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Introduction

Hawk (Ducas, Postlethwaite, Pulles, van Woerden 2022)1 :
1 NIST submission (additional call for signatures)
2 based on module-LIP over cyclotomic fields
3 efficient / compact

This talk : Heuristic polynomial time (in many cases) algorithm solving module-LIP for
rank-2 modules when K is totally real.

Does not break Hawk!

1Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple
Guilhem Mureau Cryptanalysis of rank-2 module-LIP May 30th, 2024 2 / 12
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The module-Lattice Isomorphism Problem
• LIP : Find an isometry sending L1 on L2 (or determine if L1 and L2 are isometric).

• module-LIP : Same but L1 and L2 are module lattices (finitely generated modules
over OK , K a number field) and seek for isometry preserving the module structure.

Examples (of module lattices). e.g., K = Q[X ]/(X n + 1) and OK = Z[X ]/(X n + 1)
1 rank one : fractional ideals of K
2 rank two : OK ⊕OK

are OK -modules which embed into an Euclidean lattice in Rdℓ.
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The module-Lattice Isomorphism Problem

Example. Define module-LIP for M = OK ⊕OK .

M ′ is isomorphic to M iff ∃O hermitian (O∗O = Id) such that M ′ = O · M.
If B (resp. B′) is a basis of M (resp. M ′), then O · B · U = B′ for some U ∈ GL2(OK ).
Move to quadratic forms :

B 7−→G = B∗B ; B′ 7−→ G′ = B′∗B′, Gram matrix / Humbert form.
B′ = OBU =⇒ U∗(B∗B)U, congruent to G = B∗B.

Taking B = G = I2, module-LIP with parameter K and I2 is :

module-LIPI2
K

Input : G′ Gram matrix congruent to I2
Goal : Compute all U ∈ GL2(OK ) s.t. G′ = U∗U.
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Link with Hawk

Hawk : K = Q(ζ2k ) cyclotomic number field
U ∈ GL2(OK ) (secret basis of OK ⊕OK )
G = U∗U (public Gram matrix).

• Recovering U from G is a module-LIPI2
K instance.

• Any solution V ∗V = G is a key recovering (up to automorphism).
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When K is totally real

Suppose K is totally real (e.g., K = Q(ζ + ζ−1)) and U =

(
a c
b d

)
∈ GL2(OK )

Goal : Recover U from G = U∗U.

G = U∗U =

(
aa + bb ⋆

⋆ cc + dd

)
=

(
a2 + b2 ⋆

⋆ c2 + d2

)
,

because K is totally real ! Diagonal elements are sums of two squares in OK .

a2 + b2 = (a + ib)(a − ib) =: NL/K (a + ib) relative norm of a + ib ∈ K (i) = L.

Main idea : Solve relative norm equations to reconstruct U.

Guilhem Mureau Cryptanalysis of rank-2 module-LIP May 30th, 2024 6 / 12



When K is totally real

Suppose K is totally real (e.g., K = Q(ζ + ζ−1)) and U =

(
a c
b d

)
∈ GL2(OK )

Goal : Recover U from G = U∗U.

G = U∗U =

(
aa + bb ⋆

⋆ cc + dd

)
=

(
a2 + b2 ⋆

⋆ c2 + d2

)
,

because K is totally real ! Diagonal elements are sums of two squares in OK .

a2 + b2 = (a + ib)(a − ib) =: NL/K (a + ib) relative norm of a + ib ∈ K (i) = L.

Main idea : Solve relative norm equations to reconstruct U.

Guilhem Mureau Cryptanalysis of rank-2 module-LIP May 30th, 2024 6 / 12



When K is totally real

Suppose K is totally real (e.g., K = Q(ζ + ζ−1)) and U =

(
a c
b d

)
∈ GL2(OK )

Goal : Recover U from G = U∗U.

G = U∗U =

(
aa + bb ⋆

⋆ cc + dd

)
=

(
a2 + b2 ⋆

⋆ c2 + d2

)
,

because K is totally real ! Diagonal elements are sums of two squares in OK .

a2 + b2 = (a + ib)(a − ib) =: NL/K (a + ib) relative norm of a + ib ∈ K (i) = L.

Main idea : Solve relative norm equations to reconstruct U.

Guilhem Mureau Cryptanalysis of rank-2 module-LIP May 30th, 2024 6 / 12



When K is totally real

Suppose K is totally real (e.g., K = Q(ζ + ζ−1)) and U =

(
a c
b d

)
∈ GL2(OK )

Goal : Recover U from G = U∗U.

G = U∗U =

(
aa + bb ⋆

⋆ cc + dd

)
=

(
a2 + b2 ⋆

⋆ c2 + d2

)
,

because K is totally real ! Diagonal elements are sums of two squares in OK .

a2 + b2 = (a + ib)(a − ib) =: NL/K (a + ib) relative norm of a + ib ∈ K (i) = L.

Main idea : Solve relative norm equations to reconstruct U.

Guilhem Mureau Cryptanalysis of rank-2 module-LIP May 30th, 2024 6 / 12



When K is totally real

Suppose K is totally real (e.g., K = Q(ζ + ζ−1)) and U =

(
a c
b d

)
∈ GL2(OK )

Goal : Recover U from G = U∗U.

G = U∗U =

(
aa + bb ⋆

⋆ cc + dd

)
=

(
a2 + b2 ⋆

⋆ c2 + d2

)
,

because K is totally real ! Diagonal elements are sums of two squares in OK .

a2 + b2 = (a + ib)(a − ib) =: NL/K (a + ib) relative norm of a + ib ∈ K (i) = L.

Main idea : Solve relative norm equations to reconstruct U.

Guilhem Mureau Cryptanalysis of rank-2 module-LIP May 30th, 2024 6 / 12



When K is totally real

• Howgrave-Graham, Szydlo, ”A Method to Solve Cyclotomic Norm Equations f ⋆ f̄ ”

NormEquation

Input : q ∈ OK , prime factorization of |NK/Q(q)| ∈ N.
Output : all pairs (x , y) ∈ OK ×OK such that NL/K (x + iy) = x2 + y2 = q.

It runs in time
poly

(
deg(K ), (log |NK/Q(q)|)r),

where r is the number of distinct prime factors of q · OK .

• Randomization of the input to guarantee small r.

⇒ Get norm equations easy to solve.
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When K is totally real

Solving module-LIP for OK ⊕OK .
Suppose K = Q(ζ2k + ζ−1

2k ) and G a Gram matrix.
∃ heuristic algorithm solving module-LIPI2

K on input G in expected time

poly(ρK ,deg(K ), size(G)),

ρK residue at 1 of ζK (small in our experiments).
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Numerical experiments

Full attack here : https://gitlab.inria.fr/capsule/code-for-module-lip

(m,2d) (64,32) (128,64) (256,128)
Time 2 25 850

(m,2d) (228,72) (276,88) (260,96) (232,112) (340,128) (296,144)
Time (s) 74 195 434 652 2980 4205

Table: Times in seconds for attacks over various maximal totally real subfields K of cyclotomic
fields with conductors m = 4k , averaged over 5 instances. The degree d of K is φ(m)/2, and
the lattices involved have dimension 2d . The upper table are powers-of-two. Experiments
performed on a MacBook Pro (Apple M2), with Sagemath 10.2 and Pari/GP 2.15.5.
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More generally
• module-LIP defined for any number field, any module lattice M ⊂ K ℓ.

Find all ”congruence matrices” U s.t. G′ = U∗GU

• Attack works for any totally real number field K , any module lattice M ⊂ K 2.
• In general, can’t hope for polynomial time complexity. Depends on an invariant of
the module G(M) = ⟨ ||v ||2 | v ∈ M⟩ ”Gram ideal”.

Solving module-LIP for rank-2 modules in totally real number fields.
Parameters : K totally real, M ⊂ K 2, with (pseudo-)basis B and G = B∗B.
Input : G′ (pseudo-)Gram matrix congruent to G.
∃ heuristic algorithm finding all conguence matrices in expected time(

poly(ρK , log∆K , size(G’))
)r+1

+ Tfactor (NK/Q(G(M)),

where r is the number of distinct prime factors of G(M).
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To sum up

• When K totally real and M has rank 2, module-LIP reduces to norm equations in
number fields.

• Classical problem. We randomize to have easy instances.

• Under some heuristic for the randomization, polynomial time (in many cases)
algorithm solving module-LIP.

Open questions. • For modules with rank ℓ > 2 ?
• Rank 2 over K cyclotomic ?
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Thanks for your attention!

Full article here!
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