Université de Bordeaux Licence de Sciences et Technologies 2015-2016

Devoir surveillé n° 1

9 mars 2016, Durée 1h30

Documents non autorisés

Exercice 1. Déterminez l'ensemble des solutions dans \mathbb{R}^4 du système linéaire suivant :

$$\begin{cases} y - 2z + t = 1 \\ x + 3z = -1 \\ 2x + 3y + 3t = 1 \\ x + y + z + t = 0 \end{cases}$$

Exercice 2. Pour chacune des familles suivantes de vecteurs de \mathbb{R}^3 , on demande de déterminer si elles sont libres et de déterminer la dimension du sous-espace vectoriel qu'elles engendrent.

- **1.** (\vec{u}_1, \vec{u}_2) avec $\vec{u}_1 = (1, 0, 1)$ et $\vec{u}_2 = (1, 2, 2)$.
- **2.** $(\vec{u}_1, \vec{u}_2, \vec{u}_3)$ avec $\vec{u}_1 = (1, 0, 0), \vec{u}_2 = (1, 1, 0)$ et $\vec{u}_3 = (1, 1, 1)$.
- **3.** $(\vec{u}_1, \vec{u}_2, \vec{u}_3)$ avec $\vec{u}_1 = (1, 2, 1), \vec{u}_2 = (2, 1, -1)$ et $\vec{u}_3 = (1, -1, -2)$.
- **4.** $(\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4)$ avec $\vec{u}_1 = (1, 0, 0)$, $\vec{u}_2 = (1, 1, 0)$, $\vec{u}_3 = (1, 1, 1)$ et $\vec{u}_4 = (1, 2, 3)$.

Exercice 3. Dans \mathbb{R}^3 , on considère les vecteurs $\vec{u} = (1, 1, 1)$ et $\vec{v} = (1, -1, a)$ où $a \in \mathbb{R}$.

- **1.** Donner une condition nécessaire et suffisante sur a pour que le vecteur $\vec{w} = (3,1,3)$ appartienne à $\text{Vect}(\vec{u},\vec{v})$. Montrer que lorsque cette condition est satisfaite, les sousespaces $\text{Vect}(\vec{u},\vec{v})$, $\text{Vect}(\vec{u},\vec{w})$ et $\text{Vect}(\vec{v},\vec{w})$ sont égaux.
- **2.** À quelle condition, portant sur a, la famille $(\vec{u}, \vec{v}, \vec{w})$ est-elle une base de \mathbb{R}^3 ? Justifiez votre réponse.

Exercice 4. On considère pour $n \ge 2$ les sous-espaces vectoriels de \mathbb{R}^n :

$$E = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1 + \dots + x_n = 0\}$$

et

$$F = Vect((1, ..., 1)).$$

- **1.** Donnez une base et la dimension de *F*.
- **2.** Montrez que $\{(1, -1, 0, ..., 0), (1, 0, -1, ..., 0), ..., (1, 0, ..., 0, -1)\}$ est une base de *E*, et déterminez la dimension de *E*.
- **3.** Montrez que $E \cap F = \{0\}$.
- **4.** Montrez que, pour tout $x \in \mathbb{R}^n$, il existe un unique couple $(u,v) \in E \times F$ tels que x = u + v. (indication : on pourra écrire $v = \lambda(1, ..., 1)$ et calculer λ en fonction des coordonnées de x).