
Computers & Industrial Engineering 66 (2013) 158–170
Contents lists available at SciVerse ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie
Iterative approaches for solving a multi-objective 2-dimensional vector
packing problem
0360-8352/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cie.2013.05.016

⇑ Corresponding author. Tel.: +33 359632224; fax: +33 359632221.
E-mail address: francois.clautiaux@univ-lille1.fr (F. Clautiaux).
Nadia Dahmani a, François Clautiaux b,⇑, Saoussen Krichen a, El-Ghazali Talbi b

a Institut Supérieur de Gestion de Tunis, LARODEC, 41 Avenue de la Liberté, Cité Bouchoucha, 2000 Le Bardo, Tunisie
b Université de Lille 1, LIFL CNRS UMR 8022, INRIA Lille-Nord Europe, Bâtiment INRIA, Parc de la Haute Borne, 59655 Villeneuve d’Ascq, France

a r t i c l e i n f o a b s t r a c t
Article history:
Received 21 May 2012
Received in revised form 2 March 2013
Accepted 26 May 2013
Available online 4 June 2013

Keywords:
2-Dimensional vector packing problem
Multi-objective optimization
Lower bounds
Heuristics
Metaheuristics
In this paper, we address a bi-objective 2-dimensional vector packing problem (Mo2-DBPP) that calls for
packing a set of items, each having two sizes in two independent dimensions, say, a weight and a height,
into the minimum number of bins. The weight corresponds to a ‘‘hard’’ constraint that cannot be violated
while the height is a ‘‘soft’’ constraint. The objective is to find a trade-off between the number of bins and
the maximum height of a bin. This problem has various real-world applications (computer science, pro-
duction planning and logistics). Based on the special structure of its Pareto front, we propose two itera-
tive resolution approaches for solving the Mo2-DBPP. In each approach, we use several lower bounds,
heuristics and metaheuristics. Computational experiments are performed on benchmarks inspired from
the literature to compare the effectiveness of the two approaches.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper, we address a new bi-objective version of the 2-
dimensional vector packing problem (2-DVPP). A 2-DVPP instance
consists of a set {1, . . . ,N} of items i with two sizes ci and hi, and an
unlimited number of bins with two sizes C and H. The objective is
to pack the items into a minimum number of bins without violat-
ing the capacity constraint of each dimension. The problem is a
generalization of the classical one-dimensional bin packing prob-
lem (BPP), and thus is NP-hard in the strong sense (see Garey &
Johnson, 1979).

Different greedy heuristics and exact methods have been pro-
posed to solve d-DVPPs or more precisely the 2-DVPP (Alves, de
Carvalho, Clautiaux, & Rietz, 2013; Caprara & Toth, 2001; Garey,
Graham, Johnson, & Andrew, 1976; Spieksma, 1994). The d-DVPP
arises in a large variety of real-world applications in computer
science (assignment of jobs to processors, or virtual machine
placement Lee et al., 2011), production planning and logistics
(packing problems), or in steel industry (Chang, Hwang, & Park,
2005).

The literature on 2-DVPP problems focuses on the minimization
of wasted space. However, in real-world applications, there are of-
ten conflicting criteria to be satisfied. In the computer processor
selection with job assignment context for example, a finite number
of real-time computer jobs (items) have to be assigned to a group
of processors (bins). Each job has its own resource demands for
CPU time and memory. Each processor has its time processing
and memory resource constraints. The jobs must all run simulta-
neously and, for a fast time response, all must be memory-resident
at all times. A decision maker may be interested in solutions with a
good trade-off between the number of processors and the comple-
tion time.

In this paper, we consider a bi-objective version of the 2-dimen-
sional vector packing problem, denoted as multi-objective two
dimensional vector packing problem (Mo2-DBPP). We relax the
height constraint, which becomes an objective to minimize. The
objective is to find a trade-off between the number of used bins
and the maximum height of a bin.

Only few works, published in the last 10 years, were dedicated
to multi-objective bin packing problems. In addition to the the
minimization of the number of used bins, other objectives were
addressed. For instance, Liu, Tan, Huang, Goh, and Ho (2008)
pointed out the issue of the balance of the bins, and tried to min-
imize the average deviation of center of gravity from an ideal po-
sition. The authors addressed the multi-objective problem using
an evolutionary particle swarm optimization approach. Geiger
(2007) focused on minimizing the heterogeneousness of the ele-
ments in each bin. An extension of the Best-Fit approximation
algorithm was presented to solve the problem. In Sathe, Schenk,
and Burkhart (2009), a cost function designed for the special real
case study in the automobile sheet metal forming processes has

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cie.2013.05.016&domain=pdf
http://dx.doi.org/10.1016/j.cie.2013.05.016
mailto:francois.clautiaux@univ-lille1.fr
http://dx.doi.org/10.1016/j.cie.2013.05.016
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie

Fig. 1. Illustration of the two resolution approaches for Example 1.

N. Dahmani et al. / Computers & Industrial Engineering 66 (2013) 158–170 159
to be minimized. The problem was solved by using a combination
of a multi-objective evolutionary algorithm with a clustering
algorithm. Khanafer, Clautiaux, Hanafi, and Talbi (2012), ad-
dressed a bi-objective version of the bin packing with conflicts
where the second objective was the minimization of the number
of violated conflicts when the number of bins is fixed. Several
heuristics, and an exact method were proposed to solve the prob-
lem. The previous methods proposed to solve multi-objective
packing problems are dedicated to a specific cost function. They
cannot be applied directly to our two-dimensional problem, since
the subproblems to solve have a totally different structure.

In the Mo2-DBPP, the number of optimal points in the objective
space is bounded by the number of items. This property led us to
design two different resolution approaches that generate poten-
tially efficient solutions by iteratively solving a mono-objective
problem. The first method consists in iterating over the possible
values of maximum height of a bin. This method gives rise to a
pseudo-polynomial number of 2-DVPPs to solve iteratively. The
second method consists in optimizing the maximum height of a
bin while iteratively fixing the number of used bins. In this meth-
od, a fewer number of height minimization problems (MHPP) have
to be solved.

The purpose of this paper is to compare the efficiency and the
effectiveness of these two iterative approaches. For each one, we
present integer linear programming models, several lower bounds
and heuristic algorithms based on adaptations of vector packing
and scheduling algorithms. We also devised three different meta-
heuristics: one population based algorithm and two local search
methods.

To show the effectiveness of our algorithmic approaches, an
experimental investigation is performed on various benchmarks
inspired from the literature (Caprara & Toth, 2001). We compare
the different algorithms dedicated to each approach, and then
compare the two approaches in terms of computing time and solu-
tion quality.

The remainder of the paper is organized as follows: Section 2
provides a mathematical formulation of Mo2-DBPP and a general
description of the two resolution approaches. Sections 3 and 4 deal
with the iterative vector-packing and min-height based ap-
proaches. For each approach, we introduce heuristics and lower
bounds for the related problems. In Section 5, a description of dif-
ferent metaheuristic algorithms is presented. Finally, our computa-
tional experiments are reported in Section 6.

2. Problem formulation and resolution approaches

In this section, we present the mathematical formulation of
Mo2-DBPP. We then give a general description of our two iterative
approaches.

2.1. Definition and model for the Mo2-DBPP

The Mo2-DBPP can be described as follows. Let {1, . . . ,N} be a set
of items. Each item i has a weight ci and a height hi. Let also
f1; . . . ;Mg be a set of bins, where M is an upper bound on the num-
ber of bins that can be used ðM 6 NÞ. Each bin j has a weight capac-
ity C. The two conflicting objectives that have to be simultaneously
minimized are the number of used bins and the maximum height
of a bin.

We now give a formal description of the problem, using binary
variables xij that take the value of 1 if item i has been placed in bin
j, 0 otherwise, and binary variables yj that take the value of 1 if bin j
is used, 0 otherwise. Integer variable H expresses the maximum
height loaded into one bin. A mathematical formulation of the
Mo2-DBPP can be stated as follows:
min
XM

j¼1

yj;H

* +
ð1Þ

s:t:
XM

j¼1

xij ¼ 1; i ¼ 1; . . . ;N ð2Þ

XN

i¼1

cixij 6 Cyj; j ¼ 1; . . . ;M ð3Þ

XN

i¼1

hixij � H 6 0; j ¼ 1; . . . ;M ð4Þ

xij 2 f0;1g; i ¼ 1; . . . ;N; j ¼ 1; . . . ;M ð5Þ
yj 2 f0;1g; j ¼ 1; . . . ;M ð6Þ
H 2 N ð7Þ

The two objective functions minimize concurrently the number
of used bins and the maximum height H of a bin. The partition con-
straints (2) ensure that each item i is assigned to exactly one bin j.
Inequalities (3) express the maximum weight capacity for each bin.
Inequalities (4) mean that each item size combination into a single
bin j must not exceed the maximum height H.

Since we are handling a multi-objective problem, not only one
optimal solution s exists but a set S of efficient solutions that min-
imize both objective functions. For a given solution s, let f1(s) be the
number of bins in this solution and f2(s) the maximum height of a
bin. A solution s 2 S is evaluated with respect to a vector (f1(s),
f2(s)), and a decision vector s dominates a vector s0 if fk(s) 6 fk(s0)
"k 2 {1,2} and $ljfl(s) < fl(s0) for l – k. Hence, solving the problem
aims to identify all the efficient outcomes or the Pareto optimal
set Z�. A maximal set of non-dominated solutions will be denoted
as Pareto approximation set X�.

2.2. Iterative resolution approaches

The number m of bins used is bounded by the number of items
(trivially m 6 N). This means that the size of the Pareto front is at

160 N. Dahmani et al. / Computers & Industrial Engineering 66 (2013) 158–170
most linear in the size of the data. This justifies the application of
an iterative approach.

We used two different resolution approaches. The first one con-
sists in iterating over the possible values of maximum height H. At
each iteration, a 2-DVPP is solved. A second alternative is to optimize
the maximum height H while iteratively fixing the number of used
bins m. The problem to be solved is denoted as the Min-height pack-
ing problem (MHPP). These methods are similar to the classical �-
Constraint method (Haimes, Lasdon, & Wismer, 1971), but we add
an equality constraint on the first objective instead of an inequality.

The main objective of this paper is to compare these two itera-
tive approaches for generating the Pareto approximation set X�.

Example 1. Consider the following instance with N = 8, C = 100.
The vector sizes of each item i 2 {1, . . . ,N}: (ci, hi) = {(20,40);
(60,30); (20,30); (40,60); (10,50); (30,40); (10,10); (10,60)}. The
corresponding Pareto front depicted in Fig. 1 has been obtained by
applying the proposed resolution approaches. In this example, we
found a non-dominated solution for each possible number of bins
between the extrema, which is not the case in general.
3. An iterative vector-packing based approach

3.1. Outline of the method

The resolution approach starts by computing an upper bound U
and a lower bound L for the height H, and then iterates over all pos-
sible values.

The lower bound L is directly given by the item of maximum
height. A naive upper bound would sum the heights of all items. This
bound can be improved by considering the fact that not all items can
fit together in the bin because of the weight constraint. Our upper
bound U is thus obtained by solving a knapsack problem, where
the size of the items is the weight and their profit is their height.

Not all values of H are possible. Some do not correspond with
the sum of heights of any subset of items. Therefore, to ensure that
a value H is useful, we solve a Subset-Sum Problem: Given a set of N
positive integers and a value C, the objective of this problem is to
find the subset of integers whose sum is the closest to C without
exceeding C. If this problem has no solution for value H, then this
value is skipped.

Instead of scanning linearly all possible values of H, we apply a
divide-and-conquer strategy, which avoids the computation of
many non-useful subproblems. At each iteration, a threshold value
H ¼ bLþU

2 c is considered. If 2-DVPP(H) = 2-DVPP(U) then set U = H
and iterate with the new values found. If instead 2-DVPP(H) – 2-
DVPP(U) the method is run in both intervals [L, H] and [H, U]. A pro-
cess is stopped when L = U.

The problem to solve at each step is a two-dimensional vector-
packing problem. It can be stated as follows, using the variables of
model (1)–(7):

min
XM

j¼1

yj ð8Þ

s:t:
XM

j¼1

xij ¼ 1; i ¼ 1; . . . ;N ð9Þ

XN

i¼1

cixij 6 Cyj; j ¼ 1; . . . ;M ð10Þ

XN

i¼1

hixij 6 Hyj; j ¼ 1; . . . ;M ð11Þ

xij 2 f0;1g; i ¼ 1 . . . ;N; j ¼ 1; . . . ;M ð12Þ
yj 2 f0;1g; j ¼ 1; . . . ;M ð13Þ
3.2. Lower bounds

In this section, we present various lower bounds for the 2-DVPP
from the literature, based on combinatorial considerations or lin-
ear programming.

The first lower bound was proposed by Spieksma (1994) and
defined as the maximum between the continuous lower bound val-
ues of the two one-dimensional bin packing problems obtained by
relaxing the first and the second dimension.

LB1 ¼max

P
i¼1;...;N ci

C

� �
;

P
i¼1;...;N hi

H

� �� �
Caprara and Toth (2001) describe improved lower bounding

procedures based on extensions of BPP lower bounds and an inte-
ger programming formulation whose linear programming relaxa-
tion can be solved by column generation. Recently, Alves et al.
(2013) used the concept of dual-feasible functions (see Clautiaux,
Alves, & Valério de Carvalho, 2010) to compute lower bounds for
k-dimensional vector packing problems.

3.3. Heuristics

Many heuristics have been designed for solving the vector pack-
ing problem. The most popular and effective ones are First Fit
Decreasing (FFD) based heuristics (see Caprara & Toth, 2001; Garey
et al., 1976; Spieksma, 1994). Recently, Lee et al. (2011) presented
new heuristics based on a generalization of FFD for solving a virtual
machine consolidation problem. These heuristics take into account
both item sizes and how well they fit the residual capacities of the
opened bin. The authors showed that they outperform FFD-based
heuristics in most cases.

In the 2-DVPP, there is not an obvious choice of how to sort the
resources (items or bins) according to their dimensions. Hence, dif-
ferent ways of assigning the weights to the two dimensional vec-
tors are possible. Therefore a scaling vector w = {w1, w2} is used
to normalize the sizes across dimensions and to weight the re-
sources according to their importance. A natural choice of w is
the average demand for each dimension.

w1 ¼ 1
N

XN

i¼1

ci

w2 ¼ 1
N

XN

i¼1

hi

8>>>><>>>>: ð14Þ

The DotProduct heuristic defines the largest item as the item
that maximizes the dot product between the vector of remaining
capacities r = {r1, r2} of the current opened bin j and the vector sizes
of item i. It selects the item i that maximizes the quantity w1cir1 + -
w2hir2 without violating the capacity constraints. The best results
were obtained with a weight assignment of exp(0.01 � w), where
w stands for the size of the bin in the current dimension.

4. An iterative min-height based approach

4.1. Outline of the method

The exploration of the search space starts by computing lower
and upper bounds ~m and �m on the number of bins. The used lower
bound is LB1 (see above) (Eilon & Christofides, 1971). The upper
bound is generated using the DotProduct heuristic. For each valid
number of bins m 2 ½ ~m; . . . ; �m�, a MHPP instance is optimized.

By associating items to jobs and bins to machines, we note that
the problem corresponds to a scheduling problem denoted by
PkCmax with additional capacity constraints. In the latter problem,
n jobs have to be assigned to m identical parallel machines. Each

N. Dahmani et al. / Computers & Industrial Engineering 66 (2013) 158–170 161
having a processing time pi (i = 1, . . . ,n) and the main objective is to
minimize the maximum completion time of jobs (makespan). Since
PkCmax is known to be strongly NP-hard, the same holds for MHPP.
Considering a cardinality constraint k on the maximum number of
items that have to be packed into one bin leads to a special case of
MHPP denoted as P#j6kjCmax.

Using the variables of model (1)–(7), we now give the formal
definition of MHPP.

min H ð15Þ

s:t:
Xm

j¼1

xij ¼ 1; i ¼ 1; . . . ;N ð16Þ

XN

i¼1

cixij 6 C; j ¼ 1; . . . ;m ð17Þ

XN

i¼1

hixij � H 6 0; j ¼ 1; . . . ;m ð18Þ

xij 2 f0;1g; i ¼ 1; . . . ;N; j ¼ 1; . . . ;m ð19Þ
H 2 N ð20Þ
4.2. Lower bounds

In this section, we present different lower bounds adapted from
PkCmax, P#j6kjCmax. The following bounds were proposed in
Dell’Amico and Martello (2001, 1995), Dell’amico, Iori, and Mar-
tello (2004), Dell’Amico, Iori, Martello, and Monaci (2006). The first
lower bound L1 is the maximum among the solution value of the
continuous relaxation of the problem, the maximum height of an
item and the minimum possible height needed to pack the m + 1
largest items.

L1 ¼max
1
m

Xn

i¼1

hi

& ’
; max

i
fhig; hm þ hmþ1

 !
For our specific problem, we can slightly improve the lower

bound of Dell’amico et al. (2004). A new lower bound can be de-
rived from L1 by eliminating the n �m � 1 smallest items and con-
sidering the weight capacity constraints. The optimal solution
value of the relaxed problem is clearly no less than
hmþ1 þmini2f1;...;mg:ciþcmþ16C hi. Thus, an improved bound is

eL1 ¼max L1; hmþ1 þ min
i2f1;...;mg:ciþcmþ16C

hi

� �
When n > m(k � 1), bound eL2 was obtained by observing that at

least one bin must contain k items among the first largest
m(k � 1) + 1 ones. Thus, by considering the k smallest items, we
have

L2 ¼max eL1;
Xmðk�1Þþ1

i¼ðm�1Þðk�1Þþ1

hi

0@ 1A
In the special case arising when n = mk, the bound L2 can be im-

proved by considering the total height of the bin that contain the
largest item.

eL2 ¼max L2;h1 þ
Xn

i¼n�kþ2

hi

 !

The overall lower bound is then LC ¼maxðL1; eL1; L2; eL2Þ.

4.3. Heuristics

In this section, we describe several heuristic algorithms for solv-
ing MHPP. Most of them are adapted versions of heuristics pro-
posed for the PkCmax so as to handle the weight capacity
constraint (17). Recalling that we are approximating a Pareto opti-
mal set, the proposed heuristics have to be run for each valid num-
ber of bins.

4.3.1. The least loaded heuristic
The least loaded heuristic (LL) attempts to balance the load be-

tween the bins. Given a list of empty bins k = (1, . . . ,m) and an or-
dered list of items r, LL takes each item i following r and tries to
pack i into one of the current m bins by choosing the currently least
loaded one (i.e. the bin of largest residual capacity). If LL fails to
pack a selected item into the current m bins, a new bin is opened.
The process is stopped when there are no more items to pack. The
heuristic can be seen as the well known approximating algorithm
List Scheduling (Graham, 1966) for the PkCmax problem. One of the
most effective sorting rules is the Longest Processing Time (LPT) that
orders the jobs (items) in a non-increasing order of processing time
(height/weight). In order to adapt LL to our two-dimensional prob-
lem, we examined various sorting rules: decreasing ci (favoring the
construction of feasible solutions), decreasing hi (favoring good
quality solutions) and decreasing max{ci, hi}. After some prelimin-
ary experiments, the most effective sorting rule is decreasing hi.
This can be explained by the fact that for many instances, finding
a feasible solution in term of ci is not hard. In the iterative process,
we choose the valid bin with the minimum height among the m
current bins.

4.3.2. The min-bin heuristic
The min-bin (MB) heuristic was designed to be applied in our

multi-objective framework. It starts from an initial solution with
m + 1 bins and tries to build a new solution with m bins based
on the latter one. The heuristic empties the bin j with the mini-
mum total height and tries to repack its items into the remaining
m bins. These items are sorted in a decreasing order of hi and iter-
atively assigned to the first feasible bins. If the heuristic succeeds
to pack all the items then bin j is discarded from the list. The pro-
cess is stopped when it is unable to repack an unpacked item.

4.3.3. The multi-fit heuristic
The multi-fit (MF) heuristic has been proposed by Coffman, Gar-

ey, and Johnson (1978) for the PkCmax problem. The heuristic finds
through a binary search the smallest value ~c for an associate BPP
instance that uses no more than m bins of capacity ~c. In our case,
MF takes as input a list of items r = (1, . . . ,N) sorted in a decreasing
order of hi, and a number m of bins. The heuristic starts by comput-
ing lower and upper bounds L and U on the maximum height of a
bin, according to Coffman et al. (1978). It then proceeds through a
binary search to find the minimum height H that uses no more
than m bins and that respects the weight constraints. At each iter-
ation, we apply an adapted version of first fit decreasing that takes
into account capacity constraints (17) and (18).
5. Improving both approaches using metaheuristics

In this section, we introduce several metaheuristics developed
for both resolution approaches. We use exactly the same models
and encodings for both problems. Only the cost functions and the
initial solutions are modified.

One of the main issues when designing metaheuristics for solv-
ing combinatorial optimization is to find a trade-off between
intensification and diversification (see for example Talbi, 2009).
Whereas local search methods are known to be efficient as inten-
sifying methods, evolutionary algorithms (EA) are powerful to ex-
plore the decision space thanks to their variation operators. These
metaheuristics attested their efficiency for several challenging
packing problems (see for example Falkenauer, 1996; Khanafer

Fig. 2. An example of the direct encoding scheme.

162 N. Dahmani et al. / Computers & Industrial Engineering 66 (2013) 158–170
et al., 2012; Khanafer, Clautiaux, & Talbi, 2012). We examine the
performance of these metaheuristics on solving our problem with
both of our iterative approaches. We first describe an iterated tabu
search (ITS) algorithm. The reader is referred to Glover and Laguna
(1999) for a detailed description of tabu search algorithms. Second,
a basic EA is presented in this section.

The choice of a solution representation is of considerable
importance for the search operators and in the evaluation process.
Several simple representations may be carried out for the same
optimization problem such as permutation, float, discrete or binary
vector representation. In this paper, we investigate two different
solution encoding schemes, namely direct and indirect encoding
schemes. In the sequel, we list the algorithms’ features related to
fitness function, solution representation and evaluation.

5.1. Fitness functions

For the Mo2-DBPP, different fitness criteria are worth consider-
ing. For a given solution s, let m(s) be the number of bins used, and
H(s) the maximum height of a bin.

For the vector-packing problem where H is the height currently
fixed, our metaheuristics use the following lexicographic fitness
function:

FvpðsÞ ¼ hmaxfHðsÞ � H;0g;mðsÞi

This function first aims at finding a feasible solution. Then a
solution with the smallest number of bins is sought.

In the min-height approach, many solutions may be equivalent
in term of H(s). Therefore, we introduce another term h2(s), the
sum of the square of the height of each bin. This latter criterion
is used to refine H(s) and to favor solutions with few highly loaded
bins. If the number of currently fixed bins is m, the lexicographic
objective function is the following:

FmhðsÞ ¼ hmaxfmðsÞ �m;0g;HðsÞ;h2ðsÞi

This function will always favor a feasible solution, then opti-
mize the actual objective of height minimization. The third term
is used to break the ties between solutions of same height.

5.2. An iterated tabu search with a direct encoding

A solution is encoded as a discrete vector of size N. Each vector’s
position ai (i = 1, . . . ,n) represents the index j = 1, . . . ,m of the bin in
which i is packed. Fig. 2 illustrates our solution encoding.

5.2.1. Initial solution
In the vector-packing based approach, for each fixed maximum

height H, the initial solution is generated by performing the Dot-
Product heuristic.

In the min-height based approach, for each fixed number of bins
m, the initial solution is generated as follows. If there is a previous
generated solution with m + 1 bins, the min-bin heuristic (see Sec-
tion 4.3.2) is performed in order to generate a new solution with m
bins. If not, the LL heuristic (see Section 4.3.1) is applied. If the ini-
tial solution is not feasible, the objective function described above
is used to drive the search toward feasible solutions.

5.2.2. Neighborhood exploration and evaluation
Neighbors for a current solution can be obtained by swapping

items between all possible pairs of bins. We only consider swaps
that preserve the capacity constraints. The swapping process starts
by comparing the items in the first bin with the items in the second
bin, and so on, sequentially down to the last bin in the initial solu-
tion and is repeated for each possible pair of bins. Each time the
move is applied, the neighbor is evaluated through a lazy evalua-
tion technique. The best solution in the neighborhood replaces
the current solution even if it is not improving.

5.2.3. Perturbation method
When the search has not found an improving solution after a gi-

ven number of iterations, a perturbation method is used. It consists
in swapping N

4 times a pair of randomly chosen items. Each time the
perturbation method is called, only feasible moves are allowed (i.e.
swap item i from bin j with item i0 from bin j0 while satisfying the
capacity constraints of each bin).

5.2.4. Tabu list and aspiration criterion
To prevent the search from revisiting previously visited solu-

tions, a tabu list is used. In our implementation, the tabu list is a
vector containing the attributes of tabu neighbors. Because of the
loss of information concerning the search memory, the tabu list
may prohibit attractive neighbors that have not yet been gener-
ated. Hence, it is necessary to use an aspiration criterion to accept
some forbidden neighbors. Our aspiration criterion consists in
choosing a tabu neighbor if it is the best solution found overall.

5.3. Metaheuristics with an indirect encoding

The major asset of the indirect encoding is to effectively avoid
some symmetries and redundancy in the search space. This repre-
sentation scheme is applied for both ITS and EA algorithms. A pack-
ing solution is represented as a permutation r = (1, . . . ,N) of N
items. A straightforward decoder considers the permutation r as
a priority list and sequentially assigns the incoming items, in the
vector-packing approach, using an adapted version of the First Fit
algorithm. In the min-height approach, the LL heuristic is per-
formed to assign the items to the m current bins. Fig. 3 presents
the main steps of a solution encoding/decoding process for Exam-
ple 1.

5.3.1. Initial population and variation operators for the EA
The initial population of 100 individuals is generated by com-

bining random solutions with a solution constructed using the Dot-
Product heuristic in the 2-DVPP approach and the LL heuristic in
the min-height based approach. After the decoding process, a fit-
ness value is assigned to every individual in the population (see
Section 5.1). At each step of the algorithm, individuals are selected
using the tournament selection method and reproduced using the
variation operators (i.e. crossover and mutation). Finally, a genera-
tional replacement is applied to the initial population.

We use the Two-points crossover operator (Ishibuchi & Murata,
1998): a pair of crossing points is randomly selected, and the gen-
erated offspring preserves the items outside the selected two

Table 1
Benchmark description.

Class C ci hi

1 1000 u.d.[100,400] u.d.[100,400]
2 1000 u.d.[100,1000] u.d.[100,1000]
3 1000 u.d.[200,800] u.d.[200,800]
4 1000 u.d.[50,200] u.d.[50,200]
5 1000 u.d.[25,100] u.d.[25,100]
6 150 u.d.[20,100] u.d.[20,100]
7 150 u.d.[20,100] u.d.[cj � 10, cj + 10]
8 150 u.d.[20,100] u.d.[110 � cj, 130 � cj]
9

P
i¼1;...;N

ci

L

� �
u.d.[100,400] u.d.[100,400]

10 100 See text See text

Fig. 3. The encoding/decoding process using the indirect encoding for Example 1.

N. Dahmani et al. / Computers & Industrial Engineering 66 (2013) 158–170 163
points from the first parent chromosome. The remaining items are
inserted from the second parents respecting the order of their
appearance. We also adapt two mutation operators: shift mutation
operator and swap mutation operator. In the shift mutation oper-
ator, a pair of randomly chosen components are shifted from the
permutation part of the chromosome, whereas in the swap muta-
tion operator, a pair of randomly chosen components are swapped
from the permutation part of the chromosome. From preliminary
experiments, we noted that a good performance is achieved
through randomly using the above described mutation operators,
which are invoked with probabilities 0.5 and 0.5 respectively.

5.3.2. Initial solution and neighborhood exploration of the iterated
tabu search

The algorithm starts by a solution constructed using the Dot-
Product heuristic in the vector-packing based approach and the
LL heuristic in the min-height based approach. If LL fails to gener-
ate a solution with m bins, a random permutation is generated. The
neighborhood exploration is based on pairwise exchanging opera-
tions (i.e. Two-exchange neighborhood). It consists in selecting
randomly two items and swapping their position in the packing
solution. The perturbation method consists in swapping N

4 times a
pair of randomly chosen items. The tabu list and acceptance crite-
ria are the same as those designed for the direct encoding case.

5.4. An hybrid metaheuristic for the min-height problem

We here describe a new hybrid metaheuristic hybMeta for solv-
ing the MHPP. It combines heuristics and exact methods for both
MHPP and 2-DVPP problems.

Let m be the current fixed number of bins. We first compute
lower and upper bounds L and U for the possible bin height using
LC and MF heuristic respectively. A binary search is then performed
to find the smaller value of H between U and L that will lead to a
solution with at most m bins.

This scheme leads to the resolution of several 2-DVPP problems.
We first use the DotProduct heuristic to find an initial solution.
Then a perturbation method is iteratively applied until an im-
proved packing solution is found or the maximum computing time
is reached.

The perturbation works as follows. We first choose a subset of
bins to discard, and try to repack their contents into the remaining
bins and new created bins. The selection of the bin subset consists
in choosing a given number q of bins with total height equal to H
and a random subset of ‘‘Least loaded’’ bins. We determine the
least loaded bins with the rule described in Eq. (14). For repacking
the items, we first use DotProduct. If it fails to reduce the number of
bins, we use a branch-and-price based on Caprara and Toth (2001).
1 ParadisEO is available at: http://paradiseo.gforge.inria.fr.
6. Experiments

We empirically investigate the performances of the vector-
packing and min-height approaches in order to determine which
approach is more relevant to solve Mo2-DBPP.

6.1. Benchmarks

We used the benchmarks of Caprara and Toth (2001) for 2-
DVPP. Table 1 summarizes the main features of each class in the
data set (u.d. stands for uniform distribution).

In the first six classes, the value N, and each value of ci and hi are
random independent values generated from a uniform distribution
in [a, b]. Classes 1–3 were proposed in Spieksma, 1994. In these
classes, each bin contains on average about 4, 2 and 2 items respec-
tively. In order to consider instances where more items per bin are
packed, Caprara and Toth suggested two new classes 4 and 5 where
each bin contains on average about 8 and 16 items respectively. By
analogy to the most difficult instances of BPP mentioned in the lit-
erature (see Falkenauer, 1996), the authors proposed class 6, where
bin capacities are equal to 150, and weights are uniformly distrib-
uted in [20,100]. In Class 7, the height and the weight are corre-
lated for each item, whereas these two value are anti-correlated
in Class 8. Instances in Classes 9 and 10 are artificially designed
to be hard to solve. In Class 9, item sizes are generated as in Class

1. The value of L is computed as max
P

i¼1;...;N
ci

1000

� �
;

P
i¼1;...;N

hi

1000

� �� �
and

the bin weight capacities are defined as C ¼
P

i¼1;...;N
ci

L

� �
. Instances in

Class 10 are generated as the triplets (Falkenauer, 1996) for BPP.
For our experimentation, about 40 instances are used by consider-
ing the problem sizes related to the values N 2 {25,50,100,200}
(for Class 10, N 2 {24,51,99,201}) and solving one instance for each
value of N.
6.2. Computational results

The overall presented algorithms are implemented in C++. The
CPLEX solver 12.0 is used to solve the (integer) linear models. Com-
putational runs were performed under Linux operating system on
an Intel Core 2 Duo 6600 (2.40 GHz) machine, with 2 GB RAM. All
the metaheuristics presented in this paper have been implemented
using the ParadisEO framework.1

The stopping criterion of all meta-heuristics is the CPU time.
The time limit t is fixed depending on the problem size: for each

http://paradiseo.gforge.inria.fr

Table 2
Comparison of lower bounding procedures.

Class n Lcont Lint LC LCG

%gap ropt t %gap ropt t %gap ropt t %gap ropt t

1 25 4.8 0 0.02 0.93 0.27 59.1 2.71 0.2 0.11 0.06 0.73 0.11
50 4.06 0 0.01 2.92 0.05 110.34 3.2 0.5 0.14 0.3 0.68 0.29

100 4.63 0 0.05 3.6 0.05 170.63 2.73 0.05 0.38 0.91 0.47 0.68
200 5.56 0 0.21 4.96 0 357.12 3.91 0.01 0.86 1.48 0.53 2

Average 4.76 0 0.07 3.1 0.09 174.3 3.14 0.19 0.37 0.69 0.6 0.77

2 25 23.13 0 0.02 0 1 0.27 8.69 0.33 0.07 0 1 0.04
50 30.03 0 0.02 0 1 3.42 0 1 0.08 0 1 0

100 13.68 0 0.07 8.92 0 176.59 5.24 0 0.09 0.03 0.78 0.43
200 19.54 0 0.38 7.4 0 359.8 12.21 0 0.1 0 1 2.1

Average 21.6 0 0.12 4.08 0.5 135.02 6.54 0.33 0.09 0.01 0.95 0.64

3 25 11.1 0 0.02 3.58 0.2 57.59 6.04 0.2 0.04 0 1 0.08
50 17.59 0 0.02 6.75 0.2 112.94 6.75 0.2 0.06 0 1 0.14

100 13.92 0 0.07 9.62 0.06 178.5 7.54 0.05 0.24 0.02 0.84 0.41
200 12.98 0 0.42 11.11 0 379.3 7.84 0 0.28 0.13 0.75 0.91

Average 13.9 0 0.13 7.77 0.12 118.05 7.04 0.11 0.16 0.04 0.9 0.39

4 25 3.87 0 0.01 0.99 0.21 56.28 2.23 0.13 0.14 0.07 0.79 0.12
50 2.94 0 0.01 1.93 0.04 119.12 2.37 0.04 0.18 0.23 0.44 0.35

100 3.51 0 0.05 2.68 0.04 177.42 2.15 0.04 0.45 0.57 0.35 0.56
200 3.83 0 0.19 3.38 0 378.09 2.64 0 1 0.93 0.38 4.95

Average 3.54 0 0.07 2.25 0.07 182.73 2.35 0.05 0.44 0.45 0.49 1.5

5 25 3.62 0 0.01 0.88 0.5 35.26 2.26 0.13 0.11 0.22 0.67 0.11
50 2.62 0 0.01 1.7 0.07 118.53 2.26 0.04 0.37 0.3 0.5 0.32

100 3.34 0 0.04 2.46 0.02 179.4 2.21 0.02 0.67 0.36 0.45 0.58
200 3.36 0 0.17 2.56 0 356.3 1.37 0.08 1.42 0.69 0.3 13.41

Average 3.24 0 0.06 1.9 0.15 172.37 2.03 0.07 0.64 0.39 0.48 3.61

6 25 6.82 0 0.02 1.63 0.29 56.71 3.78 0.14 0.08 0.12 0.83 0.09
50 7.52 0 0.02 3.77 0.27 119.04 4.39 0.27 0.16 0.54 0.45 0.25

100 6.6 0 0.05 4.25 0.08 169.59 4.22 0.07 0.24 0.12 0.83 0.67
200 6.06 0 0.3 4.91 0 378.16 4.23 0 0.49 0.6 0.55 3.34

Average 6.75 0 0.1 3.64 0.16 180.88 4.16 0.12 0.24 0.35 0.67 1.09

7 25 5.59 0 0.02 1.46 0.5 59.61 2.98 0.2 0.05 0 1 0.08
50 8.56 0 0.02 4.21 0.33 118.66 2.07 0.27 0.1 0 1 0.19

100 4.25 0 0.05 2.59 0.1 173.34 2.67 0.09 0.14 0 1 0.7
200 3.36 0 0.33 2.71 0 356.98 3.2 0.03 0.35 0 1 3.15

Average 5.44 0 0.11 2.74 0.23 177.15 2.73 0.15 0.16 0 1 1.03

8 25 15.36 0 0.02 0 1 51.63 11.66 0.11 0.08 0 1 0.06
50 18.55 0 0.08 5.2 0.3 116.02 5.73 0.3 0.1 0 1 0.12

100 17.94 0 0.19 2.41 2.26 169.38 13.89 0.32 0.29 0.86 0.6 0.55
200 22.54 0 0.98 2.75 0.34 349.21 17.23 0.26 0.53 0.1 0.96 2.42

Average 18.6 0 0.32 2.59 0.98 171.56 12.13 0.25 0.25 0.24 0.89 0.79

9 25 5.21 0 0.02 0.98 0.36 45.61 2.92 0.18 0.1 0.01 0.82 0.1
50 4.14 0 0.06 2.96 0.06 118.38 3.22 0.06 0.16 0.45 0.61 0.32

100 6.2 0 0.17 5.31 0.02 149.51 4.3 0.02 0.28 0.95 0.63 0.67
200 7.65 0 0.63 5.67 0.06 339.26 6 0 0.8 2.16 0.41 3

Average 5.8 0 0.22 3.73 0.13 163.19 4.11 0.07 0.34 0.89 0.62 1.02

10 24 9.93 0.08 0.02 1.16 0.73 24.69 2.23 0.38 0.09 0 1 0.09
51 7.94 0.04 0.08 6.89 0.04 115.74 3.51 0.22 0.19 0.09 0.96 0.36
99 10.89 0.02 0.18 6.51 0.3 139.92 2.38 0.29 0.5 0.49 0.84 0.54

201 12.21 0 0.77 8.83 0.02 359.01 2.08 0.33 0.75 0.49 0.84 1.41
Average 10.24 0.04 0.26 5.85 0.27 159.84 2.55 0.31 0.38 0.27 0.91 0. 6

Overall average 9.39 0 0.15 3.77 0.27 163.51 4.68 0.17 0.31 0.33 0.75 1.14

164 N. Dahmani et al. / Computers & Industrial Engineering 66 (2013) 158–170
value N 2 {25,50,100,200}, t is equal to {60,120,180,360} seconds
respectively.

The tables below provide the following informations: let vL be
the value produced by a lower bounding procedure L, and vH the
solution value generated by a heuristic algorithm A. Let v�L and
v�H denote the best lower bound and heuristic solution value ob-
tained, respectively. For each test instance and for each algorithm,
the tables report the following information.

� %gap = the average percentage gap for all points in the Pareto
approximated set. The %gap is determined by 100 vH � v�L

� 	
=v�L

for the upper bounds and 100 v�H � vL
� 	

=v�L for the lower bounds
� ropt = the ratio between the number of proved optimal solutions

and the number the generated approximated solutions.
� t = the average computing time needed to obtain the best
solution.

We denote by (–) the instances where no solutions were found
by the algorithm.
6.3. Lower bounds

In Table 2, we present the behavior of four lower bounding pro-
cedures. Columns Lcont and Lint respectively deal with the results of
the continuous relaxation and the integer linear model (15)–(20)
using the same CPU time as the metaheuristics. In columns LC,
we report the results for the bounds presented in Section 4.2.

Table 3
Overall performance of metaheuristics based on the vector-packing approach.

Class n EA_BinPack ITS_BinPack ITS

%gap ropt %gap ropt %gap ropt

avg min max avg min max avg min max

25 5.89 5.15 6.07 0 5.85 4.95 6.07 0 5.76 5.76 5.76 0
1 50 5.1 5.1 5.89 0.05 3.67 2.8 4.3 0 8.13 8.13 8.13 0

100 3.23 2.67 3.88 0.12 2.26 1.94 2.47 0.02 5.37 5.37 5.37 0
200 2.3 1.76 2.87 0.19 2.21 1.94 2.48 0.15 3.91 3.91 3.91 0

Average 4.13 3.67 4.68 0.09 3.5 2.91 3.83 0.04 5.79 5.79 5.79 0

25 15.19 15.19 15.19 0 15.19 15.19 15.19 0 9.83 9.83 9.83 0
2 50 – – – – – – – – – – – –

100 4.57 0.76 16.21 0.33 5.04 2.11 16.21 0 22.28 22.28 22.28 0
200 11.73 1.2 26.38 0.3 21.3 11.58 38.67 0 6.56 6.56 6.56 0

Average 10.5 5.72 19.26 0.21 13.84 9.63 23.36 0 12.89 12.89 12.89 0

25 3.6 3.6 3.6 0.2 3.6 3.6 3.6 0.2 4.19 4.19 4.19 0
3 50 4.88 4.88 4.88 0 4.88 4.88 4.88 0 5.07 5.07 5.07 0

100 1.54 0.49 2.28 0.22 1.4 0.63 2.41 0.47 0.73 0.48 0.88 0.18
200 2.49 1.92 3.11 0.13 3.74 2.53 5.5 0 1.77 1.77 1.77 0

Average 3.13 2.72 3.47 0.14 3.41 2.91 4.1 0.17 2.94 2.88 2.98 0.05

25 6.69 6.2 6.81 0.14 6.81 6.81 6.81 0.07 6.93 6.93 6.93 0
4 50 4.64 4.37 4.77 0 4.12 3.68 4.23 0 7.42 7.42 7.42 0

100 3.23 2.9 3.49 0.11 2.36 2.09 2.59 0.16 5.47 5.47 5.47 0
200 2.26 2.04 2.42 0.24 1.58 1.42 1.71 0.28 4.48 4.48 4.48 0

Average 4.21 3.88 4.37 0.12 3.72 3.5 3.84 0.13 6.08 6.08 6.08 0

25 7.44 6.84 8.34 0.07 6.22 6.07 6.84 0.06 10.97 10.97 10.97 0
5 50 3.99 3.82 4.23 0.07 3.42 3.42 3.42 0.14 6.95 6.95 6.95 0

100 3.1 2.96 3.23 0.25 2.21 1.93 2.45 0.02 8.81 8.81 8.81 0.02
200 2.17 2.02 2.31 0.04 1.61 1.49 1.73 0.25 4.8 4.8 4.8 0.01

Average 4.18 3.91 4.53 0.11 3.37 3.23 3.61 0.12 7.88 7.88 7.88 0.01

25 14.03 13.72 14.66 0 3.35 2.87 3.91 0 7.78 7.78 7.78 0.14
6 50 3.91 2.42 5.11 0.11 3.54 3.18 3.99 0.11 5.69 5.66 5.7 0.11

100 1.98 1.02 3.23 0.45 6.78 4.81 7.94 0.43 8.51 8.51 8.51 0.04
200 2.69 1.82 3.86 0.51 7.92 6.18 9.27 0.24 10.21 10.21 10.21 0.03

Average 5.65 4.75 6.72 0.27 5.4 4.26 6.28 0.2 8.05 8.04 8.05 0.08

25 5.02 4.51 5.78 0.17 5.05 5.05 5.05 0.14 5.78 5.78 5.78 0
7 50 1.66 1.31 2.47 0.33 1.51 1.51 1.51 0.33 1.51 1.51 1.51 0.33

100 1.45 0.91 1.86 0.52 1.07 1.07 1.07 0.52 1.62 1.62 1.62 0.23
200 2.5 2.3 2.8 0.19 0.77 0.77 0.77 0.44 1.11 1.11 1.11 0.3

Average 2.66 2.26 3.23 0.3 2.1 2.1 2.1 0.36 2.51 2.51 2.51 0.22

25 6.86 6.86 6.86 0.27 6.86 6.86 6.86 0.27 9.98 9.98 9.98 0
8 50 6.77 6.77 6.77 0.25 6.49 5.39 6.77 0.25 11.17 11.17 11.17 0

100 2.68 2.6 2.91 0.63 3.99 3.03 6.06 0.47 11.2 11.2 11.2 0.05
200 2.27 2.01 2.64 0.56 4.17 2.69 5.69 0.48 13.91 13.91 13.91 0.03

Average 4.65 4.56 4.8 0.43 5.38 4.49 6.35 0.37 11.57 11.57 11.57 0.02

25 4.89 3.83 5.52 0 4.92 3.38 5.52 0 5.09 5.09 5.09 0
9 50 4.15 3.59 4.34 0.06 3.44 2.16 3.88 0 7.79 7.79 7.79 0

100 3.27 2.48 3.91 0.07 2.42 2.09 2.87 0.02 5.65 5.65 5.65 0
200 3.03 2.47 3.58 0.19 3.19 2.62 3.62 0.15 3.31 3.31 3.31 0

Average 3.84 3.09 4.34 0.08 3.49 2.56 3.97 0.04 5.46 5.46 5.46 0

24 3.4 3.4 3.4 0.17 3.51 3.2 3.82 0.15 4.37 4.37 4.37 0.17
10 51 2.07 1.58 2.33 0.58 1.52 1.34 1.77 0.58 4.11 4.11 4.11 0.48

99 2.32 1.78 2.66 0.56 2.19 2.03 2.24 0.67 2.63 2.63 2.63 0.56
201 2.48 2.09 2.8 0.5 3 2.62 3.22 0.5 1.48 1.48 1.48 0.4

Average 2.57 2.21 2.8 0.45 2.56 2.3 2.76 0.48 3.15 3.15 3.15 0.4

Overall average 4.47 3.66 5.6 0.22 4.53 3.7 5.73 0.19 6.57 6.57 6.58 0.07

N. Dahmani et al. / Computers & Industrial Engineering 66 (2013) 158–170 165
The LCG columns contain the results related to the vector packing
based lower bound (Caprara & Toth, 2001).

The model (15)–(20) leads to weak results. It can be explained
by the bad quality of its linear relaxation (9.39% gap in average,
up to 30.03% for Class 2 with n = 50) and its large number of vari-
ables. The integer model is able to solve to optimality 27% of the
instances, but fails to solve a large number of instances of size
25. The maximal remaining average gap for Lint reaches 11.11%
for Class 3 with n = 200.

The fast lower bound LC is slightly worse than Lint in term of
overall average gap but is able to find better average gaps for
subsets of all classes, except for class 8, where the gap of LC

is the worst (up to 17.23% with n = 200). This bound is always
better than the linear relaxation Lcont for comparable computing
times. The time required for LC was at most one second in all
cases, which is far less than the time given to the integer
model.

The column generation LCG provides the best lower bound
(0.33% gap in average). It solved to optimality all instances in Class
7 and produced near optimal results for instances in Class 2 (0.01%
of average gap and 95% of proved optimal solutions). The average
gap for LCG is never larger than 2.16% (Class 9, n = 200). The com-
puting time of this bound remains reasonable (1, 14 s in average)
with larger computing times for Classes 4 and 5 (up to 13, 41 s),
where many items can be packed into a bin (and thus the pricing
subproblems are more time-consuming).

 350
 400
 450
 500
 550
 600
 650
 700
 750
 800
 850
 900
 950

 1000
 1050
 1100
 1150

 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

M
ax

im
al

 h
ei

gh
t

Number of bins

CL_01_50_1
LCG

EA_BINPACK
ITS_BINPACK

ITS
hybMeta

 780

 800

 820

 840

 860

 880

 900

 920

 940

 30 31 32 33 34

M
ax

im
al

 h
ei

gh
t

Number of bins

CL_03_50_1
LCG

EA_BINPACK
ITS_BINPACK

ITS
hybMeta

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700
 750
 800
 850
 900

 5 10 15 20 25 30 35 40 45 50 55 60 65 70

M
ax

im
al

 h
ei

gh
t

Number of bins

CL_05_100_1
LCG

EA_BINPACK
ITS_BINPACK

ITS
hybMeta

 100

 110

 120

 130

 140

 150

 160

 40 45 50 55 60 65

M
ax

im
al

 h
ei

gh
t

Number of bins

CL_07_100_1
LCG

EA_BINPACK
ITS_BINPACK

ITS
hybMeta

 80
 100
 120
 140
 160
 180
 200
 220
 240
 260
 280
 300
 320

 80 85 90 95 100 105 110 115 120 125 130

M
ax

im
al

 h
ei

gh
t

Number of bins

CL_08_200_1
LCG

EA_BINPACK
ITS_BINPACK

ITS
hybMeta

 350
 400
 450
 500
 550
 600
 650
 700
 750
 800
 850
 900
 950

 1000
 1050
 1100
 1150
 1200
 1250

 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140

M
ax

im
al

 h
ei

gh
t

Number of bins

CL_09_200_1
LCG

EA_BINPACK
ITS_BINPACK

ITS
hybMeta

Fig. 4. Pareto approximation sets comparison for a randomly chosen instances with n 2 {50,100,200}.

166 N. Dahmani et al. / Computers & Industrial Engineering 66 (2013) 158–170
It transpires from our experiments that the best combination of
bounds is to use LC, which is always fast, before using LCG.

6.4. Upper bounds

In this section, we compare the average overall performance
of the proposed algorithms for both 2VPP and MHPP based ap-
proaches. For all the presented metaheuristics, we performed
five independent runs. For each instance and each algorithm,
we report the average, minimum and maximum percentage
gap (%gap) in columns avg, min and max. Concerning the
parameter settings, for the ITS algorithms, each time the con-
struction phase is called, a tabu search algorithm is performed
and stopped when the best solution cannot be improved
within a given number of iterations equal to n

2. For the GA, the
initial population size is fixed to 100 individuals and the cross-
over and mutation probabilities are set to 0.8 and 0.5
respectively.

Table 4
Overall performance of metaheuristics based on the min-height approach.

Class n EA_BinPack ITS_BinPack ITS hybMeta

%gap ropt %gap ropt %gap ropt %gap ropt

avg min max avg min max avg min max avg min max

1 25 0.74 0.4 1.27 0.58 6.98 2.12 15.66 0 1.12 0.96 1.35 0.09 0.85 0.77 0.96 0.27
50 2.68 2.26 3.18 0.42 2.59 0.67 6.17 0.05 5.79 4.81 6.6 0 2.71 2.68 2.75 0.21

100 3.06 2.2 3.87 0.16 1.72 1.72 1.72 0.02 14.35 13.73 14.62 0.03 2.74 2.69 2.79 0.4
200 5.19 3.81 6.69 0.01 18.17 18.17 18.17 0 7.1 7.07 7.12 0.07 3 2.34 2.7 0.35

Average 2.92 2.17 3.75 0.29 7.37 5.67 10.43 0.02 7.09 6.64 7.42 0.05 2.33 2.12 2.3 0.31

2 25 0 0 0 1 9.98 0.94 23.1 0 0 0 0 1 0.14 0 0.31 1
50 0 0 0 1 19.23 7.39 35.02 0 0 0 0 1 0.28 0 0.81 1

100 6.13 2.79 10.59 0 12.29 12.29 12.29 0 – – – – 9.31 8.76 10.23 0
200 24.26 16.87 32.84 0 33.19 33.19 33.19 0 – – – – 9.53 7.31 13.35 0

Average 7.6 4.92 10.86 0.5 18.67 13.45 25.9 0 0 0 0 1 4.82 4.02 6.18 0.5

3 25 0 0 0 1 8.02 2.36 15.03 0 1.49 1.49 1.49 0.5 1.25 1.08 1.54 0.6
50 0.08 0 0.36 1 2.16 0.54 4.69 0 0 0 0 1 0.59 0.32 0.75 0.2

100 4.49 2.49 6.95 0.11 5.17 5.17 5.17 0 3.62 3.07 3.99 0 2.39 1.73 3.23 0.26
200 4.68 3.06 6.95 0.05 11.18 11.18 11.18 0 8.6 5.92 10.88 0 2.07 1.3 3.07 0.05

Average 2.31 1.39 3.57 0.54 6.63 4.81 9.02 0 3.43 2.62 4.09 0.38 1.58 1.11 2.15 0.28

25 0.41 0.21 0.71 0.53 6.34 1.55 13.46 0 0.98 0.84 1.11 0.33 0.48 0.4 0.65 0.58
4 50 0.74 0.44 1.11 0.4 1.99 0.55 4.18 0 5.26 4.43 6.08 0 1.51 1.51 1.51 0.16

100 1.18 0.82 1.65 0.29 1.64 1.64 1.64 0 10.78 6.94 12.87 0.16 4.74 4.71 4.76 0.02
200 1.78 1.35 2.24 0.04 14.45 14.45 14.45 0 6.44 6.41 6.47 0.07 3.6 3.6 3.6 0.01

Average 1.03 0.71 1.43 0.32 6.11 4.55 8.43 0 5.87 4.66 6.63 0.14 2.58 2.56 2.63 0.19

25 0.32 0.2 0.57 0.69 5.71 1.26 12.48 0.13 1.13 1.03 1.27 0.38 0.71 0.69 0.8 0.42
5 50 0.67 0.43 0.99 0.39 1.86 0.85 3.86 0.04 4.92 4.13 5.63 0.07 1.1 1.1 1.1 0.25

100 0.82 0.37 1.47 0.56 3.04 2.08 4.6 0 11.4 10.93 11.68 0.11 5.71 5.71 5.71 0.05
200 1.58 1.17 2.05 0.09 12.39 12.39 12.39 0 5.91 5.91 5.92 0.22 1.34 1.34 1.34 0.15

Average 0.85 0.54 1.27 0.43 5.75 4.15 8.33 0.04 5.84 5.5 6.13 0.2 2.22 2.21 2.24 0.22

25 0.25 0.1 0.81 0.86 9.2 2.2 17.2 0.14 0.97 0.97 0.97 0.33 2.61 2.19 3.28 0.63
6 50 2.06 1.09 3.4 0.45 2.92 1.31 5.12 0.09 4.18 3.18 5.08 0.18 7.57 6.38 8.58 0.2

100 2.06 1.07 3.33 0.56 4.59 4.59 4.59 0 5.13 4.96 5.28 0.11 2.56 2.55 2.59 0.05
200 6.24 4.64 7.83 0.06 24.7 24.7 24.7 0 2.87 2.79 2.91 0.13 2.77 2.77 2.77 0.06

Average 2.65 1.73 3.84 0.48 10.35 8.2 12.9 0.06 3.29 2.98 3.56 0.19 3.88 3.47 4.31 0.24

25 0.03 0 0.13 1 6.41 1.17 14.51 0.33 0.17 0.17 0.17 0.83 1.6 1.3 1.91 0.71
7 50 0.44 0.43 0.48 0.8 1.96 1.13 4.34 0 1.16 0.69 1.72 0.53 0.45 0.44 0.48 0.8

100 0.6 0.29 0.96 0.67 1.6 1.6 1.6 0 2.14 1.86 2.31 0.6 0.43 0.43 0.43 0.64
200 3.14 2.58 3.84 0.03 13.21 13.21 13.21 0 5.41 5.11 5.59 0.29 1.78 1.78 1.78 0.42

Average 1.05 0.83 1.35 0.63 5.8 4.28 8.42 0.08 2.22 1.96 2.45 0.56 1.07 0.99 1.15 0.64

25 0.02 0 0.06 1 6.64 2.07 13.67 0.22 0 0 0 1 1.77 0.92 3.22 0.78
8 50 0.36 0.19 0.66 0.79 4.56 1.51 9.66 0 0.35 0 0.61 1 3.43 2.74 4.54 0.17

100 1.04 0.63 1.62 0.68 14.68 13.52 15.14 0 4.23 4.23 4.23 0.63 8.76 6.88 9.66 0.14
200 3.97 2.95 5 0.26 16.16 16.16 16.16 0 3.8 3.8 3.8 0.63 9.79 9.13 10.55 0.1

Average 1.35 0.94 1.84 0.68 10.51 8.32 13.66 0.06 2.1 2.01 2.16 0.82 5.94 4.92 6.99 0.3

25 0.48 0.25 0.92 0.64 5.7 1.18 11.52 0.18 1.18 1.01 1.34 0.18 0.97 0.89 1.07 0.45
9 50 0.74 0.38 1.14 0.56 5.72 2.85 10.89 0 5.59 4.8 6.38 0 2.64 2.56 2.7 0.22

100 2.75 2.27 3.34 0.33 17.27 15.19 19.46 0 14.01 13.32 14.3 0.03 2.82 2.73 2.9 0.4
200 7.59 6.34 8.99 0 17.95 17.95 17.95 0 16.22 16.22 16.22 0 2.27 2.25 2.29 0.34

Average 2.89 2.31 3.6 0.38 11.57 9.2 14.87 0.05 9.25 8.84 9.56 0.05 2.18 2.11 2.24 0.35

24 0.09 0 0.53 0.83 8.97 1.89 17.36 0.17 0 0 0 1 0.37 0.11 0.55 0.92
10 51 1.06 0.68 1.57 0.73 5.58 3.04 10.34 0.04 3.01 2.17 3.82 0.26 1.65 1.54 1.8 0.72

99 2.17 1.52 3 0.35 12.47 10.51 13.87 0 8.65 8.14 9.04 0.04 2.63 2.52 2.98 0.48
201 4.97 3.92 6.24 0.05 13.6 13.6 13.6 0 10.48 10.37 10.57 0.04 2.15 2.15 2.15 0.43

Average 2.07 1.53 2.84 0.49 10.17 7.28 13.81 0.05 5.54 5.17 5.86 0.34 1.7 1.58 1.87 0.64

Overall average 2.47 1.71 3.43 0.47 9.3 7 12.58 0.04 4.7 4.25 5.04 0.34 2.83 2.51 3.2 0.37

N. Dahmani et al. / Computers & Industrial Engineering 66 (2013) 158–170 167
6.4.1. Results for the vector-packing based approach
In Table 3, we report the results obtained by a population based

and a single solution based metaheuristics using an indirect encod-
ing (EA_BinPack and ITS_BinPack) and an iterated tabu search using
a direct encoding ITS.

The two methods using the indirect encoding are better than
the ITS with direct encoding (respectively 4.47% and 4.53% gap
against 6.57% gap for ITS). This difference is reduced when one con-
siders the worst run, but becomes larger when one considers the
best run. This hints that the indirect encoding is more adapted in
average for this vector-packing based approach.

However, note that for Class 2 with n = 200, ITS is clearly better
than the two other methods. Furthermore, we observed that the ITS
is also better for small size instances of Class 1 and 3. The weakness
of our direct encoding ITS is that it tends to converge toward the
same local optimum at each run.

Between the two indirect encoding based methods, the evolu-
tionary algorithm is slightly better than the iterated tabu search
for both average gap and number of optimal solutions. However
this difference is small. The ITS_BinPack algorithm can outperform
the EA_BinPack for some instances and vice versa.

6.4.2. Results for the min-height based approach
The results obtained by the MHPP based approaches are compa-

rable with those obtained by the 2DVPP approaches, with some
notable differences.

Table 5
Comparison of min-height and vector-packing based heuristics.

Class n MB LL DotProduct

%gap opt t %gap opt t %gap opt t

1 25 28.99 0 0.23 5.54 0.08 0.03 3.01 0.08 0.04
50 36.76 0 0.44 6.5 0 0.036 4.3 0 0.16

100 40.06 0.03 1.2 5.83 0.22 0.12 4.12 0.02 0.99
200 40.31 0 3.2 6.17 0.07 0.04 3.45 0 4.23

Average 36.53 0.01 1.27 6.01 0.09 0.06 3.72 0.03 1.36

2 25 15.43 0.33 0.09 0.47 0.5 0.01 0 1 0.02
50 69.03 0 0.16 – – 0.02 – – 0.02

100 – – 0.1 – – 0.02 0.72 0 0.34
200 – – 0.3 – – 0.04 8.78 0 2.39

Average 21.12 0.08 0.16 0.12 0.13 0.02 2.38 0.25 0.69

3 25 28.51 0 0.11 8.13 0 0.01 0.98 0.8 0.02
50 24.54 0 0.26 8.63 0 0.02 0.55 0.2 0.07

100 26.02 0 0.53 7.8 0 0.07 2.37 0.17 0.6
200 32.32 0 1.32 15.3 0 0.17 2.65 0.03 2.58

Average 28.46 0 0.3 9.97 0 0.07 1.64 0.3 0.82

4 25 24.72 0.07 0.25 4.87 0.07 0.02 2.8 0.07 0.05
50 26.13 0 0.69 5.87 0 0.048 4.14 0 0.16

100 31.64 0.02 1.66 5.32 0 0.18 4.11 0.02 0.92
200 34.35 0 3.93 5.56 0.07 0.36 3.77 0 4.82

Average 29.21 0.02 0.47 5.41 0.04 0.15 3.71 0.02 1.49

5 25 22.96 0.13 0.26 4.41 0.06 0.03 3.52 0.06 0.04
50 26.53 0 0.68 5.19 0 0.06 3.84 0 0.16

100 29.82 0.02 1.75 4.85 0.02 0.12 4.11 0.02 0.83
200 33.03 0 4.48 5.77 0 0.47 4.61 0 4.54

Average 28.09 0.04 0.47 5.06 0.02 0.17 4.02 0.02 1.39

6 25 36.23 0.14 0.13 3.1 0.17 0.01 2.01 0.29 0.01
50 40.45 0.11 0.29 5.88 0.22 0.03 3.26 0.11 0.04

100 50.73 0.05 0.69 2.46 0.18 0.09 6.65 0.04 0.18
200 53.08 0 1.76 5.17 0 0.2 2.89 0 0.88

Average 45.12 0.08 0.37 4.15 0.14 0.08 3.7 0.11 0.28

7 25 19.1 0.17 0.12 1.64 0.33 0.02 0.26 0.67 0.01
50 13.19 0.47 0.37 1.29 0.79 0.04 0.54 0.73 0.04

100 7.32 0.55 0.54 4.06 0.63 0.06 0.64 0.36 0.14
200 6.54 0.29 1.13 6.22 0.29 0.09 1.02 0.3 0.54

Average 11.54 0.37 0.34 3.3 0.51 0.05 0.62 0.52 0.18

8 25 27.86 0.13 0.14 0 1 0.008 4.08 0.18 0.02
50 33.56 0.1 0.39 0 1 0.03 9.28 0.09 0.1

100 40.23 0 0.78 0 1 0.1 4.21 0.05 0.5
200 43.16 0.03 2.13 0.55 0.71 0.23 27.71 0.03 2.29

Average 36.2 0.07 0.44 0.14 0.93 0.09 11.32 0.09 0.73

9 25 29.44 0.09 0.23 5.02 0.09 0.03 2.43 0.09 0.04
50 41.36 0 0.47 6.47 0 0.04 4.78 0 0.15

100 39.58 0.02 1.23 5.83 0.23 0.14 4.08 0.02 0.92
200 40.24 0 3.03 6.18 0.07 0.64 3.68 0 5.2

Average 37.66 0.03 0.35 5.88 0.1 0.21 4.18 0.03 1.58

10 24 9.18 0.09 0.04 1.16 0.82 0.03 1.73 0.5 0.03
51 27.75 0.04 0.11 2.79 0.83 0.07 1.98 0.61 0.1
99 27.97 0.02 0.23 3.75 0.54 0.13 2.03 0.67 0.32

201 31.74 0.01 0.62 3.85 0.4 0.24 2.62 0.39 1.77
Average 24.16 0.04 0.25 2.89 0.65 0.12 2.09 0.54 0.56

Overall average 30.44 0.08 0.46 4.45 0.22 0.1 3.92 0.15 0.95

168 N. Dahmani et al. / Computers & Industrial Engineering 66 (2013) 158–170
Once again, the best method in average is EA_BinPack. However,
it transpires that the ITS_BinPack is the worst in average, with poor
performances for all classes.

The difference between EA_BinPack and ITS is smaller in this
case. This means that applying the direct encoding scheme can
be a good strategy in some cases, although EA_BinPack remains
better in average for all classes, with a greater difference for large
size instances.

Class 2 remains difficult, even with the min-height approach.
The maximal average gap achieved for both EA_BinPack and
ITS_BinPack (32.84% and 33.19% respectively) are obtained for Class
2 with n = 200. In this case, hybMeta performs better (13.35% avg.
gap).
The minimum average gap of hybMeta was low for almost all in-
stances especially for small value of n. This is because of the com-
bination of heuristic and exact methods in the hybMeta algorithm.
When the value of n is small, the exact method can solve an in-
stance constructed with a large subset of the items. This method
is stable: the worst gap is never far from the best.
6.5. Pareto approximation sets comparison

We plot in Fig. 4 the Pareto approximation sets generated from
the different metaheuristics (EA_BinPack, ITS_BinPack, ITS and hyb-
Meta) for a randomly chosen instances with n 2 {50,100,200}. We

Table 6
Studying the impact of the variation of the resources sizes on the computational time needed for min-height and vector-packing based heuristics.

Class n min-bin LL DotProduct

10 100 1000 10 100 1000 10 100 1000

1 50 0.04 0.056 0.056 0.048 0.032 0.036 0.79 1.92 10.04
100 0.12 0.1 0.12 0.1 0.108 0.108 5.34 13.40 43.01
200 0.196 0.196 0.164 0.22 0.188 0.268 30.778 71.38 211.189

3 50 0.016 0.032 0.048 0.012 0.028 0.024 0.928 1.484 9.549
100 0.044 0.032 0.064 0.072 0.048 0.044 5.80 10.885 30.218
200 0.152 0.108 0.124 0.084 0.104 0.088 44.235 132.868 170.855

5 50 0.06 0.064 0.072 0.06 0.072 0.072 0.82 1.916 8.157
100 0.116 0.116 0.176 0.164 0.152 0.12 5.484 12.329 30.478
200 0.264 0.24 0.22 0.28 0.28 0.26 24.802 52.107 146.433

7 50 0.02 0.012 0.036 0.024 0.048 0.048 0.268 0.44 1.172
100 0.028 0.06 0.064 0.04 0.06 0.056 0.86 1.52 3.104
200 0.068 0.068 0.092 0.072 0.076 0.068 4.22 8.737 11.941

N. Dahmani et al. / Computers & Industrial Engineering 66 (2013) 158–170 169
compare these approximated Pareto fronts against the column
generation lower bound LCG, which is our best lower bound.

The selected test instances are not equally difficult to solve,
which affects the number of the generated potentially efficient
solutions of each algorithm. This number varies from 5 to 19 (for
instances of 50 items), 42 to 62 (for instances of 100 items) and
75 to 81 (for instances of 200 items).

The examples in Fig. 4 illustrate the numerical results. The
algorithms with indirect encoding (EA_BinPack and ITS_BinPack)
were generally equivalent by producing near optimal solutions
and outperform the ITS in most cases. However, applying the
algorithm with direct encoding (ITS) can be helpful in some
cases especially when the number of bins is small. The hybrid
metaheuristic hybMeta also performs well for hard instances
where the exact method generates a solution with a large subset
of the items.
6.6. Comparison of the two iterative approaches

From Tables 3 and 4, it transpires that the best average gap are
obtained by the min-height approaches. Since the number and the
structure of the subproblems to solve is not the same, we now pro-
vide a comparison between the two approaches, using heuristics
only.

In Table 5, we compare two MHPP heuristics (MB and LL), and
the 2VPP heuristic (DotProduct) in terms of solutions and comput-
ing time.

Heuristic MB performs uniformly bad for all instances (with the
notable exception of class 2, n = 50 where it finds a feasible solu-
tion whereas LL does not). Since its computing time is larger than
the computing time of LL, we will focus on this latter heuristic for
the following comparisons.

The DotProduct heuristic outperforms LL on average %gap. How-
ever, LL is better than DotProduct for the average number of proved
optimal solutions ropt. Moreover, DotProduct is often slower than
the min-height based heuristics because of the large number of
problems to solve.

Since the vector packing approach needs to be run a pseudo-
polynomial number of times, we study in Table 6 the variation of
the average computational time when the size of the bin grows.
For each instance, we successively multiply the resources sizes
by 10, 100 and 1000. The results generated by the DotProduct algo-
rithm show that solving the problem using the vector-packing
based approach consumes much more time than heuristics from
the min-height based approach (MB and LL). This is due to the
pseudo-polynomial number of 2-DVPPs to be solved. Therefore,
for large sizes of bin, this approach should not be used.
7. Conclusion

Throughout this paper, we studied a bi-objective version of the
2-DVPP. To tackle the problem, we presented two resolution ap-
proaches that iteratively solve mono-objective problems. Our com-
putational experiments show that the min-height packing
approach is more relevant to solve the bi-objective problem when
the size of the bin becomes large, since the computational effort
needed by the vector-packing approach becomes too large in this
case. However, for medium sizes of bin, this latter approach leads
to good results.

References

Alves, C., de Carvalho, J. V., Clautiaux, F., & Rietz, J. (2013). Multidimensional dual-
feasible functions and fast lower bounds for the vector packing problem.
European Journal of Operational Research (submitted for publication).

Caprara, A., & Toth, P. (2001). Lower bounds and algorithms for the 2-dimensional
vector packing problem. Discrete Applied Mathematics, 111(3), 231–262.

Chang, S. Y., Hwang, H.-C., & Park, S. (2005). A two-dimensional vector packing
model for the efficient use of coil cassettes. Computers and Operations Research,
32, 2051–2058.

Clautiaux, F., Alves, C., & Valério de Carvalho, J. (2010). A survey of dual-feasible and
superadditive functions. Annals of Operations Research, 179, 317–342.

Coffman, J. E. G., Garey, M. R., & Johnson, D. S. (1978). An application of bin-packing
to multiprocessor scheduling. INFORMS Journal on Computing, 7(1), 1–17.

Dell’amico, M., Iori, M., & Martello, S. (2004). Heuristic algorithms and scatter
search for the cardinality constrained pkCmax problem. Journal of Heuristics, 10,
169–204.

Dell’Amico, M., Iori, M., Martello, S., & Monaci, M. (2006). Lower bounds and
heuristic algorithms for the ki-partitioning problem. European Journal of
Operational Research, 171(3), 725–742.

Dell’Amico, M., & Martello, S. (1995). Optimal scheduling of tasks on identical
parallel processors. INFORMS Journal on Computing, 7(2), 191–200.

Dell’Amico, M., & Martello, S. (2001). Bounds for the cardinality constrained pkCmax
problem. Journal of Scheduling, 4, 123–138.

Eilon, S., & Christofides, N. (1971). The loading problem. Management Science, 17,
259–267.

Falkenauer, E. (1996). A hybrid grouping genetic algorithm for bin packing. Journal
of Heuristics, 2, 5–30.

Garey, M. R., Graham, R. L., Johnson, D. S., & Andrew (1976). Resource constrained
scheduling as generalized bin packing. Journal of Combinatorial Theory, 21,
257–298.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the
theory of NP-completeness (Series of books in the mathematical sciences). W.H.
Freeman.

Geiger, M. J. (2007). Bin packing under multiple objectives – A heuristic
approximation approach. In The fourth international conference on evolutionary
multi-criterion optimization: Late breaking papers, Matsushima, Japan (pp. 53–56).

Glover, F., & Laguna, M. (1999). TABU search. Kluwer.
Graham, R. L. (1966). Bounds for certain multiprocessing anomalies. Bell System

Technical Journal, 45, 1563–1581.
Haimes, Y., Lasdon, L., & Wismer, D. (1971). On a bicriterion formulation of the

problems of integrated system identification and system optimization. IEEE
Transactions on Systems, Man, and Cybernetics, 1(3), 296–297.

Ishibuchi, H., & Murata, T. (1998). Multi-objective genetic local search algorithm
and its application to flowshop scheduling. IEEE Transactions on Systems, Man
and Cybernetics, 28(3), 392–403.

http://refhub.elsevier.com/S0360-8352(13)00174-5/h0005
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0005
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0005
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0010
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0010
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0015
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0015
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0015
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0020
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0020
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0025
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0025
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0030
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0030
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0030
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0030
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0035
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0035
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0035
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0040
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0040
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0045
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0045
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0045
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0050
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0050
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0055
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0055
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0060
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0060
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0060
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0065
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0065
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0065
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0070
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0075
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0075
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0080
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0080
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0080
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0085
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0085
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0085

170 N. Dahmani et al. / Computers & Industrial Engineering 66 (2013) 158–170
Khanafer, A., Clautiaux, F., Hanafi, S., & Talbi, E.-G. (2012). The min-conflict packing
problem. Computers and Operations Research, 39(9), 2122–2132.

Khanafer, A., Clautiaux, F., & Talbi, E.-G. (2012). Tree-decomposition based
heuristics for the two-dimensional bin packing problem with conflicts.
Computers and Operations Research, 39(1), 54–63.

Lee, S., Panigrahy, R., Prabhakaran, V., Ramasubramanian, V., Talwar, K., Uyeda, L.,
et al. (2011). Validating heuristics for virtual machines consolidation. TechReport
MSR-TR-2011-9, Microsoft Research.

Liu, D., Tan, K., Huang, S., Goh, C., & Ho, W. (2008). On solving multiobjective bin
packing problems using evolutionary particle swarm optimization. European
Journal of Operational Research, 190(2), 357–382.
Sathe, M., Schenk, O., & Burkhart, H. (2009). Solving bi-objective many-constraint
bin packing problems in automobile sheet metal forming processes. In EMO ’09:
Proceedings of the 5th international conference on evolutionary multi-criterion
optimization (pp. 246–260).

Spieksma, F. C. R. (1994). A branch-and-bound algorithm for the two-
dimensional vector packing problem. Computers and Operations Research,
21(1), 19–25.

Talbi, E.-G. (2009). Metaheuristics: From design to implementation. John Wiley & Sons.

http://refhub.elsevier.com/S0360-8352(13)00174-5/h0090
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0090
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0095
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0095
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0095
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0100
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0100
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0100
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0105
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0105
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0105
http://refhub.elsevier.com/S0360-8352(13)00174-5/h0110

	Iterative approaches for solving a multi-objective 2-dimensional vector packing problem
	1 Introduction
	2 Problem formulation and resolution approaches
	2.1 Definition and model for the Mo2-DBPP
	2.2 Iterative resolution approaches

	3 An iterative vector-packing based approach
	3.1 Outline of the method
	3.2 Lower bounds
	3.3 Heuristics

	4 An iterative min-height based approach
	4.1 Outline of the method
	4.2 Lower bounds
	4.3 Heuristics
	4.3.1 The least loaded heuristic
	4.3.2 The min-bin heuristic
	4.3.3 The multi-fit heuristic

	5 Improving both approaches using metaheuristics
	5.1 Fitness functions
	5.2 An iterated tabu search with a direct encoding
	5.2.1 Initial solution
	5.2.2 Neighborhood exploration and evaluation
	5.2.3 Perturbation method
	5.2.4 Tabu list and aspiration criterion

	5.3 Metaheuristics with an indirect encoding
	5.3.1 Initial population and variation operators for the EA
	5.3.2 Initial solution and neighborhood exploration of the iterated tabu search

	5.4 An hybrid metaheuristic for the min-height problem

	6 Experiments
	6.1 Benchmarks
	6.2 Computational results
	6.3 Lower bounds
	6.4 Upper bounds
	6.4.1 Results for the vector-packing based approach
	6.4.2 Results for the min-height based approach

	6.5 Pareto approximation sets comparison
	6.6 Comparison of the two iterative approaches

	7 Conclusion
	References

