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Abstract. The complexity of the elliptic curve method of factorization (ECM) has
been proven under a strong conjectural form of existence of friable numbers in short
intervals. In the present work we use friability to tackle a different version of ECM which
is much more studied and implemented, especially because it enables the use of ECM-
friendly curves. In the case of curves with complex multiplication (CM) we replace heuristic
arguments by rigorous results conditional on the Elliott—Halberstam (EH) conjecture. The
proven results mirror recent work concerning the count of primes p such that p—1 is friable.
In the case of non-CM curves, we explore consequences of a hypothetical statement that
can be seen as an elliptic curve analogue of EH.

1. Introduction. Let E/Q be an elliptic curve that has good reduction
precisely at every prime number not dividing an integer Ag. Our main object
of study is the prime counting function ¥ g(x,y) which is defined as the
cardinality of

(1) Ug(x,y) ={p < z: pprime, pt Ag, |E(F,)| is y-friable}.

Here we make the usual slight abuse of notation and write E(F,) for the
set of F,-points on the reduction of £ modulo p; we also recall that an
integer is y-friable (or y-smooth) if all its prime factors are less than y. For
any integer n we shall denote by P~ (n) (resp P*(n)) the smallest (resp. the
largest) prime factor of n. By convention P~ (1) = co. The notation ¥ g(x,y)
is reminiscent of ¢ (z,y), which denotes the cardinality of

(2) W(r,y) = {n <z: P*(n) < y}.

Our main motivation for studying ¥g(z,y) comes from cryptography
and more precisely from the method of factorization ECM. First recall the
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principle and purposes of ECM [Len87|. Let P € E(Q) be a rational point
with homogeneous coordinates P = (zp : yp : zp) € E(Q), relative to a
fixed projective embedding of E. Without loss of generality we can assume
xp,yp,zp € Z. Let N be a given positive integer for which one would like to
find the prime factorization; set two parameters v = u(N) and v = v(N) in
(0,1) and define B = NV* C = BY". Note that if ged(zp,yp, zp, N) = 1
and ged(N, Ag) = 1 then E has good reduction modulo any unknown prime
factor p of N and P := (zp : yp : zp) mod p belongs to E(F,). Running
ECM for E and N consists in computing the multiple

Q=(xq:yg:2Q):=[MPmod N for M = (|C]!)llesN/ls2]
i.e. one uses the chord-and-tangent formulse and reduces the coordinates
modulo N (if two points have distinct coordinates modulo N then one uses

the formula for adding two distinct points). We summarize this in Algo-
rithm [I] below.

Algorithm 1: One curve subroutine of ECM

Require: parameters u, v, an integer N, an elliptic curve E/Q and P € E(Q).
Ensure: a prime factor p of N such that p < B := [N'/*] or FAIL.

1: C« |BY"]
M «— C!LlogN/logﬂ
Q: (zg :yq : zqg) + [M]P mod N
g < ged(zq, N)
if g # 1 then

print g¢

end if

Cramm 1. If |E(Fp)| is C-friable for some (unknown) prime factor p
of N, then gn = ged(zg, N) is a multiple of p.

Let us give the main ideas justifying the claim. If the points involved
in the double-and-add method were all distinct not only modulo N but
also modulo p, then @ would be the neutral element, so zg = 0 mod p. If
one used a wrong formula because two points were distinct modulo N but
equal modulo p, then zg = yg = 2¢ = 0 mod p. In both cases ECM finds
a multiple of p and a careful analysis shows that the probability that the
result is exactly p is 1 — 0p—s00(1) (see [Len87]). If gn is a prime factor of
N we are done, otherwise we pick a different curve E and start over until a
factor is found.

The ECM algorithm consists in repeating Algorithm [I] either once, or
a given number of times, or until success, depending on the application.
ECM is primarily used to completely factorize N, which is done by finding
some proper divisor and then iterating. If one takes u = 2 so that we seek
all prime factors less than B = N'/2, these prime factors are enough to
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find a possible cofactor. Next the parameter v is chosen so as to minimize
the average running time: v = v/2(log N)'/2/(loglog N)*/? or equivalently
C = |Ln(1/2,1/V/2)], where

(3) Ly(a, ¢) = exp(c(log N)*(log log N)lfa),

and one runs Algorithm 1 with as many curves as needed in order to factorize
N (note that there is no guarantee that the procedure terminates after test-
ing finitely many curves). The expectation of the number of curves needed
in this optimal choice of v is C1+°() (see [Len87]).

If one decides in advance to stop after B/v¢(B, C) curves, then one finds
all primes less than B with constant probability (under the heuristics assert-
ing independence relative to the choice of the elliptic curve). This allows a
second application of ECM: given an integer, decide whether it is B-friable
with no false positive and with a constant proportion of false negatives.

A third application is as follows: given a large number of integers less than
a paremeter N and given a parameter B = N Yu find at least a prescribed
proportion f of B-friable integers inside the set. This problem is solved by the
Number Field Sieve (NFS) algorithm [LLJMP93|, where ECM is used as a
building block in the cofactorization step of the relation collection, also called
sieving step (see for example [MBKLI4, §3, p. 337]), and in the splitting step
of the discrete logarithm version of NFS (see for example [CS06, §4.1, point 1,
p. 181]). In the latter, one needs to find a single B-friable integer. To solve
the problem, one uses a single elliptic curve or a finite number of them for
a large number of integers. For example, the record factorizations of RSA
moduli obtained with the CADO-NFS software [BGK™| use a dozen elliptic
curves to test the friability of billions of integers. Also, in [MBKLI4] Table 3,
p. 345] one uses 5 to 10 curves whereas the number of integers exceeds half
a million per special-q and billions in total. The idea here is to set v so
that ¢(B, B/¥) > f and then, in order to test B-friability, one is interested
in how many primes up to B are found by Algorithm 1 with entries v and a
particular elliptic curve E. We are hence interested in the quantity ¢ g(x,y)
for (z,y) = (BY, BY/w).

In particular, the heuristics underlying the use of ECM as a friability
test states that the larger ¢ p(z,y) gets, the more y-friable integers will be
found by ECM inside a given set. In other words, F is more ECM-friendly
as Yp(z,y) increases. We formalize this idea in the following definition.

DEFINITION 1 (ECM-friendly curves). Let x > y be positive real numbers
and let E1/Q and F3/Q be two elliptic curves. One says that Ej is more
ECM-friendly than Eo with respect to (x,y) if

¢E1 (l’, y) > ¢E2(‘T’ y)
One says that Ey is more ECM friendly than FEso if there exists o > 2 and
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a positive-valued increasing function 9 such that the above inequality holds
for all pairs (z,y) such that x > 2 and d(z) <y < z.

Our main result (Theorem roughly states that the probability that
the number of IF,-points on a given elliptic curve is friable approaches asymp-
totically the probability for any integer to be friable. In the case of CM @
elliptic curves our result is conditional on the Elliott—Halberstam conjecture
(EH), an important analytic-number-theoretic statement about uniformity
aspects in the distribution of primes in residue classes.

CoNJECTURE 1.1 (Elliott—Halberstam, e.g. [Wanl8, Hyp. B| for Q, ex-
tended to K quadratic in [Poll6l, Prop. 2.2]). Let K be either Q or an imagi-
nary quadratic field of class number 1. Let ||-|| denote the field norm relative

to K/Q. Deﬁne@
Ik (x) ={p € Ok, prime: ||p|| < z},
IIg(z;¢,a) = {p € IIx(x): p=amod c},
of cardinality denoted mx(x) and wx(x;c,a), respectively. Let 6 > 0. Then
for any fixred a € O and w > 0 we have

i () x
TK\Z;4,a) — WA N,
||q||;xl—s R (log )«
(g.0)=1

for any x > 2 and where ¢ € O and ¢(q) = [(Ox/qOKk)*|.

The Elliott—Halberstam conjecture is standard in analytic number the-
ory. It is a far reaching generalization of the celebrated Bombieri—Vinogradov
Theorem where K = Q and the bound on ¢ in the index set of the summa-
tion cannot exceed y/z. EH would have countless important applications in
number theory. Suffice it to mention the EH bounds contained in [May15]
on gaps between consecutive primes (or more generally on the length of in-
tervals containing k-tuples of primes), as well as [Zhal4| where, as a crucial
step in the proof of the main result, Zhang establishes a bound towards EH
(i.e. going beyond the /2 threshold) under some extra restrictions on the
prime factorization of the moduli involved.

A quantitatively refined version of EH allows one to let § depend on x
as long as 6(z) — 0 as z tends to infinity. Indeed, Hugh Montgomery (not
to confused with Peter Montgomery, the author of [Mon92]) suggested that
one could take 6(x) — 0 in Conjecture[L.1] Friedlander and Granville [FG92]
showed that the conjecture fails if §(x) is less than a certain function of x.

(*) For each number field K, there are a finite number of CM elliptic curves defined
over K but there are overall infinitely many CM elliptic curves.

(?) Here “p € Ox” means that we count each prime ideal only once, i.e. we identify
elements that generate the same prime ideal of Ok.
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However, Liu, Wu and Xi [LWX20] used the conjecture for §(x) large enough
not to contradict the necessary constraints observed by Friedlander and
Granville (Conjecture states this “parametrized” version of EH).

In order to state our main result, we first recall some classical facts about
the counting function of friable integers. With notation as in (2]), one has
the well known asymptotics due to Dickman:

1/u
e
T—00 €T

= o(u),

where g is the unique continuous function on R that is differentiable on
(1,00) and satisfies p(u) = 1 on [0,1] and ug'(u) = —p(u — 1) on (1,00).
The asymptotic formula due to de Bruijn (|dB51) (1.8)], see also [HT93]
Cor. 2.3]) describes the behaviour of g as u grows:

(4) logg(u):—u(logu+10g2(u+2)—1—1—0(%)) (u>1),

where (here and throughout) we denote by log, x = log(log(...log(x)...))
the log function iterated k times.

We now state our main result. From Conjecture [L.1] we draw an asymp-
totic equivalent for g (z,y). From a refined version of Conjecture (Con-
jecture we handle uniformity issues in these asymptotics, and finally, we
state a non-CM analogue (conjectural on Hypothesis [1)) of our estimates.

THEOREM 1.2. Let x > 2 and let 2 <y < x. Set
~ logz
" logy’
o Let E/Q be a CM elliptic curve.

(1) (Theorem Assume Conjecture . If u is upper bounded by an

absolute constant then

Ye(r,y) ~ o(u) logz (z — o0).

(2) (Corollary Assume Conjecture [A.1] If 6(z) is a function satisfy-
ing, for some n, B > 0,

logy 1
827 -
nlogz — ) < (logy )1 +F’

logs
and u < Tog o’ then

Ye(r,y) = o(u)

X

(1+ O(5(x)u/o(u)))-

log =
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o Let E/Q be a non-CM elliptic curve.
(3) (Theorem Assume Hypothesis [1] as stated in Section [6] If u is
upper bounded by an absolute constant then

Vi (z,y) ~ g(u)@ (& — o0).

Note that the same asymptotics hold for ¥ g(z,y) disregarding the en-
domorphism ring of E, provided a suitable assumption is made on E (Con-
jecture if £ has CM, and Hypothesis [1} stated in , otherwise). This
uniform asymptotic behaviour of elliptic curves over Q suggests that ECM-
friendliness is determined by the implicit error terms in Theorem In
Section [4.2], we discuss these error terms in detail. In particular, for CM
elliptic curves, we show the relevance of the quantity

vx = L'(1,x)/L(1, x),

where x is the Kronecker character of the quadratic field K associated to E.

Note that vk is related to a quantity which appears in [BS22, Def. 5.1].
We conclude by stating a strong form of Theorem 2) which is directly

related to questions in cryptography, as we will discuss in Section

THEOREM 1.3. Assume Conjecture . Let (z,y,z) be positive integers

log x . logy
Tog and v := Tog 2

satisfying y < x and logyy > 0 and such that u := lie in

the domain

1 1
A= {(u,v) eR?:u< 82T nd v < M}.
logs log, y

With notation as in let Y . (x,y) denote the cardinality of the set
Vg (x,y) ={ne¥(x,y): Ip|n, |[E(F)p)| is z-friable}.

Then, uniformly on A,

wE,z(:Ca y)

z/log > o(v)o(u)(1+o0(1)) (x — oo, y — 00).

The paper is organized as follows. In Section [2] we come back to our
cryptographic motivation and study the running time of the splitting step
of NFS, which is ECM-based, as a consequence of Theorem [I.3] In Section [3]
we prove Theorem [1.2|1) following Wang [Wanl8|. In Section [4] we state a
uniform version of the Elliott—Halberstam conjecture and, assuming it, we
prove Theorem 2). The error terms implicit in Theorem are then
discussed and, in the CM case, we prove a computation-oriented formula
for vx. Section [f]is devoted to the proof of Theorem [I.3] Finally, in the last
section, we investigate the implications, in the non-CM case, of heuristics
developed by Pollack and we prove Theorem (3)
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2. Cryptographic motivation. In this section we put Theorem in
context and we give an example of algorithmic application. More precisely,
Theorem enables us to handle a computational issue (Problem [1| below),
which is related to a classical problem in cryptography: the splitting step for
discrete logarithms (Problem [2 below).

PRrROBLEM 1. Consider a prime ¢, a generator g of (Z/qZ)* and an aux-
iliary element h € (Z/qZ)*. Let u and v be parameters and let £/Q be an
elliptic curve. Find an integer e € [0,q — 1] such that n := ¢g°h mod q is
¢*/“-friable and, for some prime divisor p of n, E has good reduction at p
and |E(F,)| is ¢'/)-friable.

PROBLEM 2 (Splitting step of NFS). Consider the same data as in the
problem above. For a parameter k, let Fq,..., E; be elliptic curves over Q.
Find an integer e € [0, ¢— 1] such that n := g°h mod ¢ is ¢*/*~friable and, for
all prime factors p of n, there exists i < k such that | E;(F,)| is ¢/ (“)-friable.

To solve Problem ([T} one runs ECM on the integers g°h mod g correspond-
ing to values of e € [1,¢ — 1] which are chosen uniformly at random until it
is B-friable for B = ¢/ (see Algorithm [2| for a precise description). Note
that the algorithm uses a single CM elliptic curve E/Q that is required to
have positive Mordell-Weil rank. To fix ideas, our description of Algorithm 2]
uses, among the 13 possible j-invariants of CM elliptic curves defined over
@, the case j = 8000 for which we have selected one twist of positive rank
given by the Weierstrass equation: E: y?> = 2% + 22 — 32 + 1 (the point
P =(-1:2:1) € E(Q) has infinite order).

Algorithm 2: NFS splitting step

Require: a prime g and two integers g, h € [1,q — 1] such that g is a generator of Fj,

and two parameters u and v

Ensure: an integer e such that g°h mod ¢ has a factor less than B = qu/“J
1 E:yP=a®+2>-32+1,P=(-1:2:1) € E(Q)
2: repeat
3 e < an integer chosen uniformly at random in [1,q — 1]
4:  n<+ g°hmodq
5
6

run ECM for n and B on the curve E, with parameters v and v
: until ECM finds a proper factor of n

The next statement asserts that Theorem [I.3] can be used to solve Prob-

lem [

THEOREM 2.1.
(1) Under Conjecture [L1] (resp. Conjecture [1.1)), Algorithm [2] solves Prob-
lem in time (") /o(u)o(v))1T°W) (as ¢ — o0) for bounded u (resp.

logg x
foru < logjx)'
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(2) Assume further that Theorem[1.3] can be extended to the domain (x,y =
1’1/u, 5 = yl/v)

and v < ¢,

A '_{(u v)eR*>: u<e log 2)' (logm)l/g}
T ) . — ~u

(logy 95)1/3 (logy 95)1/3

for some constants ¢y, c, > 313, Then, with a constant probability, Al-

gom’thm on input q terminates in time Lq(1/3,31/3)1+°(1) and solves

Problem 1| for u = ¢, (log q/logy q)'/3 and v = ¢,(log q/log, q)/3.

Proof. (1) Recall that B = [¢"/*] and C = | BYV| = [¢"/®)]. As input
N of Algorithm (I} we take the ouput n of Algorithm [2| The cost of ECM
(Algorithm [1]) is essentially that of step 3, which is O(log M) by double-
and-add exponentiation (M = C1logn/log2] 5 defined in Algorithm . By
Stirling’s formula,

(5) time(Alg. |2} line 5) = O(log M) = O(C'log C'logn)
_ Cl+o(1) _ ql/(uv)+o(1) (q N OO)

Since e is chosen uniformly at random, the number of executions of the
loop in lines 2-6 of Algorithm [2] is, with positive probability, less than a
constant times the inverse of the probability of success. We saw earlier
(see Claim that the condition in line 6 of Algorithm [2[ is satisfied if,
for a prime factor p of n, the order |E(F,)| is C-friable. We conclude that
the number of executions of the loop is q/wE’ql/(u'v) (q, ql/(“)).

Since u and v are in the domain A defined in Theorem we have
q/Yg g1/ (45 gy < (1/(o(v)o(u))(1+0(1)). Combining this with (5], we
find that the cost of Algorithm [2|is (¢/(“*)/o(u)o(v)) o).

(2) We set the value of the constants: ¢, = ¢, = 3/3. We inject in
the values of u and v:

log(o(v)o(u)) = (=14 0(1)) - (ulogu + vlogwv)

= 1 of1) - (4 o) Plos0 ).

Hence the loop is executed at most Lq(1/3, %)Ho(l) times. Multiplying

this by the cost computed in , cito®) — Lq(1/3, ﬁ)Ho(l), we find the
running time of Algorithm

time(Algorithm [2) = L,(1/3, ¢),

where ¢ = —— + 76“‘?‘)‘6” =31/3 a

CuCy

REMARK 1. One can easily adapt Algorithm [2[to solve Problem [2| (hence
the identical names): in line 5 apply ECM to all the curves E; with i =
1,..., k. Ifweset k = 1/0(v)'*°(M) and if the outcome of ECM is independent
of the input curve E;, then with constant probability we completely factorize n
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whenever it is B-friable. Then we execute the loop in lines 2-6 ¢q/v(q, ¢*/*) =
1/0(u)" () times. Hence the total cost is (C/o(u)o(v))'T°M)] the same as
for Problem [I] To the best of our knowledge, no rigorous argument proves
the required “independence” property for the input curves at the present time
even though a heuristic complexity of solving Problemis well known [CS06].

3. Background and proof of Theorem [1.2(1). Let K be either Q
or an imaginary quadratic field of class number 1. Recall that || - || is the
norm map relative to K/Q and that P~ (n) and Pt (n) respectively denote
the smallest and largest prime factors of n. Let a,¢ € Ok and let k be a
root of unity of K. We set (recall the notation of Conjecture

(6) Vi (@, ysc,a, k) = [{m € Ok (w;c,a): PT(||lm — k) < y}.
Deuring’s CM theory describes precisely the number of F,-points on a CM

elliptic curve E/Q having good reduction at p. We state an explicit version
found in [RS09] or [Coh07], which enables us to relate () to (6).

LemMA 3.1 (JRS09, Ths. 1.1, 5.3, 5.6, 5.7|, [Coh07, §8.5.2]). For any
elliptic curve E/Q with CM by an order O of an imaginary quadratic field K,
there exists ¢ € Ok and a set A C {a € Og: ged(a,c) = 1} of cardinality
©(c)/2 such that for any prime number p not dividing the discriminant of O
and at which E has good reduction,

e if p is inert in K then |E(F,)|=p+1,

o if p splits in K then there exists a € A and a root of unity pi.. satisfying
|E(Fp)| = |7 —tic,all, where m € O is uniquely determined by the conditions
||| = p and 7 = a mod c.

In particular,

wE(xvy) = #{p S WE(-’B,Z/) p inert in K} + Z wK(x>y;C>a7MC,a)
a€A

=#{p<uz:ptAg, pinertin K, p+ 1 y-friable}
+ Z"/}K(xay; C, anuc,a)-

acA

The lemma is stated in the general case where the elliptic curve E has
CM by an unspecified order O of an imaginary quadratic field K. However,
the counting functions we study only involve |E(F))|, as far as the geometry
of F is concerned. Therefore, since there is a canonical Q-rational isogeny
E — Ey, where Ey/Q is an elliptic curve with CM by the full ring of integers
Ok (see e.g. [CCS13, Prop. 25]), we will assume that O = Ok whenever this
simplifies the exposition.

To prove Theorem [1.2)(1), we follow the strategy of Wang [Wanlg]. In
particular we assume Conjecture [1.1] and we appeal to the linear sieve of
Rosser—Iwaniec that we now recall.
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Let A C Ok be a finite set, P C Ok a set of primes, z > 2 a real number
and d € Ok a squarefree integer whose prime factors belong to P. Let Ay =
ANdOg and P(z) = [}, <z,pep P- Let X be a real number (that should be
seen as an “approximation” of |A4]) and let w be a multiplicative function on
Ok such that 0 < w(p) < [|p|| for all p € P. We set r(A,d) = |Ag| — %X
(which is expected to be small) and also

S(AP.2)={ae A (a,P(2) =1}, V()= ][] (1 “’(p)>.

peP, lipll<z Ip

LEMMA 3.2 (Rosser—Iwaniec [Iwa80]; see also [Wanl8, Lemme 3.1]). As-
sume that there exists o > 2 such that

w(p)\ ™' logv o'
11 T ) S b
u<pl<v P I

for allv >wu>2. Then for any D > z > 2,

S(A; P, z) < XV(2) + Z Ir(A,d)|.
ldll<D, d|P(2)

Finally, we recollect an estimate for the summatory function of u(n)/||n||
over integers less than x that are not divisible by primes < y. In the applica-
tion of Wang’s strategy, one of the base steps uses Md&bius inversion, which
explains why such summatory functions come into play.

LEMMA 3.3 (|dIBF20, Lemma 7.2] @7 generalized to imaginary quadratic
ﬁeld@. Let K be Q or an tmaginary quadratic field of class number 1. Let
w be the Mobius function generalized to K. For any € > 0, we have

> Min) = o(u) + Oc(exp{—(logy)*/*~})

[nl|<z
P~ (n)>y
uniformly in > 2 and exp{(log z)?/°*¢} <y < z, where u = }ggz

We can now recall the statement and give the proof of Theorem [1.2(1).

THEOREM 3.4. Let E/Q be a CM elliptic curve and let K be the asso-
ctated 1maginary quadratic field of class number 1. Let © > 2 and let y be

such that 2 <y < x and u := iggfc is upper bounded by an absolute constant.
Then 5y

VE(T,y) ~ Q(U)logx (z — 00).

() The first version of this lemma can be found in [CTT5] where one has an additional
error term O, (%). The version of loc. cit. suffices for most of our computations, but

our discussion of error terms in requires the refinement in [dIBF20).
(*) The generalization is direct, hence it is not reproduced here.
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Proof of Theorem[3.J. By Lemma [3.I] we have
(7) Ye(z,y) = {psplit in K, p < 2: PT(|E(F,)|) <y}
4 |{p inert in K, p < @ P*(B(F,))) < v}

= Z wK (SC, Yy ¢ a, Mc,a)

acA
+[{pinert in K, p<z: Pt(p+1) <y},

where A, ¢ and p are as in Lemma (see the notation (6])). Note that for
the purpose of this article one could have added an O(1) term to account
for ramified primes in K and for primes of bad reduction of F, but one
can be more precise and erase the O(1) term because the ramified primes
correspond precisely to the primes of bad reduction.

The second term of the right hand side is the case a = —1 in [Wanl8|
Lemma 4.1]:

x/logx
5

We shall prove that g (z,y;¢,a,u1) ~ o(u)z/(¢(c)logz) and, when sum-
ming over the |A| = ¢(c)/2 values of a we obtain

(8) [{p inert in K, p <z: P*(p+1) <y} ~ o(u)

) Hpsplitin K, p< oz PHEE)) < v} ~ g o) -

logz’
which together with implies the equivalent of ¢ g (z,y) and will complete
the proof.

Hence, it remains to prove an equivalent for ¥ i (z, y; ¢, a, k) for constants
¢, a € Ok and a constant k € Oj.

We note that for large enough y, more precisely y > ¢ (which we assume
in the rest of the proof since x — oo and w remains bounded), one has
ged(gq,¢) =1 as long as P~ (]|q||) > y. Therefore, by the Chinese Remainder
Theorem, we can fix, for each such ¢, an element a’ € O such that ' =
a mod ¢ and @’ = kK mod ¢q. Combining this with Mobius inversion we write

(10)  Yg(z,y;c,a,k) = |{m € Hk(z;c,a): PT(|m — &) <y}
:’{WGHK({L';C,G)Zng(ﬂ'—H, H 6)21}‘

£ prime, ||€]|>y

= > p@lk(wse,a) N Hg(riqr) = Y ple)mk(w;ge,d),
qGOIO g I}B<x+1 9€0k, [lgl|<z+1
P=(llgl)>y
where we have used the fact that the algebraic norm of a root of unity is 1.
In order to evaluate vYg(x,y;c,a,k) we closely follow Wang's
method [Wanl8 démonstration du Lemme 4.1]. We highlight the necessary
adaptations, omitting the details whenever they are straightforward from
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Wang’s approach. Starting from we fix an arbitrarily small § > 0 and
split the counting function ¥k (z,y; ¢, a, k) = S1 + So where

Si= Y. w@m(wged),
9€0k, ||q|| <z —°
P>y

Sy = > @)k (w3 ge, ).
qEO K, x+1>||q|| >z~
P(llal)>y

(11)

Next, using the multiplicativity of ¢ and our assumption y > ¢, we further
decompose S = S7 + S| where
(12)
Si= e X MU si= Y areaed)
7 geos. <t TN 4€0x, g <ai5
P=(llal)>y P~ (lal)>y

and r(x,qc,a') = g (x;qc,a’) — m'

STEP 1’. We show that S ~ mg(u) as © — oo and u remains
bounded (under these restrictions we deduce that S} is asymptotically larger

than a constant times 102:5)' For ¢ satisfying P~ (q) > y, observe that

() MR )

1-6

Since ||g|| < 2'7°, we use the upper bound > 1 < log z, which we combine

pla
with the fact that y > 2 for some 6 > 0 (recall that u remains bounded)

to conclude that uniformly for any ¢ in the index set of S| one has

1 1
—— = —(1+o(x T — 00).
() JU o) )
Using Lemma 3.3 Wang’s computation [WanI8| (4.6)] immediately produces
(13)
/ T Li(x)

(u) (14 O(9) + o(x)) ~ o(u) (. — o0, u<1).

o(c) logxg

STEP 1”. We use Conjecture |1.1{ with a fixed w > 6 to show that S} =
O(z(logx)~!/(log x)*~1). Note that this is negligible compared to 5.

(®) We denote by >_p|n | the number of distinct prime factors of an element n in a
given PID.
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Let 0 < 6 < & be such that |jcg|| < 2!~ whenever ||¢|| < 219 Using the
triangle inequality and Conjecture [L.1] we have

(14) St= > w@r@gd) < > r(zqed)
q€0K, |lq||<z° llql|<z1-3
P=(llal)>y

< Y rledd) <
lo/ll<a1-9

_r
(log )~

We now handle the contribution of S5 defined in . We first apply the
triangle inequality and we observe that the primes p € Ok that are counted
satisfy p—a’ = gem with m € O of norm bounded by ||m|| < 29. Therefore

/

. _ pP—a
So| < : <z P > .
Sl< Y prmme Ipll < z <H ‘ ) y}‘

m

meOg
[[m||<z°

To evaluate this upper bound, the main ingredient used by Wang is the linear

sieve. We apply Lemma [3.2] to

A—A(m,c,a’)—{p :pEHK(m;mc,a’)},

mc
P = {p prime: ptmed'}, z<y.
Indeed, for this choice of parameters,

(15) Sl < Y S(Alm, e, P, 2),

meOg

[lm||<z®
and therefore, for all squarefree d € Ok having all its prime factors in P, we
have ged(d, m) =1, and A, is homothetic to the translate ITk (z; dme, a’) — a'.
In particular, [Ay4| = mx (x;dme, a’). We set X = Smoogz and fix a multi-
plicative function w on O satisfying

0 if p | med,
w(p) = Pl therwise
Tpl—1 '

For any squarefree d € O with all its prime factors in P we have therefore

M _ w(d) x . 1 x
Il = il e(me)logz (g Il (1 - }D”)) ¢(mc) logz

X

~ p(med) log

since d is coprime to mec, by definition of P.
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Finally, note that for all primes p € Ok with ||p|| > 2,

1 1 1 1
(16) 1—21—2(1—)(1+>;
2] Il —1 2] Ipl?

combined with Mertens’ formula (see e.g. [Tenl5, Chap. 1.6, Th. 1.12]), this
shows that the hypotheses of Lemma [3.2] are satisfied. For any fixed D > z
we obtain

s ex [T (1-50)+ % ()!w—m

lpll<z 1Pl lldll<D, d|P(z

From this upper bound, combined with (L5)), we deduce that |S2| < S5+ Sy

where
T 1
Y e ()
1 -1
maes £LE) log Ipli<= Il
(17) ptmea
Sy=Y > Ir(Ad)
lm||<z? ||d]|<D
d|P(z)
and |r(A,d)| = |7k (2; dme, o) — S|,

We next set z = D = y'=2 and recall w > 6. Under these conditions we

prove upper bounds for S} and S%.

STEP 2. We prove that S5 = O(Li(xz)ud). Since ¢ and a’ are constants,
we relax the condition p f mea’ into p { m in the index set of the product
appearing in S5. Then

, R 1
St ew D Ciiogs 11 (1 upnl)

I
jmias PIIBT e,
x 1 1 1 —1
< II (-5 S — ] (1-
(I (=) (1))
BT\ i< I s ) Ipl<z ol
plm

The first product over primes on the right hand side is < (logz)™! =
((1—20)logy)~! by Mertens’ formula combined with (16]). For the rightmost
factor we write o(m)/[|m|| = [],,,,(1 —1/[|p|l) and note that the function f
defined on O by

Fm) = H (1 - Hm‘l_1> —vp(m) <1 - H;H> —vp(m)

plm

(where vy,(m) is the p-adic valuation of m) is completely multiplicative. Since
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in the product defining f, each factor at p is > 1, we obtain

1 1
m%: o(m) ﬂ (l e 1> Z . H
plm

Here note that the general term of the product over primes on the left hand
side is > 1 and therefore the upper bound holds, for both z > 2% and z < z°.
Using a partial Euler product and Mertens’ formula combined with we
deduce that

>t 11 (“prrl—l)_l

[l | <zb lIpl|<=
plm

1 -1
Z < I1 (1-pr=s) <0oen
5 Tl AT Tol-2
m|<z lIpll<z

This concludes Step 2’ :

; x o B
(18) SZ_O(log:L‘ul—Qé) _O<10gxw5>

STEP 2”. We prove that S = O(z(logz)~!/logz*/>73). Note that if
|m|| < 2% and ||d|| < D = y*~2 < 220 then n := md satisfies ||n| < z'~°.
We denote by 7(n) the number of divisors of n. Hence we have, applying
Cauchy—Schwarz in the last step,

Sy< Y DlrAmed) < Y T(n)lr(Ane,d)] < (55,534)'?

Inl|<z'=5 din Inl|<z1-5
where
S// o ./4 ! S// . 2 A /
2,t — Z ‘T( ,nc,a)\, 2% Z T(n) ‘T( ,nc,a)\.
[nl<zt=® [l <at=o

For SY) + We recognize the expression of Conjecture so recalling that c is

5/2

a constant (therefore ||c|| < %/ for large enough z), we deduce

Sy < x/(logx)”.
As in [Wan18| (4.10)] we first use a trivial upper bound on S ,:
i () x
p(nc)

r(A;ne, a)| =

Tx (x;nc, a) — Tl

to obtain the upper bound

2
so<r Y T < alioga)’

[nl|<z?=0
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where the last step uses summation by parts and knowledge of the average
order of 72 (see e.g. [Wil23), (1.25)]). Note also that, invoking positivity for the
general term of the sum, the implied constant is absolute (and in particular

does not depend on §). Overall we obtain
r(logz)~!

19 Sy —_—
(19) 2 ((108; ) (log a)»/2=3
Putting together (13)), (14), (18), and (19)), we see that the sums S7 and

SY are negligible compared to z/logz. Since o(u) is lower bounded by a
constant, the proof of Theorem [3.4] is finished by letting § — 0. =

1/2
) 22 (log z)? <«

4. Uniform version of the Elliott—Halberstam conjecture and
proof of Theorem (2) In this section we start by stating a refined
version of Conjecture and we prove Theorem [1.2|2) under this refined
conjecture. We next discuss the error term implicit in Theorem (1, 2).

4.1. Proof of Theorem [1.2[(2). The argument we provide is a conse-
quence of [LWX20, Th. 1.5]. Let us first state the refined version of Conjec-
ture [1.1| required in our analysis.

CONJECTURE 4.1 (parametric EH, [LWX20, Conj. 1] in the case K = Q,
same () as in the rational case, with the same adjustments as in Conjec-
ture for K quadratic). Let 6(x) be a decreasing function such that
(20) (logy )/ (nlogx) < d(z) <n (x> wo(n))

for any n € (0,1/2]. Let K be either Q or an imaginary quadratic field of
class number 1. For all ¢ € Ok set ||q|| = |Ok/q| (the algebraic norm) and
©(q) = |(Ok/q)*| (the Euler function). Set
Tk (z) = {p € Ok, prime: |]p| < =},
i (z;c,a) = {p € Ok, prime: ||p|| < z, p = a mod c}.

Then for any fized a € Ok \ {0} and w > 0,

Z i ()

T (z3q,a) —
q€0k, (g,0)=1 #la)

llgl| <z =9

“ (logz)~’

uniformly for x > zo(n).

The original EH conjecture is stated for K = Q and constant 0. As al-
ready mentioned, it is a strengthening of the Bombieri—Vinogradov (BV)
Theorem. Huxley [Hux71] proved a number field variant of the BV Theorem
(see also [JohT9, Cor., p. 203| for the particular case of imaginary quadratic
fields or Pollack [Poll6l Lemma 2.3] for imaginary quadratic fields of class
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number 1), so it seems natural to state a number field EH conjecture extend-
ing Huxley’s result with the same range on ¢ as in the original EH conjecture.
Finally, Liu et al. [LWX20] extended EH by replacing § with a decreasing
function. In the present work we use the number field EH. If we only want
to focus on non-uniform results we can restrict to the original EH. However,
in order to prove uniform results, our analysis requires a new variant of EH
(Conjecture which combines the number field EH (extending [Poll6),
Lemma 2.3]) with the parametric EH (see [LWX20]).

Theorem [1.2)(2) will follow from a generalized form of [LWX20, Th. 1.5]

that we now state.

THEOREM 4.2 (|[LWX20, Th. 1.5] generalized to imaginary quadratic
fields). Let K be an imaginary quadratic field of class number 1. Let a €
Ok \ {0} and let p denote a root of unity of K. Let w > 0 and let x be
a non-negative arithmetic function on Og. With notation as in @ and
assuming Congecture for a given function § satisfying , we have

S st - 0, ()

4€0K, |lal<Q ©(q) log y
(g,0)=1

x <y k(q)? e
Can \/Z”q”_ (@)?/l4l (q)

- + g (z)d(@)u Yy
(log z) li=o P9

For every € > 0 this upper bound is uniform for x > 2, exp((logz)?/5t¢) <
y <z and Q < min(y, /).

Note that the original statement [LWX20, Th. 1.5] is over Q: in loc. cit.
the prime counting function mg is replaced by the usual prime counting
function 7 and Y (x,y; ¢, a, u) is replaced by

m(z,y;4,a) Z#{péx: q|(p—a), P+<p;a) Sy}'

Obtaining Theorem from the original [LWX20, Th. 1.5] requires mi-
nor modifications only. As we will see below, Corollary (and in turn
Theorem [1.2)2)) will follow from Theorem If one wants to avoid gen-
eralizing [LWX20, Th. 1.5] to an imaginary quadratic field, one can instead
consider the version of Corollary proved in Appendix [A] where the argu-

ments used are similar to those of the proof of Theorem [1.2(1).
In [LWX20l Cor. 1.8, p. 5] a result is proven for u < iggii We note
here that a stronger consequence of Theorem [£.2] holds if one restricts to

u < 287 and implies in turn Theorem (2)

— logy a7’
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COROLLARY 4.3. Let K be Q or an imaginary quadratic field of class
number 1. Let a,c € Og with a # 0 and let 1 be a unit of K. Finally, let
B > 0. Assuming Conjecture [4.1], we have
o(u)(1 + O(due(u) ™)),

x

(21) Vi (z,y;c,a, 1) = o) logz

uniformly for 1 < u < log:”z and for §(z) <

log,
rem[1.2(2) holds.

Proof. First note that under the stated assumptions, d(x)u/o(u) = o(1
as © — oo. Indeed, by (), one has o(u) > exp(—(1 + ' )ulogu) for u >
and any fixed 3 satisfying 0 < 8’ < 8. Therefore we compute

W. Consequently, Theo-

)
1

o(u) ~ log, x log, log,
1 1
< %83 % exp <(1 + A log3:17<1 _ %5 x))
log, x log, x

logs logs x
< =3 —(1+8)=23= ) =o((1 18).
< (log ) 250% exp (14 )52 ) = of(log )7

Next the assumption on the size of u implies that log y > log x log, z/logs
and thus for large enough z one has ¢ < min(y, /), since c is fixed. We set
Kk = 1y, the indicator function of the singleton {c}, in Theorem and we
obtain

(22) wK(xay;Caa7M> -

i () (log(x/HC\)N

©(c) log y

T wK(x)6 o
Saw Vel (log z) - e(c) ().

The second summand on the right hand side of is < ez (x)u. Likewise,

since u > 1, and since ¢ is lower bounded by assumption in Conjecture [4.1
for the first summand we have

log

5(x)u(

x x
(log z)« < log © log z)“~1logy

which is < 72 6(x)u for any fixed w > 2.

Finally, since g is smooth on (1,00) and ¢ is fixed, and since we may
assume that y is large enough (recall that the assumptions imply that logy >
log z log, x /logs x), there exists £ € (u — w, u) such that

’Q(log(w/HCII)> _Q(u)’ _ |loglell , logy

g 0) <

log ||e|| o(¢ — 1)
logy

logy £ log x

|-
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We deduce

| (mg(:c/ucu)) ) M‘ < Llez _

z(logz)~1é(x)u logy " x logy x
This finishes the proof of (21)).

To deduce Theorem 2), we combine with , using again the
fact that ¢ depends only on E. u

4.2. Discussion of the implicit error terms in Theorem The
error term in the estimates of Theorem plays an important role in de-
ciding whether an elliptic curve is more ECM-friendly than another one. To
explain this, let us first recall [BS22, Problem 5.1].

PROBLEM 3. Let E/Q be an elliptic curve without CM. Decide whether
there exists a real number §(E) such that
Prob(#E(F,) is B-friable: p ~ n) ~,, Prob(m is B-friable: m ~ neE))y,
where ~,, denotes asymptotic equivalence as n — co and where the “proba-
bilities” involved are defined as follows:
Prob(#E(IF,) is B-friable: p ~ n)
_ #{p prime: #E(F,) is B-friable, [p — n| < {/n}
- #{p prime: [p —n| < /n} ’
Prob(m is B-friable: m ~ ne®(#))
_ #{m B-friable: |m — nefP)| < \/nefE)/2}
2./nef(E)/2 '
Next we mention two results that concern the size of the error terms in

approximations of the counting function of friable integers.

THEOREM 4.4 (|Sco04, Cor. 1.2, Th. 1.3|). Let K be an imaginary quadrat-
ic field. Then for a fized ¢ > 0, for all x and y such that (logy z)%/3+ <
logy < logz, one has

i) = L1 0m0) (1 $00 (3 + O[22 ) ) s o)

Here Y (z,y) =1{(a) ideal of Ok : ||a|]| <z, max {Np: p<aOk prime, p|(a)}
<y}, vk = (L'/L)(1,x) for x the Kronecker character of K, and &(u) is
defined for u > 1 by the equality exp(§(u)) = 1 + u&(u).

In particular, since there are L(1, x)x(1 4 o(1)) integral ideals of O of
norm < x, one has

Y (z,y) < log(u + 1) )
——— =o(u)[1 - —="—"vk(1+0(1)) ).
Ux (2. 00) (u) og ¥ i (1+0(1))
The result was generalized from (i to a large class of Dirichlet series
of the form Z(s)G(s) where Z is a product of zeta functions with positive
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exponents and G a well behaved function (e.g. a holomorphic function). The
following particular case is sufficient for our applications.

THEOREM 4.5 (JHTWOS|, Ths. 1.1, 1.2], case Z = ¢, G holomorphic). Let

h be an arithmetic function with Dirichlet series H(s) =), +q hgj). Assume
that ‘H extends to a meromorphic function with a simple pole at s = 1 and

we write H(s) = ap/(s — 1) + a1 + O(s — 1) in a neighbourhood of 1. Then

> h(n) ==zo(u) (ao + albgl(;gzl) * O((log(u+1))2>>,

(logy)?

n<x
Pt (n)<y

uniformly on exp((logy ©)%/3%€) < y < z, for any fired e > 0.

Let us add that a similar result holds for Z = 1/(, the Dirichlet series
of p. The case h = 1, ap = 1, a1 = v — 1 (the Euler-Mascheroni constant)
of Theorem was previously established by Saias [Sai89, Main Corollary|
and yields in particular

(23) (a,y) = volu) (1 T (- 1+ o<1>>)

as  — oo and under the same restrictions on (z,y) as in Theorem
Note that Theorem [1.2(1) gives a positive answer to Problem |3| in the
CM case while Theorem [1.2[3) does so in the non-CM case. Finally, The-

orem [1.2)2) requires finding asymptotics for log(vg(z,y) /v (x,y)). The nu-
merical statistics in Appendix [B] suggest the following question is relevant.

PROBLEM 4. Let FE be a CM elliptic curve and let K be the associated
imaginary quadratic field. Let x be the Kronecker character of K and let
vk = L'(1,x)/L(1, x). Does the following formula hold:

log(u + 1
log( () () ~ (7 +1 =) BT L)
ogYy

REMARK 2. The result [LTI5, Th. 1.1], which was used in [WanI8| and
is sufficient for Theorem[1.2|(1) to hold, is not enough here because the error

term given is O(log(u + 1)/logy). We use instead the stronger Lemma
due to de la Bretéche and Fiorilli.

log(u +1)
logy

If Problem [4] has a positive answer, the constant i will be used as a
criterion to compare ECM-friendliness of CM elliptic curves. In the non-CM
case, Peter Montgomery used without proof @ [Mon92l §6.3, pp. 75-76]

(°) Peter Montgomery is famous for having invented algorithms and concepts which
are very effective in computer science but are not justified rigorously or are not presented
as part of a broader theory. For instance the modern presentation [KVV10] of the Mont-
gomery reduction is Barrett’s reduction with Q2 replacing R whereas the use of Murphy’s
a to compare polynomials for NFS, originally used by Montgomery, was justified in [BL17].
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the constant a(E) = >, ay(E) (see Proposition below) to compare the
ECM-friendliness of two given elliptic curves Fy and Fs, where the sum is
over primes ¢ such that ay(E7) # ag(E2). The next result recalls [BS22]
Th. 5.1] which justifies the existence of o(FE) in the non-CM case, and gives
an analogue of «(FE) in the CM case. Moreover, we relate explicitly the
quantities vx and a(F) in the CM case.

PROPOSITION 4.6. Let E/Q be an elliptic curve. For every rational prime
l set

(4@11 - Ep(VaIZ(E(Fp)D))lOgE if B is a non-CM curve,
<g_31 - 4Ep(Va1€(|E(Fp)|))>log€ if £ is a CM curve,

where B, is the operator limg, oo m(z) ™1 ZPSI,MAE and val, denotes the ¢-
valuation.

Then the series Y, ap(E) converges; denote by a(E) its limit. If E/Q
has CM by an order of an imaginary quadratic field K, then

(24) o(E) = vk — Xk,

where v = L'(1,x)/L(1, x) for x the Kronecker character of K, and X is
the value of the following converging sum depending only on K :

2log ¥ 202 flogé 3 + X E)
Se= S 2080
K 62—1< 62—1>+Z g+ D (o 5—1)

£ inert £ ram. £ prime

Proof. As already mentioned, the non-CM case is due to Barbulescu—
Shinde [BS22, Th. 5.1].

Consider an elliptic curve E/Q that has CM by an order of an imaginary
quadratic field K. Fix s € C such that Re(s) > 1. We use the factorization
Cr(s) = C(s)L(s, x) of the Dedekind zeta function (x of K combined with
the fact that the logarithmic derivative of (x at s coincides, up to sign, with
the Dirichlet series at s of the von Mangoldt function of K. We obtain

Cr(s) _ L'(s,x) , ¢'(s) _ log(A'p)

Ci(s) ~ Lisx) <<s> - k;p TR
B log€ (1 —x(£))log ¢?
- Z — Z 20025 — 1)

£ prime ¢ prime
unram. in K

where, in the first sum, p runs over the prime ideals of Ox and Np = |Ok /p|.
Using the analogous link between the logarithmic derivative of ¢ and the
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classical von Mangoldt function, we deduce that

L'(s,x) _ 1 1+x(0) X(g)
to =, 2 e (-2 Y) - S e g2

{ prime { prime
unram. in K

Since both sums on the right hand side converge at s = 1, we let s — 1 and
get

r'a, , e
@ G = X tegn (X + MOEEXD),

Next we fix any prime number ¢ and compute
1
By (al|EE)) = Jim — 3 vali(|E(E,).
p<z
p good

Let ¢ € Ok be as in Lemma [3.1] Let R denote either Z or O. For any
prime A € R and for any integer k > 0, the density of primes 7 € R
that @ satisfy 7 = pu 4+ bA* mod A1, for a fixed unit p of R and some
be (R/(N)* (i.e. primes 7 for which 7 — p has A-adic valuation equal to k) is
[(R/N))*I/I(R/(A))*| = o(X) /(A +1) = ||X]|7F, where ¢ is Euler’s indica-
tor function for R. Moreover, if we require the extra condition 7 = a mod ¢,
the Chinese Remainder Theorem asserts that the density of the primes w
considered shrinks to o(A)/(@(M+1)p(c)), which equals o(c)~|A|~*. Us-
ing this density computation (combined with Lemma in the case R =7
we obtain the contribution of inert primes to E,(val,(|E(Fp)|)):

¢ prime

1 < 1 1) =
Z valy(p +1) = Zk#{p z:valy(p+1) =k}
W(l‘) p<zx k;>0 W(l’)
inertin K
5 Z gk = g _ 1)
lc>0

In the case R = Ok we handle, using Lemma again, the contribution
of split primes. To do so we use the notation of Lemma [3.I] and factorize
T — fea = | [; A;', where \; is a prime of Ok above a prime number ¢;. If ¢;
is inert in K then ||A\;|| = ¢2 and valy, (|7 — pic.all) = 2e;. Similarly, when ¢;
splits or ramifies in K we have |[A;|| = ¢; and valy, (|7 — pc,ql|) = €;. Thus,
using similar computations to the ones performed in the case of inert primes
p, we obtain

) 1
gch_{lolo% Z valy(|E(Fp)]) —$11_>H0107T7 E Z valg([|m — pre,all)
p<z aEAﬂ'EOK [|7]|=p<zx
split in K T=a mod ¢

(") Again, we identify prime ideals with one given generator.
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_ 4 (1 +x(0) + Lyaiser £ N IX(O](1 = x(0) 262 )
— v(c) 2 (¢ —1)2 D) @—1)7
1+ X(€) + 1gjaisck L N IX(O](1 = x(€)) 22

= 4 (¢ —1)?2 1 @1

Overall,

~ 3+x(0) (1 1 ) Lyjgisex | 414 inertl?
U1 (-1 -1z (2-1)"

Combining with , one deduces as wished,

(26) 4Ep(valy(|E(Fp)]))

> (4B allEEID) - 2 ) toxe

£ prime
_ I'(1,x) 2log ¢ 202
~ L(1,x) +Z%e:rt€2_l tE
Llogt 3+ x(0)
T ot 2 aoie

¢ ram. £ prime

EXAMPLE 1. We have computed the value of yx = L'(1,x)/L(1, x), Xk
and respectively a(F) using , summed for £ < 10°. The rapidly converg-
ing series Y is evaluated using the formula in the statement of Proposi-
tion using ¢ < 108. Finally, for each prime ¢ < 10* one approximates the
average value of valy | E(F,)| using the primes p < 103; and we obtain a(E).
The results illustrate the equality a(E) ~ a(E) = yx — X for a list of
elliptic curves having CM by the quadratic fields K = Q(v/—d) (d > 0) of
class number 1.

d 1 2 3 7 11 19 43 67 163
a(F) | —3.042 | —2.990 | —3.038 | —3.073 | —3.019 | —3.045 | —3.080 | —3.091 | —3.119
o(E) | —5.128 | —5.542 | —4.421 | —4.955 | —4.599 | —4.333 | —3.835 | —3.434 | —1.824
Yk 0.232 | —0.029 0.352 0.005 | —0.101 | —0.091 0.257 0.622 2.194
YK 5.360 5.514 4.773 4.960 4.497 4.242 4.093 4.056 4.018

The difference a(F) — (yx — X'k) is close to 0, but not negligible, depending
on K. Indeed, the numerical estimation of the average ¢-valuation of |E(F))|
is slow and the sample of primes p < 10 is not sufficient to produce very
small differences a(E) — (yk — X'k). Note also that the rate of convergence
of the series involved seems to depend on the field K = Q(v/—d).

REMARK 3. The computation of L'(1,x)/L(1,x) is slow if one uses a
naive evaluation of each of the series L'(s,x) and L(s, x) (see [Lan22] for a
recent algorithm). This gives a second use of formula : quickly computing
(L'/L)(1,x). Note that [BL17| gives bounds on the convergence speed.
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REMARK 4. In the study of friability of binary forms, Murphy [Mur9§|
associated a function to irreducible polynomials f € Z[z] as follows. For a
prime £,

ar(f) = (log ) - (Ep(valyn) — E(, =1 (val %80 f(a/b))),
alf)= Y alf),

{ prime
where E(,3)—1 corresponds to natural density for randomly chosen pairs of
integers (a,b) which are relatively prime; the convergence of the series is
proven in [BL17, §2.2]. We note that a(FE) has an expression similar to a(f)
with f such that K ~ Q[z]/(f) (up to the condition (a,b) = 1).

5. The set ¥y .(z,y): proof of Theorem This section is devoted
to the proof of Theorem [I.3] We first state and prove a lemma, which is a
variation on the fact that a set of primes which has a natural density also
has an analytic (or logarithmic) density (see [Tenl5, §III.1]).

LEMMA 5.1. LetQ be a set of primes and, forx > 3, let Ilg(z) = QNI1, z].
If Q is the set of all primes, we simply write I1(x) for Ilg(x). Assume that there
exists a positive non-increasing function A(x) and a constant w > 0 such that
for all x > 3,

[Ig(x)] 1
- A _—
1@ M gy

Then for x > 3,
Zpem)?__lf 1 <Z W>(1+0(1))+O< 1 )

Zpeﬂ(:p)p L logy Wats nlogn log,

> M@)(1 +o(1)) + o<10g12 x)

Assume in addition that \ is continuously differentiable, v — A(x)logy x
tends to infinity as x — oo, and

x

| N(t)logy tdt = o(A(z) log, ).

2
Then

ZPGU @) P B

Ypen@ P

We shall not use the second part of the lemma in this work but it is

interesting to note that it can be stated simply as follows: if a set of primes
has a natural density of the form A(x) then the analytic density is also A(x)
under some conditions of regularity and size on A.

= Az)(1+0(1)).
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Proof of Lemma[5.1. First note that
=]

S o=y [g(n)] —LUQ(N— DI

pEllg(z) n=2

An Abel summation then yields

mHn—Hn—l Io(x mﬂn
Z|Q()| [ ( )!_IQ()I+Z|Q()|

o n |lz] +1 n(n+1)
Next we use the Prime Number Theorem, |II(z)| = (z/logz)(1 + o(1)).
We see that the term |IIg(x)|/|x] has size

) (1 +of1)) + (1o 2) (g ),
which is o(A(x)) + O((logy x)~1). Moreover, using the shorthand
ZQSngw we have

(27)
£

> |ﬂ§+ L= am <n13gn<1 +o<1)>) n 0<Z e <1c1>g2 WH).

n<x n<lx

n<x

To handle the error term in , we apply Cauchy’s condensation criterion,
which implies that

1
T;p n(logn)(logy n)w+1 =0(1).

Plugging this into one deduces that

lz)
[1o(n)] _ A(n)
S o) = (D) 4-+o) +0

The lower bound stated in the first part of the statement is then deduced
from the fact that A(n) > A(x) for all n < z, combined with the asymp-
totic behaviour of 37, (nlogn)~! and Dirichlet’s estimate > pell(x) p =
logy z + O(1).

We turn to the proof of the second part of the statement. The extra
assumptions on A enable us to integrate by parts:

2 ”Al‘(i’?” =) < 2 nlign) - EX(t)<nz<:t nlign> &

nlx n<x

= (A(z)logy @)(1+ o(1)) — | (X' (1) loga 1)(1 + (1)) dt
2

= (A(z)logy ) (1 + o(1)),
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by assumption. The proof is finished by using the hypothesis on the growth of
A(z) logy & combined with the equality stated in the first part of the lemma. =

Proof of Theorem[1.3, Let Q@ = {p prime: |E(F,)| is z-friable} and recall
that z = y/? and

¢E,Z($7 y) = 1/1Q(3§‘, y)
= {n < z: nis y-friable and Ip|n prime, |[E(F,)| is y'/V-friable}.
We use the fact that max{>_,,1: n <z} <logx to deduce that

2 e X sterma) (Setwra)”

Q,p<y Py
1 T x -1
- <pe¢;§y9(u)(l et ) (X et +etann)
where
_ Y(x/p,y) — (x/p)o(u)
) = T )
By we have

oG/ = o= 152 ) (/)1 + o)

Again as in the proof of Corollary [4.3] we use the mean value theorem.
There exists § € [x/p, z] such that

o= 252 — o) = (2L (6) < o)

We combine the last two equations and obtain e(z,y,p) = o(1) and

Vpz(T,y) 2 Q(U)x( ) 1/p) ' (Zl/p)_l

PEQ, p<y Py
In order to apply Lemma we invoke Theorem [1.2[(2) which asserts that
¢E(y? Z)

@] o(v) < d(y)o.

Here we fix 8 > 0 such that d(y)v < (logy y) ' =P (logs y)(log, y)~!. This is
< (logy y)~'=P/2. Therefore, by Lemma

(S 1) (1) 2 o)1+ 0(1) + Of(logy ) 72)

pEQ, p<y p<y
Recall that the domain A in the statement of Theorem [I.3] is such that
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logs x
— logy x*

This implies that

1
o(v) = exp(—(1+ o(1)vlogv) > exp(—lzg?’z log, x) >

4 logs y

Hence we infer

¢E,z (CL‘, y) >

> o ow)(e(®) (1 + (1)) + O (logy ) ~/%)

o(u)o(v)(1+0o(1)). =

>
~ logx

6. The case of non-CM elliptic curves. It is interesting to investigate
potential analogues of Theorem 3.4]in the non-CM case. This section suggests
such an analogue and highlights its theoretical limitations. Let E/Q be a non-
CM elliptic curve. Deuring’s Theorem (Lemma [3.1)) enabled us in the CM
case to relate ¥g(x,y) to the count of primes in arithmetic progressions. In
the non-CM case a natural choice for the analogous prime counting function
is

mp(w;d) = [{p < x: d[|E(F,)[}.

In his celebrated work [Ser72|, Serre shows the existence of an integer Mg,
depending only on FE, such that for n coprime to Mg, the Galois group
G, of the n-torsion field extension E[n](Q)/Q is isomorphic to the full
group GLgy(Z/nZ). Moreover, one has the additional multiplicativity prop-
erty G ~ G, X Gy, for any m coprime to n. David and Wu [DW12] proof of
Lemma 4.1] gave an asymptotic development under GRH for the Dedekind
zeta function of Q(E[d](Q)) when d is coprime to Mg and squarefree:

mp(r;d) = wEd(d) é + Op(d*?z'/?1og(dx)),
(28) _ ;2 -2) 002 —2)
= M enem = 11 e e
¢ prime { prime

In the spirit of the Bombieri—Vinogradov Theorem and of its expected gen-
eralization (Conjecture , it is tempting to expect some strong average
version of over d. The following results are evidence for the validity
of this “Elliott—Halberstam phenomenon” that we next state (Hypothesis
below).

THEOREM 6.1. Let E/Q be a non-CM elliptic curve and assume the GRH
for Dedekind zeta functions.
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(1) (|JKow06l Prop. 3.8])
> wd{p <z Ed(Q) C EF,)}

d<z1/4/(log )2
@(d)> x ( x )
= —— 4+ 0| ——= ).
<d21| al Jlogx E (log z)3

wg(d)

(2) (IDW12l, (4.7)])
Z Qw(d)/l,(d)Q

d<z'/%/(log x)*
pld=Mp<p<a!/10/(logz)*

Regarding point (2) of Theorem we follow Pollack [Poll6l p. 185]
who studied the elliptic curve analogue of the Titchmarsh divisor problem:

X
(logz)?

wp(r;d) — <E

d logz

We pretend that this approximation is valid for d up to size =~ x, at least on
average.

This gives rise to the following hypothesis inspired by Conjecture [I.1}
HypoOTHESIS 1. Let E/Q be a non-CM elliptic curve. Then

D

d<X

wg(d) x

E',w (log :L‘)w )

wp(z;d) —

d logz

for any X < 2179, z > 2, for any constant w > 0, and where one extends
wg to a function on N satisfying wg(mn) = wg(m)wg(n) for any coprime
integers m, n such that either m or n is coprime to Mg (see [DW12, §2]).

Note that Hypothesis [I] allows any exponent w > 0 in the denomina-
tor of the upper bound. This mimicks the upper bound appearing in the
Elliott—Halberstam Conjecture moreover, we believe that there has been
no attempt to optimize the exponent 3 appearing in the upper bounds of
Theorem in the works of Kowalski and David-Wu. Finally, as in the
proof of Theorem [3.4] we need an exponent w > 6 to conclude the proof of
Theorem [6.2]

Hypothesis [1] enables us to prove the following analogue of Theorem

THEOREM 6.2. For any x > 2 and y € [1,z] set u = igg‘; Assume

Hypothesis for a non-CM elliptic curve E/Q. Then, as v — oo and y is
such that v < ug for some fixed constant ug, we have

wE(xv y) ~

Proof. The argument is a verbatim translation of the proof of Theo-
rem [3.4 We fix § > 0. By Mobius inversion we split the prime counting

X
1og;c9(“)‘
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function under study:

vp(ey) = |{p <o gd(IEE) [T €) =1} =1+ 52,

¢ prime
>y
where
Si= Y w@re(e), S= > pl@re(a).
q§x175 I+2\/52q>1’175
P~ (q)>y P~ (q)>y

Note that the upper bound on ¢ in the index set of Sy comes from the
Hasse-Weil bound on |E(F,)|. We next decompose S; = S§ + 57, where

wq)we(q)
logm > £l ST= > wqr(zq),

q<z 1-6 q§$175

P (9)>y P~ (q)>y

and where r(z,q) = 7g(2;q) — 15,7 qu(Q) Since u remains bounded, we may

assume that Mg < y < z, so that wg is multiplicative on all integers ¢ such
that P~ (q) > y. If in addition ¢ is squarefree, then formula for wg(q)
is valid and yields wg(q) = 1+ O((P~(q))™'). We compute
Si _ Z wm@)we(q)
z(logx)~! q

qulfé
P~ (9)>y, gcd(q,ME)—

Z " ( 2 qP}(q))

g<a'~ g<a!'=0
P~ (Q)>ZJ P~ (q)>y
1 1
dm+o<§:> (x — 00, u < 1),
y ~.q
q<z

where we have used Lemma [3.3] Finally, the fact that u < 1 implies that the
error term is O((logy)/y) = o(1) as * — oo. This establishes S} ~ Q(u)ﬁ
as r — oo with u < 1.

As in the proof of Theorem|[3.4] (Step 1”), we show that S} = O(z/(log z))
by virtue of Hypothesis In particular, for bounded w, one has S =
O(loﬂgxg(u))'

We turn to the evaluation of Sa. As in the proof of Theorem [3.4] we use
Lemma [3.2] to obtain |Sa| < S} + 55, where

Z logwam H <1_pr(m>’ Sy = Z Z |r(z, md)|,

m<z pEP,p<z 'rn<x‘s d<D
iy 7 dip(z)
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z =D = 272 the parameter ca’ has to be replaced by Mg to define the
set P of primes and, for p € P, we choose w(p) = wg(p) (which satisfies
the hypotheses of Lemma[3.2] as shown in [DW12| proof of Lemma 4.1]). We
denote by P(z) the product of primes in P that are less than z. The fact that
(1 —wg(p)/p)/(1 —1/p) =1+ O(1/p?) for p € P implies that the method
used in the proof of Theorem to handle the contribution of S} also yields
in the present case |(°)| that S} = 0(5@11).

Finally, to obtain the bound for S} = o(z/log x) we argue as in the proof
of Theorem [3:4] invoking Hypothesis [I] for a fixed w > 6. We conclude by
letting 6 — 0.

Appendix A. Alternative proof of Corollary We prove the
following form of Corollary [£.3] using the same method as for Theorem [3.4]
(i.e. an adaptation of Wang’s approach [Wanl§]).

PROPOSITION A.1. Let K be Q or an imaginary quadratic field of class
number 1. Let a,c € O be fired and let p € OF. Let C € (0,1/2) and
B € (2C,1). Assuming Conjecture we have

Vi (z, ;¢ 0, 1) = o(w)(1+O0(8(x) Pulogu)))  (z — o),

_r
o(c)log
uniformly for

2<u:= log @ < Clong and 6(x) € (bgﬂ, (log:E)_QC/ﬁ).
logy logs x nlogx

Proof. Let e(x,y) = d(x)ulogu. Recall that §(z) satisfies the assump-
tions of Conjecture

We follow through the steps of the proof of Theorem [3.4, We split
Vi (x,y;c,a,u) = S1 + Sy with S; and Sy as in (up to replacing 0 by
d(z)). We write S; = S]+57 as in and we write |Sa| < S5+ 5%, similarly
to what we did in .

STEP 1’. We show that S| = S()(C)gﬁogxg(u)(l +o(e(z,y))). By Lemma
we have
“" ()
(29) Sh= Z u(q)
1
90(0) og T O T <15 90((])
P=(llglh>y
_a((losw) "
~ p(e)logz <Q< log y + O(exp(—(logy)*°7)) ).

Note that u < logy x/logs « implies that logy > log x logs x/log, = (so that
y lies in the range of validity for Lemma . In particular, the error term

(®) Alternatively, one could appeal to [DW12| (4.3), (4.9)] to estimate the inner prod-
uct over primes in the upper bound for S5.
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in (29) is 0(d(z)o(u)ulog u). Indeed, from (4]) one has o(u) > exp(—2ulogu)

and further
3/5—€

—(lo
e (logy) < e_(logy)3/576+2ulogu

o(u)
Since u < logy z/logs z, we have ulogu = o(logs ), hence

e_(IOgy)S/s € 10g3 T 3/5—e¢
T olw) < exp <— <log:r; ) +o(log, m)) < exp(—(log )?/?).

Finally, using again, we compute (writing ¢ instead of §(x), for sim-
plicity)

log (@(bglixglyé)» — log(o(u))

= —u(l —9)(logu +log(l —¢)) + ulogu + O(ulogy u).

Hence g(log lolg;(x) )/o(u) = 1+ O(6(x)ulogu), which proves the stated

estimate for S].

STEP 1”. We show that S = o(ﬁg(u)s(x,y)). To do so we apply
Conjecture in the same way we applied Conjecture in the proof of
Theorem [3.4] We fix w > 2C — 2 where C is an absolute constant such that
we work under the restriction u < C'log, x/logs x. The same argument as
the one used to obtain yields S} = O(x(logx)~!/(log z)“~1). The point
is that Conjecture asserts that the implied constant in this upper bound
is uniform in w. Using again the bound po(u) > exp(—2ulogu) and the fact
that ulogu grows as  — oo, we now compute

S{l < e2u logu (IOgQ x)eQu logu
z(logz) to(u)e(z,y) — (logz)*~1d(z)ulogu — (logx)¥2ulogu
(log, ) exp(2C'log, ) log,
< —2 —20-2"
(log z)~ (log z)~
STEP 2'. We prove that S, = O(logz % ) in the same way as

for (|18 (where the implied constant is absolute). From the bound 1—-26(x) >
1 —2n > 1 (recall Conjecture (4.1])), we conclude that

5(z)2 S < §(x)8

o(u)z(logz)~le(z,y) — o(u)

Therefore we have S} = O(logzé(:c)l_ﬁg(u)ulog u).

< 6(z)Pe?Cloe® « 1,

STEP 2”. We prove that S = o(bzxg(u)z—:(:v, y)). As in the proof of (19),

we have (log z)~!
g _ of *log
’ ((loga?)“/2‘3 ’
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with an implied constant depending only on w. We then argue as in Step 1”
above by requiring this time that w > 4C + 4. This concludes Step 2" and
the proof of Proposition [A.1] =

Appendix B. Numerical illustration. We consider the examples
Eriy?+aoy=a>—22—-2x—1and By : y? +y = 2> — 22 — 7Tz + 10 which
have endomorphism rings included in Q(v/—7) and Q(v/—11), respectively.

1.008
= |- -
1.050 1.006 - b
1.048 - B
| | 1.004 |- B
1.046 |- 1
L ] 1.002 |- B
1.044 -
split (o o7 split (525
f — LE;% 1.000 |- — Lﬁ%
Pt (x, V(2,225
o2y o Y R N BRI o
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
* 109 * 10°
1.050 - 1
1.006 |- B
1.045 - | 1.004 - i
1.002 - B
1.040 |- 1
L | 1.000 + B
I I I I I I I I
0 0.2 0.4 0.6 0 0.2 0.4 0.6
X Ve (,27) X Y5, (2,2°%)
Ve, (2,27) Uy, (2,27%)

Fig. 1. Comparison between ¢g(z,y) and ¢k (z,y) when E is CM and K = End(E) ® Q.

Our numerical experiment (see Figure can be seen as a type of Chebyshev
race|(%)|between F; and E11: we compare ¢, (z, 27) and g, (x, 27) for various
values of x. The data shows that Fr is “always ahead”, in other words, E7
is more ECM-friendly than F1; for these values of x and y. We repeat this
Chebyshev race for y = 2?° and obtain the same conclusion. This suggests

(9) In an 1853 letter, Chebyshev observes that the count of primes up to x that are
3 modulo 4 almost always exceeds that of primes that are 1 modulo 4. Modern instances
of what is now called a “prime number race” have been extensively studied in the recent
years.
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the following conjecture: F; is more ECM-friendly than Fq; uniformly for x
and y when y grows with x and is not too large compared to x.

0.000 | ) 0.000 |- . 0.2
_ Vo= (@ _ o(v=n (@2
log Yo(v=n) (2,00) log Yo(v=m)(@,00)
—1.000 |-
P (a 27) —0.200 - 5 (x,2%)
T log GRS T log IR
7200() - V=TI "> Qv=ID) ¥
1-0.400 |- i
—3.000 |- g
—4.000 |- 4-0.600 |- .
| | | ! | | | | | ! | |
0 1 2 3 4 0 1 2 3 4
\X \10“ T \X T 100 T
—1.400 |- 1-2.300 |- i
—1.500 | {2400 )
—2.500 |- g
—1.600 |- -
I I I I —2.600 I I I I L
0 1 N 05 06 07 08 N
— log [gv=n(2,y)| x | = log [F&,) (2, y)|
— log [Yg(y=mm) (2, )| — log [YE,, (. )|
YK (x,y) -1_4 YE(x,y) -1_4
: ~ e fW T ~ _ Bpley 2 -
Fig. 2. Ak (@,y) = i nriesy— 20 V6 (5 9) = Tt ey

In Figure [2] we search for an accurate expression for the error term in the
asymptotic expansion of g (z,y)/vE(x,00). First we plot the expression
which is given by Scourfield’s Theorem

log(u + 1)
i), 09) = o) (1= BT (1 01 ).
The data corroborates the accuracy of this theoretical value. We also plot

the expression
wk(ﬂﬂ,y))g(u)—l _1

VK = Y @0
© log(u+1)/logy
which converges to a constant when u = 1.5. We define similarly

WE(%?/))Q(U)—l 1

. Y00

VE = log(u +1)/logy
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for which we do not have a theoretical result. The data suggests that

log(YE(z,y) /v (T, 00))

has the same main error term as log(v(z,y) /1 (z, 00)) and that ¥g converges
as © — 0o. Note that if Y does converge, it is not expected to be equal to
vk since the former quantity involves the contribution of both split and inert
primes.

We emphasize that the collection of data presented in Figure 1 requires
the computation of |E(IF,)| for a large number of primes p and for £ = E;
or F11. We have not used the expensive Schoof algorithm because, in the
particular case of CM curves, specific methods exist. We have not used the
formulee in [RS09, Ths. 5.3, 5.5, 5.6] either. Indeed, the characters involved,
although explicit, have a costly evaluation, and moreover the formulse are
prone to typos. Instead we follow a classical procedure and use Lemma
Let p be a prime for which one wishes to compute |E(F,)|. Fix a Weierstrass
model for £ and pick a dozen random projective points Py € E(F)); for each
root of unity u of K (there are at most six of them), compute the possible
value of N := || — p|. Next compute |N| Py, [N]P,, ... and rule out N if one
of the computed points is not (0 : 1 : 0). When all but one of the possible
values of |E(FF,)| have been ruled out, one successfully outputs the result.

The data plotted in Figures [I] and [2]is available online at

https://razvanbarbulescu.pages.math.cors.fr/ElliottHalberstam /Elliott Halberstam.html
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