 = Oy of Oy-modules on a Stein
manifold A admits in a neighborhood of any compact K a free resolution . That is,
there exists an exact sequence of sheaf homomorphisms in an open neighborhood
Uof K:

(D.5)

F _ F: F
O O(QJBTN N, O(@]BTN 1 . O?JBTQ 2 O(E?’r’l 1 O(@JBTQ fU 0.

If F = Ox/Z, where T is a coherent sheaf of ideals in O, one has Im (05" —
(’)g”’) = Zy. A free resolution of Oy /T is sometimes called by extension free
resolution of Z.

Since every complex manifold X is locally Stein, one can define at every point
x of X, if F is a coherent sheaf of Oxy-modules, the minimal length of a resolution
of F at the point z. This number is called the depth of the coherent sheaf F at
the point x. It is bounded above by the codimension of the support of the sheaf F
at the point z. This follows from the fact that the exactness of the complex (D.5)
is equivalent to the following (Theorem 20.9, [Eis1]) :

(D.6) codim{z € X ; rank(Fj(x)) <7 —rj41+---£ry} >j VjeN-.

If F = Ox/Z, where 7 is a coherent ideal sheaf, then the depth of F at the point
x is then bounded from above by the codimension of the set of common zeroes of
the elements of Z,. The search for a free resolution such as (D.5) for the sheaf
F = Ox/Z, where T is a coherent sheaf of ideals, is known as a the determination
of syzygies problem (see [Eis2]) for the quotient Ox/Z or, by extension, for the
coherent sheaf of ideals Z. In general, there is no algorithm which allows to compute
such a free resolution within polynomial time.

DEFINITION D.6 (Cohen-Macaulay sheafs and analytic sets). A coherent sheaf
on a complex manifold X is said to be Cohen-Macaulay if and only if for any x in
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the support of F, the minimal length v, of a free resolution of the sheaf F at x
equals the codimension of the support of F at this point. If 7 is a coherent sheaf of
ideals such that Oy /Z is Cohen-Macaulay, then we say that the coherent sheaf of
ideals Z is Cohen-Macaulay. The analytic space (4, Ox/Z), where A denotes the
zero set of the coherent sheaf ideal Z is by extension said to be Cohen-Macaulay if
7T is.

REMARK D.3. When the coherent sheaf of ideals Z is Cohen-Macaulay at a
point x € Supp (Ox/Z), all associated primes of Oy ,/Z, are isolated.

EXAMPLE D.2 (complete intersections are Cohen-Macaulay). Any closed an-
alytic set A which is locally or globally complete intersection (Definition D.2) is
Cohen-Macaulay. If A is defined about z as A = {f; = --- = f;,, = 0}, a minimal
free resolution for Ox/(f1,..., fm)Ox at z is given then by the Koszul complex
associated to the sequence (f1, ..., fm).

D.3. Cycles and coherent analytic sheaves

DEFINITION D.7 (analytic cycle). Let X be a n-dimensional complex manifold.
A k-analytic cyclein X (0 < k <n—1) is a formal, locally finite, linear combination

C=> m,C,y, my€L
Yy

of irreducible closed analytic subsets C.,, all of dimension k. The set of k-cycles in
X has the natural structure of an additive commutative group. A k-cycle is said to
effective if all coefficients m. are positive integers.

Before stating the proposition which describes (imperfectly, but this will be
sufficient for our purpose) the correspondence between the coherent ideals over a
complex manifold X and the effective cycles on it, we recall some basic terminology.

The support of a section s € F(U) of a coherent sheaf F of Oy-modules over
some open set U is the closure in U of the set of points where this section does
not vanish. The support of F is the subset of X defined as the set of points where
the stalk F, is non zero (Definition D.4); it is closed when F is Ox-coherent since
Ox ¢ is neetherian. In particular the suppport of a section s € Ox /J(U), where J
denotes a sheaf of coherent ideals of Oy, is a closed analytic subset of U contained
in the locus of common zeroes of elements in J(U).

Recall also that the notion of length for A-modules (A being a commutative ring)
is the pendant of that of dimension for K-vector spaces (K being a commutative

field).

PRrROPOSITION D.3 (cycles versus coherent sheaves of ideals [Ko2]). Let X' be
a complex manifold. Let C be an effective cycle in X formally expressed as

n—1
C=Co+Crt - +Chr=2 > mi,Chs,
k=0 =
where Cy, is a k-cycle, the Cy . are irreducible, closed analytic subsets of X with
dimension k, and my ~ are positive integers (the sums being locally finite). One can
associate to it the coherent sheaf of ideals

(D.7) Z(C) := 1:[ I e, ).

k=0 vy
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Conwversely, assume that we are given a coherent sheaf of ideals J # Ox. Denote
by Fi, for k = 0,....,n — 1, the subsheaf of sections s of the sheaf Ox/J whose
support is a closed analytic subset of dimension at least equal to k in X. If Cj
denotes the irreducible components of the support of the sheaf Fi/Fiy1 and xp ~ is
a generic point in (Ck )reg, ON€ can associate to the sheaf of ideals J the cycle in
X
n—1
(D.8) C(J):=>_ length (Fia, ) Ch.y-

k=0 ~
Furthermore, in this (imperfect) correspondence Z(C(J)) C J.

When C'is an effective analytic k-cycle in X
C:=> m,C,,
¥
the sheaf of coherent ideals defined by

7(C) = [ [(Ze, )™
¥
is, in some sense, “too big” in order to reveal some information in relation with given
sets of equations for the various components C,. This is the reason to introduce
for every irreducible subset C, a sub-sheaf of Z¢ called the Chow sheaf of ideals
denoted by ICCILOW. That is, for every point x € X, Ighfg C Zc, «), and the Chow
sheaf of ideals is defined to be equal to

Ichow(c) — H(Igl';ow)mw.

Y

It remains to define the sheafs Ig;ow, more generally Z9°Y when A C X is a
closed irreducible analytic set of dimension 0 < k < n — 1. An introduction to this
important concept (for us) can be found in [Kol]. It is indeed an intermediate
notion, half way between the geometric point of view (which is usually too naive,
since only isolated components, and not embedded ones, can be captured) and the
algebraic point of view (which on the opposite is too precise, the non-unicity of the
primary decomposition (D.2) being for example a stumbling block). This notion is
in fact reminiscent of the notion of contour apparent developped by G. Monge.

DEFINITION D.8 (admissible projection). Let X be a complex n-dimensional
manifold. Let A C X be a closed irreducible, analytic subset of X of dimension k
and z a point in A. A linear projection m, : U, — CF*! from a neighborhood U,
of x, with values in C**!, such that 7, (x) = 0, is said to be admissible with respect
to the point = and the analytic set A if the restriction of 7, to U, N A is a proper
map from U, N A into CF+1.

REMARK D.4. Here U, is considered as a local chart, thus as a neighborhood
of 0 in C", which justifies the use of linear projections. Note that generically, a
linear projection 7 : U, — C**! such that 7,(x) = 0 is admissible.

It follows from Remmert-Stein theorem (see e.g. [GRo]) that the image by
an admissible projection 7, of the analytic set U, N A is a closed analytic subset
of the open set 7, (U,) in C**1. Restricting our-selves to a neighborhood of the
points of A,.s, we see that the set m,(U, N A) is an hypersurface in the open set
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7.(U,) C CF+1 | This hypersurface is locally defined about the origin by a reduced
equation {o,, = 0}.

DEFINITION D.9 (Chow ideal of an irreducible analytic set). Let A be a closed
irreducible analytic subset of dimension k in a complex manifold. The coherent
sheaf of ideals Z9°V C T, is defined as Iﬁl}jg‘” = Oy, if x € A and, whenever x
is a point in A, as the ideal of Oy , generated by all the germs at x of functions
¢ +— o, (m:(C)), whenever m, runs over the family of all linear projections 7
U, — CF+1 which are admissible with respect to « and to the analytic subset A,
U, being an arbitrary small neighborhhood about =x.

D.4. Complex analytic spaces and normalization

Let AC QC C"and B C Q C C™ be two closed, analytic subsets of the
open sets 2 and Q' respectively. A continuous function f : A — B is called a
morphism of analytic sets from A into B if and only if, for every x € A, there exists
a neighborhood U, of z in €, a holomorphic function F, from U, into C™, such
that (F;)jano = flanq- If such is the case, then for every 2 € A, one can define
the mapping
O f()

OQ T
— OA’J; = :
1B, f(x) Ta

as fr(9f)) = (90 Fz)z. This map is called comorphism of f at the point .

For an analytic subset A C 2 C C", denote by O4 the Og-coherent sheaf (see
Section D.2) Oy := Oq/Z4. Complex (reduced) analytic spaces are realized on
the model of complex analytic manifolds (see Section B.3.1), except that one glues
together closed analytic subsets A, C Q, C C"= instead of copies of open sets of
some C™.

f; . OB,f(m) =

DEFINITION D.10 (complex (reduced) analytic space). A complex analytic space
(or, to be more precise, reduced * complex analytic space), (X, Ox) consists in the
following data :

(1) a separable and locally compact topological space X', which is countable
at infinity ;

(2) a structural sheaf of rings of continuous functions Oy, together with a
covering (U,, T )a of X, where 7, realizes an homeomorphism between
U, and some closed analytic subset A, = 7(U,) C Qo C C" (for some
no € N), such that, for any index «, the comorphism

(Dacne )9 )rw) (

T gOTa)I € ((OX)IUa)Ia x €U,
Aq,7 ()

7—; g€ ((OAQ)\UQ)TQ(:C) =
is an isomorphism between sheafs of rings.

If X is a complex analytic space, then the subset X.cy of regular points of X
(these are points about which (X, Ox) is a complex manifold with its structural
sheaf of holomorphic functions) is dense in X (isolated points of X are considered
as regular). One denotes by Xgng = X'\ Xreg the set of singular points in X. The
closures of the connected components of X,., are called irreducible components of
X. The dimension of X at x, denoted as dim, X, is by definition dim._(,)(4a),
whenever (U,,7,) is a local chart containing . The function z +— dim, X is

4Since one does not want here to enter the theory of schemes.
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constant on the irreducible components of X and thus it is enough to evaluate it
at regular points in X. The complex space X is of pure dimension n if all its
irreducible components are of dimension n.

Given a complex analytic space X', one defines on X the sheaf o x of functions
h X — C such that hy,,, is holomorphic on Xieg (considered as a complex
manifold equipped with the structural sheaf (Ox)x,,,) and h is locally bounded
on X, that is, for any x € X, one can find an open neighborhood U, of = such
that |h(y)| < C(y) for any y € U, N Xyeg. Such functions are also called weakly
holomorphic functions on the complex space X' (compare to Definition D.3). If X is
irreducible (the set of regular points has then only one connected component), then
the local rings Ox , are integral domains and one may consider their fraction fields
My 4, x € X. The corresponding sheaf My is then called sheaf of meromorphic
functions (sometimes called regular functions) over X . If X is not irreducible
anymore, the sheaf My is a sheaf of rings, Mx , being the ring of fractions of
Oy s, that is the quotient of Oy , by the ideal of elements which are not zero-

divisors. Theorem D.1 implies that (5X C My. In fact, for x € X, (5/&3c is the

integral closure of Oy , in My ., that is, for every z € X, 6;(,2 is the set of
elements h, in My , satisfying a monic integral dependence relation :

hﬂ/f + olhiwfl + -+ on, with 01,...,001 € Ox 4.

The notion of weakly holomorphic function on X appeals to Riemann’s analytic
continuation theorem : if X is a complex manifold of dimension n and A is an
analytic subset of X with codimension 1, any function f : X\ A — C which is
holomorphic in X \ A and localy bounded on X, that is

(D.9) Vee X, AU, >z, sup |f(y)] <+oo,

yeUL\A
extends holomorphically over the whole manifold X. In case codim A > 2, the addi-
tional hypothesis (D.9) is redundant and the existence of the analytic continuation
of f follows from Hartogs theorem (see e.g. [GRo)).

When X is a complex analytic space (equipped with its structure sheaf Oy and
supposed here to be irreducible with dimension n), Riemann’s analytic continuation
theorem fails to be true in general. In fact, one may have holomorphic functions in
the dense subset X;, which are bounded in a neighborhood of a singular point = €
Xsing, but do not define elements of Ox ,. Here is an example : let ¢ : ¢t € D(0,¢€) —
(t3,t?) be an injective (since 2 and 3 are coprime) holomorphic parametrization in
a neighborhood of the origin in C? of the analytic space X defined (as embedded
in C?) by the equation 2?2 — 23 = 0 ; the function h : 2 — ¢~ !(x) is holomorphic in
Xreg = X'\ {(0,0)} and locally bounded in X, but there is no holomorphic function

h in a neighborhood of the origin in C2 such that h(t3,2) = ¢, which proves that
¢! cannot be defined at the level of germs at (0,0) as an element of Ox,(0,0)-
The fact that Riemann’s analytic continuation theorem fails in general on com-
plex analytic spaces leads naturally to introduce, given a complex analytic space
(X,Ox), the concept of normality at a given point & € Xying and of normality (that

is normality at any point).

DEFINITION D.11 (local and global notions of normality). A complex analytic
space (X, Oy) is said to be normal at a point v € Xsing if and only if Ox , = Oy 4.
The space X is said to be normal if and only if it is normal at any point z of Xyng.
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Any complex analytic space (X, Ox) can be normalized in the following sense.

THEOREM D.4 (Oka normalization theorem). Let X be a complex analytic
space. There exists a normal complex analytic space (X, O=), together with a proper
projection ™ : X — X with #(7~*({z}) < +o0 for any z, such that X \ 71 (Xsing)
is dense in X and 7 realizes an analytic isomorphism between X \ 71 (Xging) and
Xyeg. Such a pair (X, O%), ) (or, in short, (X,n)), is said to be a normalization
of the complex analytic space X ). It is unique in the following sense : given two
such normalizations (X1, 71) and (Xa, m2), (X1, Ox;) and (X, Oz;) are isomorphic
as complex analytic spaces.

D.5. Blow-up and log resolutions

D.5.1. Normalized blow-up along a coherent sheaf. The geometric op-
eration which consists in blowing-up plays an important role in analytic or algebraic
geometry. Given a Oxy-coherent sheaf of ideals Z over a complex manifold (X, Ox),
one will use in particular in this monograph the so-called normalized blow-up of
X along the sheaf of ideals T (or also with center of the coherent ideal sheaf T)
). This is, up to an isomorphism between (reduced) complex analytic spaces, an
intrinsic object (depending on X and Z), see Proposition D.4 below. Here are the
two operations in which is decomposed the normalized blow-up procedure, given X
and the Oy-coherent sheaf 7.

(1) Blow-up the complex manifold X along the coherent sheaf Z (or with
as center the coherent sheaf Z), which leads, as decribed below, to a
(reduced) complex analytic space (X7, Ox,) (of the same dimension than
X), together with an holomorphic proper surjective projection = : Xz —
X, such that the inverse image sheaf Z - Ox, of Z by  is invertible (the
support of Ox, /T - Ox, is a closed analytic hypersurface Hz of A7) and
m realizes a biholomorphism between X7 \ Hz and X \ Supp (Ox/Z).

(2) Find a normalization X7 =5 Xz of the complex (reduced) analytic space
Xz, such as described in Theorem D.4 above.

TOTT N

The normalized blow-up of X along Z is then X7 "%V X. The inverse image
sheaf 7 - Oz via m o my is also invertible, which means its support is a closed
analytic hypersurface H in Xz. Denote as 7z v = mony and (H,), the irreducible
components of the hypersurface H = Supp O;TI/I O As X7 is normal, the rings
O, are regular in codimension 1 (see Appendix C). One can then associate a

2
Weil divisor

(D.10) Dr:=Y» m,H,
B!
to the coherent sheaf of ideals 77 y[Z], where
Ox; .,
T, Ty

(here 7 '071,;1:7 denotes the inverse image sheaf of Z via the mapping 7z y at x.,, the
generic point of the irreducible component H,). This divisor is called ezceptional

—_T
divisor of the normalized blow-up Xz —» X . For a deeper understanding of these
notions one can refer to [Hir| or [Tel, Te2].
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The following important proposition shows the uniqueness, up to isomorphism,
of the normalized blow-up (in terms of a universality property).

PROPOSITION D.4 (universality property of the normalized blow-up). Let X be
a complex manifold and T be a Ox-coherent sheaf of ideals on X. The normalized
blow-up of X, X1 WI%’N X along T has the following universality property : if X — X
is any morphism of complex (reduced) analytic spaces such that X is normal and
the inverse image sheaf I - O 1is invertible, then T factorizes in a unique manner
as T = mg,N 0Tz, where Tz is a morphism of complex (reduced) analytic spaces from
X into the normalized blow-up Xz.

It follows from the universality property of the normalized blow-up that the
following definition defines instrinsic analytic subsets contained in Supp (Ox /7).

DEFINITION D.12 (distinguished components of Supp (Ox/Z) [Fu, Ful]). Let
X be a complex n-dimensional manifold and Z a O xy-coherent sheaf of ideals. Let
X7 ™" X be the normalized blow-up of X along the coherent sheaf Z and let
(H,)~ be the list of the irreducible components of its exceptional divisor (D.10).
It follows from Remmert-Stein theorem that the images (mx o 7)(H,) are closed
irreducible subsets Z., of Supp (Ox/Z). The irreducible closed analytic subsets
ZF among the (in general highly redundant) list (Z,), which have codimension £,
where codim (Ox/Z) < k < n, are called distinguished irreducible components of

codimension k of Supp (Ox/Z).

Let us make explicit the blow-up of a complex analytic manifold X along a
coherent sheaf of ideals Z first in the case Z = Zy, where ) is a closed submanifold
in X, then in the general case of a coherent Oy-sheaf Z on X (see e.g. [Smil]).

a) Suppose I = Ty, where ) is a closed submanifold in X. The blow-up of X along
Zy is an holomorphic vector bundle with rank codim ) above ). Its fiber above
y € Y is the projectivization P(N,) of the space N, of all directions orthogonal
to Y at the point y, i.e. the C-vector space obtained as the quotient of N, \ {0}
by the co-linearity relation. The vector bundle such constructed above ) is the
quotient bundle T'(X)y/T(Y), where T'(X) — X is the holomorphic complex
tangent bundle to X (that one restricts above ) as a bundle above )) and
T(Y) — Y the holomorphic tangent complex to ) (considered as a sub-bundle
of T(X)|y — Y. Suppose the submanifold J (here with dimension n —m) is
defined in a local chart U about one of its points y as

Yi={CeX; fi(() == fm({) =0},
where f1, ..., fi, are holomorphic functions in U, satisfying df; A- - -Adf,, # 0 over

YNU. The blow-up of U along Zyny can be expressed, up to an isomorphism of
complex manifolds, as the closure in U x P"™~1(C) of the graph of the mapping

CeUNY = [fi(Q) i+ = fm(Q)]-
This graph is defined as a set of points ({,[w; : -+ : wy,]) in the manifold
U x Pm~1(C) satisfying
w; fi41(¢) — w1 f;(¢) =0, j=1,...m—1
Then the projection 7y : Uz, — U (which is then proper since P"~'(C) is
compact) is given by the projection

(Clwy -+t wp]) = CeU.
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The inverse image 7;' ()) is a smooth hypersurface Hy 17 := (YNU) x P™~1(C)
and 7y realizes a biholomorphism between X7, \ Hy y and U \ ).

b) Consider the case where T is an arbitrary Oy -coherent sheaf on X. Tt is enough
to blow-up (along Z;;7) a local chart U about a point y in the support Ox /Z. Let
(f1, ., fm) be m elements in O(U), such that Z, = ((f1)z .-, (fm)z) for every
z € U. The blow-up Uz, of U along Zj;y can be expressed (up to isomorphism
of analytic spaces) as the closure in U x P™~1(C) of the graph of the map

¢ € U\Supp (Ov/Tjy) = [f1(Q) -+ fm(Q)]-

The projection 7 : Uz, — U is given by the projection map
(Cwy e rwy])— CeU.

The complex analytic space Z;; depends only (up to isomorphisms of complex
analytic spaces) on the coherent sheaf Z;;;, not on the system of generators
(f1, -, fm) chosen in Ox(U). Hartogs theorem implies that the inverse image by
7 of the support of the quotient sheaf Oy /Zy (i.e. here the locus of the common
zeroes of f;, j = 1,..,m, in U) cannot have components with codimension
larger of equal to 2. Therefore it is an hypersurface Hz y in U x P™~1(C)
and 7 realizes a biholomorphism between Uz, \ Hzy and U\ ()" fj_l(O) =
U\ Supp (Ox)jv/Zy). That geometric description of the blow-up Uz, of U
along the coherent sheaf Z;;; will be enough for our needs in the core of the
monograph.

The notion of integral closure of an ideal in a commutative ring is closely related
to the normalized blow-up. We recall this algebraic definition.

DEFINITION D.13 (integral closure of an ideal in a commutative ring). Let A
be a commutative ring and a be an ideal of A. We call integral closure of a in A
the ideal @ of A consisting of elements h of A satisfying the homogeneous integral
relation :

RN +uhN Lo+ Ay =0,

with u, € a®, k = 1,2,..., N. An equivalent formulation is to say that hT', consid-
ered as an element of the graded algebra A[T], is integral over the Rees algebra

o0
@:=A®al 0T’ @ ... = Pa"T" C A[T],
k=0
i.e. it satisfies a monic integral dependence relation

M
(RT)M + > (hT)Mu;(T), ur(T), ..oy uns (T) € @

j=1

If X is a complex analytic variety, Z a Oy coherent sheaf of ideals, one can
consider the coherent sheaf Z, where, for every z € X, Z, denotes the integral
closure of 7, in Ox,. The coherence of the sheaf of ideals 7 follows from the
theorem of Grauert on the transport of coherence through direct image [Grau] and
Proposition D.5 below.

PROPOSITION D.5. Let U be an open set in a complex manifold X and f be a
global section of the ideal T in U. If m : Xr — X is the normalized blow-up of X
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along T and D7z its exceptional divisor (D.10). Then the principal Cartier divisor
div(f om) is such that

div(fom) > Dz.
This implies also that for any component H., of 7=*(Supp (Ox/ZI)) intersecting
7~ Y(U), one has

(Ox72 )11 (0) )
f-Ox )i )
at a generic point x of H., the multiplicities m. being defined by (D.11). This
claim is equivalent to the inclusion

(D13) f (OTI)VT’l(U) cT- (OTI)hT’l(U)‘

Conversely, if either condition (D.12) or condition (D.13) is fulfilled, then f is a
global section in U of the sheaf of the ideals T.

(D.12) length (

>m’Y

REMARK D.5. One can as well introduce the blow-up of a complex analytic
space (X, Oy) (instead of a complex manifold) along a coherent O y-sheaf of ideals
Tx, and then, normalize it in order to construct the normalized blow-up of (X, Ox)
along Zy. Results such as Propositions D.4 and D.5 still hold. From the point of
view of complex analytic scheme theory (see [Hal]), one should point out that the
blow-up (Xz,0x,) of (X,Ox) along the Ox-coherent sheaf Z corresponds to the
complex analytic scheme

(Xz,0x,) = Proj (éz’“)
k=0

The normalized blow-up (X7, (’)71) corresponds to the complex analytic scheme

(X1, Oz;) = Proj (@I’“) = Proj (@ﬁ)
k=0 k=0
(refer for example to [LeT)).

D.5.2. Log resolutions, Hironaka theorem. Among closed non smooth
hypersurfaces ‘H in a n-dimensional complex manifold X, hypersurfaces with lo-
cal normal crossings play a major role, since their singularities can be explicitely
described.

DEFINITION D.14 (Hypersurface with normal crossings). Let X be a n-dimensional
manifold and H a closed hypersurface in X'. The hypersurface H is locally with nor-
mal crossings if and only if, for any point « € H, there is a centered system of local
coordinates in some open chart U about x such that

HNU = {C S U; <i1 te C’LLT = Oa {ila “wilz} - {17...7’)1}},
i.e. H can be locally described in centered local coordinates ¢ about any of its

points as the zero set of a monomial in (.

DEFINITION D.15 (log resolution). Let (X, Ox)) a n-dimensional complex irre-
ducible analytic space and ) a closed analytic subset in X. A log resolution X = X
for Y consists :

(1) a complex manifold (X, O3) where dimX =n ;
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(2) a proper surjective holomorphic map 7 : XX , such that the analytic
subset 771()) U crit(n) is a closed analytic hypersurface with normal

crossings in X', where crit(7) denotes the set of critical points of 7, that
is points in X about which 7 does not realize a local biholomorphism.

One of the main tools in developing multidimensional residue theory is the
theorem on resolution of singularities due to H. Hironaka [Hir|. It justifies the
existence of a log resolution for any analytic subset ) in an irreducible analytic
complex space (X, Oy).

THEOREM D.5 (resolution of singularities). Let X' be an irreducible complex
analytic space of dimension n and Y be a complex analytic subset of X containing
Xsing. There exists a complex manifold /’?y of dimensionn and a proper holomorphic
mapping Ty : )?y — X, such that, Zf7'~[ = 7@1(3)) :

e the mapping wy realizes a biholomorphism between .)?y \ H and X \Y;

o the sheaf of ideals Ty - (9%} (the inverse image by my of the sheaf of ideals
Zy on X) is an invertible sheaf whose support is an hypersurface which
has locally normal crossings.

REMARK D.6. The universality property of the normalized blow-up (Propo-
sition D.4) implies the following : if Z is a coherent sheaf of ideals on a complex
manifold X' (or even a complex analytic space, see Remark D.5 above) and ) denotes

the support of Oy /Z, then any resolution of singularities /'?y ¥ X as in Theorem
D.5 factorizes in a unique way as Ty = mz y © 0 Ty where 6 2y is a morphism of

analytic spaces from X into the normalized blow-up A7.
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