Cryptanalysis of rank-2 module-LIP in Totally Real Number Fields

G. Mureau, A. Pellet-Mary, H. Pliatsok, A. Wallet

Eurocrypt 2024, Zurich, May 30th

Hawk (Ducas, Postlethwaite, Pulles, van Woerden 2022)¹:

- **1** NIST submission (additional call for signatures)
- 2 based on module-LIP over cyclotomic fields
- efficient / compact

¹Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple

Guilhem Mureau

Hawk (Ducas, Postlethwaite, Pulles, van Woerden 2022)¹:

- **1** NIST submission (additional call for signatures)
- Ø based on module-LIP over cyclotomic fields
- efficient / compact

This talk : Heuristic polynomial time (in many cases) algorithm solving module-LIP for rank-2 modules when *K* is **totally real**.

¹Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple

Guilhem Mureau

Hawk (Ducas, Postlethwaite, Pulles, van Woerden 2022)¹:

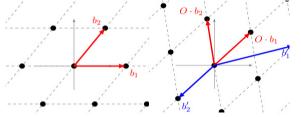
- INIST submission (additional call for signatures)
- Ø based on module-LIP over cyclotomic fields
- efficient / compact

This talk : Heuristic polynomial time (in many cases) algorithm solving module-LIP for rank-2 modules when *K* is **totally real**.

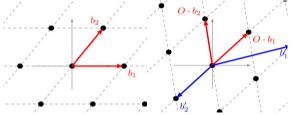
Does not break Hawk!

¹Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple

• LIP : Find an isometry sending \mathcal{L}_1 on \mathcal{L}_2 (or determine if \mathcal{L}_1 and \mathcal{L}_2 are isometric).

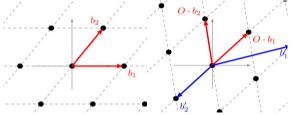


• LIP : Find an isometry sending \mathcal{L}_1 on \mathcal{L}_2 (or determine if \mathcal{L}_1 and \mathcal{L}_2 are isometric).



• module-LIP : Same but \mathcal{L}_1 and \mathcal{L}_2 are **module lattices** (finitely generated modules over \mathcal{O}_K , K a number field) and seek for isometry preserving the module structure.

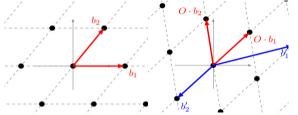
• LIP : Find an isometry sending \mathcal{L}_1 on \mathcal{L}_2 (or determine if \mathcal{L}_1 and \mathcal{L}_2 are isometric).



• module-LIP : Same but \mathcal{L}_1 and \mathcal{L}_2 are **module lattices** (finitely generated modules over \mathcal{O}_K , K a number field) and seek for isometry preserving the module structure.

Examples (of module lattices). $e.g., K = \mathbb{Q}[X]/(X^n + 1)$ and $\mathcal{O}_K = \mathbb{Z}[X]/(X^n + 1)$

• LIP : Find an isometry sending \mathcal{L}_1 on \mathcal{L}_2 (or determine if \mathcal{L}_1 and \mathcal{L}_2 are isometric).



• module-LIP : Same but \mathcal{L}_1 and \mathcal{L}_2 are **module lattices** (finitely generated modules over \mathcal{O}_K , K a number field) and seek for isometry preserving the module structure.

Examples (of module lattices). $e.g., K = \mathbb{Q}[X]/(X^n + 1)$ and $\mathcal{O}_K = \mathbb{Z}[X]/(X^n + 1)$

- **1** rank one : fractional ideals of *K*
- **2** rank two : $\mathcal{O}_{\mathcal{K}} \oplus \mathcal{O}_{\mathcal{K}}$

are $\mathcal{O}_{\mathcal{K}}$ -modules which embed into an Euclidean lattice in $\mathbb{R}^{d\ell}$.

Guilhem Mureau

Example. Define module-LIP for $M = \mathcal{O}_K \oplus \mathcal{O}_K$.

Example. Define module-LIP for $M = \mathcal{O}_K \oplus \mathcal{O}_K$.

M' is **isomorphic** to *M* iff $\exists O$ hermitian ($O^*O = Id$) such that $M' = O \cdot M$. If *B* (resp. *B'*) is a basis of *M* (resp. *M'*), then $O \cdot B \cdot U = B'$ for some $U \in GL_2(\mathcal{O}_K)$.

Example. Define module-LIP for $M = \mathcal{O}_K \oplus \mathcal{O}_K$.

M' is **isomorphic** to *M* iff $\exists O$ hermitian ($O^*O = Id$) such that $M' = O \cdot M$. If *B* (resp. *B'*) is a basis of *M* (resp. *M'*), then $O \cdot B \cdot U = B'$ for some $U \in GL_2(\mathcal{O}_K)$. Move to **quadratic forms** :

$$B \longmapsto G = B^*B$$
; $B' \longmapsto G' = B'^*B'$, Gram matrix / Humbert form.
 $B' = OBU \implies U^*(B^*B)U$, **congruent** to $G = B^*B$.

Taking $B = G = I_2$, module-LIP with parameter K and I_2 is :

module-LIP^{l_2}

Input : G' Gram matrix congruent to I_2 **Goal :** Compute **all** $U \in GL_2(\mathcal{O}_K)$ s.t. $G' = U^*U$.

Hawk : $K = \mathbb{Q}(\zeta_{2^{k}})$ **cyclotomic** number field $U \in \operatorname{GL}_{2}(\mathcal{O}_{K})$ (secret basis of $\mathcal{O}_{K} \oplus \mathcal{O}_{K}$) $G = U^{*}U$ (public Gram matrix).

Hawk : $K = \mathbb{Q}(\zeta_{2^{k}})$ **cyclotomic** number field $U \in \operatorname{GL}_{2}(\mathcal{O}_{K})$ (secret basis of $\mathcal{O}_{K} \oplus \mathcal{O}_{K}$) $G = U^{*}U$ (public Gram matrix).

• Recovering *U* from *G* is a module-LIP^{l_2} instance.

- **Hawk** : $K = \mathbb{Q}(\zeta_{2^k})$ **cyclotomic** number field $U \in \operatorname{GL}_2(\mathcal{O}_K)$ (secret basis of $\mathcal{O}_K \oplus \mathcal{O}_K$) $G = U^*U$ (public Gram matrix).
- Recovering *U* from *G* is a module-LIP^{l_2} instance.
- Any solution $V^*V = G$ is a **key recovering** (up to automorphism).

Suppose *K* is **totally real** (*e.g.*, $K = \mathbb{Q}(\zeta + \zeta^{-1})$) and $U = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in GL_2(\mathcal{O}_K)$

Suppose *K* is **totally real** (*e.g.*, $K = \mathbb{Q}(\zeta + \zeta^{-1})$) and $U = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in GL_2(\mathcal{O}_K)$ **Goal :** Recover *U* from $G = U^*U$.

Suppose *K* is **totally real** (*e.g.*, $K = \mathbb{Q}(\zeta + \zeta^{-1})$) and $U = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in GL_2(\mathcal{O}_K)$ **Goal :** Recover *U* from $G = U^*U$.

$$G = U^*U = egin{pmatrix} a\overline{a} + b\overline{b} & \star \ \star & c\overline{c} + d\overline{d} \end{pmatrix} = egin{pmatrix} a^2 + b^2 & \star \ \star & c^2 + d^2 \end{pmatrix},$$

because K is totally real ! Diagonal elements are sums of two squares in $\mathcal{O}_{\mathcal{K}}$.

Suppose *K* is **totally real** (*e.g.*, $K = \mathbb{Q}(\zeta + \zeta^{-1})$) and $U = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in GL_2(\mathcal{O}_K)$ **Goal :** Recover *U* from $G = U^*U$.

$$G = U^*U = egin{pmatrix} a\overline{a} + b\overline{b} & \star \ \star & c\overline{c} + d\overline{d} \end{pmatrix} = egin{pmatrix} a^2 + b^2 & \star \ \star & c^2 + d^2 \end{pmatrix},$$

because K is totally real ! Diagonal elements are sums of two squares in $\mathcal{O}_{\mathcal{K}}$.

$$a^2+b^2=(a+ib)(a-ib)=:N_{L/K}(a+ib)$$
 relative norm of $a+ib\in K(i)=L.$

Suppose *K* is **totally real** (*e.g.*, $K = \mathbb{Q}(\zeta + \zeta^{-1})$) and $U = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in GL_2(\mathcal{O}_K)$ **Goal :** Recover *U* from $G = U^*U$.

$$G = U^*U = egin{pmatrix} a\overline{a} + b\overline{b} & \star \ \star & c\overline{c} + d\overline{d} \end{pmatrix} = egin{pmatrix} a^2 + b^2 & \star \ \star & c^2 + d^2 \end{pmatrix},$$

because K is totally real ! Diagonal elements are sums of two squares in $\mathcal{O}_{\mathcal{K}}$.

$$a^2+b^2=(a+ib)(a-ib)=:N_{L/K}(a+ib)$$
 relative norm of $a+ib\in {\mathcal K}(i)=L.$

Main idea : Solve relative norm equations to reconstruct U.

Guilhem Mureau

• Howgrave-Graham, Szydlo, "A Method to Solve Cyclotomic Norm Equations $f \star \overline{f}$ "

NormEquation

Input : $q \in \mathcal{O}_{K}$, prime factorization of $|N_{K/\mathbb{Q}}(q)| \in \mathbb{N}$. **Output :** all pairs $(x, y) \in \mathcal{O}_{K} \times \mathcal{O}_{K}$ such that $N_{L/K}(x + iy) = x^{2} + y^{2} = q$.

• Howgrave-Graham, Szydlo, "A Method to Solve Cyclotomic Norm Equations $f \star \overline{f}$ "

NormEquation

Input : $q \in \mathcal{O}_{K}$, prime factorization of $|N_{K/\mathbb{Q}}(q)| \in \mathbb{N}$. **Output :** all pairs $(x, y) \in \mathcal{O}_{K} \times \mathcal{O}_{K}$ such that $N_{L/K}(x + iy) = x^{2} + y^{2} = q$.

It runs in time

 $\operatorname{poly}(\operatorname{deg}(K), (\log |N_{K/\mathbb{Q}}(q)|)^{\mathsf{r}}),$

where **r** is the number of distinct prime factors of $q \cdot \mathcal{O}_{\mathcal{K}}$.

• Howgrave-Graham, Szydlo, "A Method to Solve Cyclotomic Norm Equations $f \star \overline{f}$ "

NormEquation

Input : $q \in \mathcal{O}_{K}$, prime factorization of $|N_{K/\mathbb{Q}}(q)| \in \mathbb{N}$. **Output :** all pairs $(x, y) \in \mathcal{O}_{K} \times \mathcal{O}_{K}$ such that $N_{L/K}(x + iy) = x^{2} + y^{2} = q$.

It runs in time

 $\operatorname{poly}(\operatorname{deg}(K), (\log |N_{K/\mathbb{Q}}(q)|)^{\mathsf{r}}),$

where **r** is the number of distinct prime factors of $q \cdot \mathcal{O}_{\mathcal{K}}$.

• Randomization of the input to guarantee small **r**.

```
\Rightarrow Get norm equations easy to solve.
```

Guilhem Mureau

Solving module-LIP for $\mathcal{O}_{\mathcal{K}} \oplus \mathcal{O}_{\mathcal{K}}$.

Suppose $K = \mathbb{Q}(\zeta_{2^k} + \zeta_{2^k}^{-1})$ and *G* a Gram matrix.

 \exists heuristic algorithm solving module-LIP^{*l*}_{*K*} on input *G* in expected time

 $poly(\rho_K, deg(K), size(G)),$

 $\rho_{\mathcal{K}}$ residue at 1 of $\zeta_{\mathcal{K}}$ (small in our experiments).

Full attack here : https://gitlab.inria.fr/capsule/code-for-module-lip

Table: Times in seconds for attacks over various maximal totally real subfields K of cyclotomic fields with conductors m = 4k, averaged over 5 instances. The degree d of K is $\varphi(m)/2$, and the lattices involved have dimension 2d. The upper table are powers-of-two. Experiments performed on a MacBook Pro (Apple M2), with Sagemath 10.2 and Pari/GP 2.15.5.

• module-LIP defined for any number field, any module lattice $M \subset K^{\ell}$.

Find all "congruence matrices" U s.t. $G' = U^* G U$

• module-LIP defined for any number field, any module lattice $M \subset K^{\ell}$.

Find all "congruence matrices" U s.t. $G' = U^* GU$

• Attack works for **any totally real number field** *K*, any module lattice $M \subset K^2$.

• module-LIP defined for any number field, any module lattice $M \subset K^{\ell}$.

Find all "congruence matrices" U s.t. $G' = U^* GU$

Attack works for **any totally real number field** *K*, any module lattice *M* ⊂ *K*².
In general, can't hope for polynomial time complexity. Depends on an invariant of the module *G*(*M*) = ⟨||*v*||² | *v* ∈ *M*⟩ "Gram ideal".

• module-LIP defined for any number field, any module lattice $M \subset K^{\ell}$.

Find all "congruence matrices" U s.t. $G' = U^* GU$

Attack works for **any totally real number field** *K*, any module lattice *M* ⊂ *K*².
In general, can't hope for polynomial time complexity. Depends on an invariant of the module *G*(*M*) = ⟨||*v*||² | *v* ∈ *M*⟩ "Gram ideal".

Solving module-LIP for rank-2 modules in totally real number fields.

Parameters : *K* totally real, $M \subset K^2$, with (pseudo-)basis *B* and $G = B^*B$. **Input :** *G'* (pseudo-)Gram matrix congruent to *G*.

• module-LIP defined for any number field, any module lattice $M \subset K^{\ell}$.

Find all "congruence matrices" U s.t. $G' = U^* GU$

Attack works for **any totally real number field** *K*, any module lattice *M* ⊂ *K*².
In general, can't hope for polynomial time complexity. Depends on an invariant of the module *G*(*M*) = ⟨||*v*||² | *v* ∈ *M*⟩ "Gram ideal".

Solving module-LIP for rank-2 modules in totally real number fields.

Parameters : *K* totally real, $M \subset K^2$, with (pseudo-)basis *B* and $G = B^*B$. **Input :** *G*' (pseudo-)Gram matrix congruent to *G*. \exists heuristic algorithm finding all conguence matrices in expected time

$$(poly(\rho_{\mathcal{K}}, \log \Delta_{\mathcal{K}}, size(\mathbf{G'})))^{\mathbf{r}+1} + T_{factor}(N_{\mathcal{K}/\mathbb{Q}}(\mathcal{G}(\mathcal{M})),$$

where **r** is the number of distinct prime factors of $\mathcal{G}(M)$.

• When *K* totally real and *M* has rank 2, module-LIP reduces to **norm equations** in number fields.

• When *K* totally real and *M* has rank 2, module-LIP reduces to **norm equations** in number fields.

• Classical problem. We randomize to have easy instances.

- When *K* totally real and *M* has rank 2, module-LIP reduces to **norm equations** in number fields.
- Classical problem. We randomize to have easy instances.
- Under some heuristic for the randomization, polynomial time (in many cases) algorithm solving module-LIP.

• When *K* totally real and *M* has rank 2, module-LIP reduces to **norm equations** in number fields.

- Classical problem. We randomize to have easy instances.
- Under some heuristic for the randomization, polynomial time (in many cases) algorithm solving module-LIP.

Open questions. \bullet For modules with rank $\ell > 2$?

• Rank 2 over *K* cyclotomic ?

Thanks for your attention!

Full article here!

Guilhem Mureau