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Introduction
Two lattices L1,L2 ⊂ Rn are said to be isomorphic if there exists an isometry (orthogonal

linear transformation) of Rn sending one to the other, i.e., if L2 = O ·L1 = {O ·v | v ∈ L1} for
some O ∈ On(R). The Lattice Isomorphism Problem (LIP) asks, given two isomorphic lattices
represented by bases B1, B2 ∈ GLn(R), to find O ∈ On(R) and a unimodular transformation
U ∈ GLn(Z) such that B′ = OBU . It has recently been used by cryptographers to build
schemes (L. Ducas, W. van Woerden in [12] and L. Ducas, E. W. Postlethwaite, L. N. Pulles,
W. van Woerden in [13]) and it appears to be a good candidate for post-quantum cryptography.
State-of-the-art algorithms solving LIP have running time nO(n) ([16]) and require to solve
the Shortest Vector Problem (SVP) which is a well-known hard lattice problem.

Figure 1: (LIP) Find O ∈ On(R) and U ∈ GLn(Z) such that B′ = OBU.

In this document we first give an overview of LIP, together with the background needed
on lattices and classical algorithms for lattices. In [12], LIP is stated in two equivalent ways,
one in terms of lattices and the other with (positive definite) quadratic forms. This refor-
mulation is helpful as it somehow allows us to forget about the isometry and also because
quadratic forms are easier to deal with. Our goal is to study the problem for module lattices
i.e., lattices which are modules over the ring of integers OK of a number field K. One can
ask if the extra algebraic structure makes LIP easier to solve. The motivation of this work is
Hawk, the signature scheme introduced by L. Ducas, W. van Woerden in [12]. It deals with
free rank two module lattices (L = O2

K) and its security lies on an instance of LIP. To do
so, the second part proposes a reminder on algebraic number theory and it contains the main
results of the theory of modules over Dedekind rings.

The third section contains contributions ; we propose a Lattice Isomorphism Problem for
any OK-modules contained in K l (for some l ≥ 1) (mod-LIP), generalizing the setting of
Hawk. Minkowski embedding allows us to see any module lattice as a lattice (⊂ Rnl), but this
identification obliterates the structure. The problem we define is more natural when handling
module lattices, it is compatible with basic properties of modules over Dedekind rings, such
as the pseudo-base change. As well as for unstructured lattices, a restatement of mod-LIP in
terms of Hermitian forms is possible, but only when seeing the problem in K l

R ; to prove it,
we establish the existence of a Cholesky factorization for definite positive Hermitian matrices
over KR. An important tool when dealing with lattices is Discrete Gaussian Sampling (DGS)
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which permits to sample lattice vectors. We give some details on DGS over module lattices.
This allows us to generate instances for mod-LIP and therefore we can define an average-case
version of the problem. We prove a worst-case to average-case reduction. Finally we explore
an algebraic attack for free rank two modules when K is a totally real number field. Knowing
that q ∈ OK is the sum of two squares in OK , we find all such decompositions. We exhibit
an algorithm solving mod-LIP in this case which runs, on average, in quasi-polynomial time.

Remerciements

Mes remerciements s’adressent à Alice Pellet-Mary (CNRS, Université de Bordeaux) pour
la suggestion de ce sujet, les nombreux conseils et relectures, et pour ce premier pas dans le
monde de la cryptographie. Merci à Razvan Barbulescu (CNRS, Université de Bordeaux) et
Gilles Zémor, Professeur à l’Université de Bordeaux, pour leur lecture de ce travail et leur
présence à la soutenance de ce mémoire. Je remercie également Wessel van Woerden (post-doc,
Université de Bordeaux) pour l’article à l’origine de ce sujet et pour les discussions à l’IMB.
Merci à Alexandre Bailleul, AGPR à l’ENS de Paris-Saclay, pour les discussions sur Erdös-
Kac et d’autres sujets de théorie des nombres. Je remercie Hugo Beguinet et Gaspard Billaud
(Thalès) pour cette journée à l’IMB. Merci Barbara, Benjamin, Maximilien et Mohamedenne
pour les échanges et le soutien tout au long de ce stage.

Representation of the objects
All along this paper we deal with operations on algebraic objects. This paragraph enlightens
on how these elements should be represented in a computer.

• A number field K is (isomorphic to) a quotient Q[X]/(P ) where P ∈ Q[X] is irreducible
an monic. It has a basis {1, X, . . . ,Xdeg(P−1)} and elements of K are represented by their
coordinates in this Q-basis. Basic operations in K require doing Euclidean division in Q[X]
and the running time depends on the size of the coefficients of P .

• The ring of integer OK and more generally any integral ideal a are represented by a Z-
basis : a = ∑

i ξiZ, where ξ ∈ OK . If K is given by an integral basis, then each xi can be
represented by its coordinates in this basis (it is a vector with coefficients in Z) thus a is
represented by a n × n integer matrix, preferably in HNF. A fractional ideal b which is not
integral is represented by an integral ideal a and a denominator d.
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1 Lattice Background and the Lattice Isomorphism Problem
Lattices are well-studied objects combining both algebraic and geometrical aspects, and

having various applications in different fields such as the geometry of numbers. Further in a
remainder on number theory we will give a survey of Minkowski theory and its application
to algebraic number fields. The interest for cryptography is more recent (see for example M.
Ajtai [1]). Most of the cryptographic schemes used today are based on prime factorization and
on the discrete logarithm problem, both of them are solved by Shor’s quantum algorithm [33]
in polynomial time. On the other hand, classical lattice algorithmic problems are supposed
to be hard to solve even with a quantum computer, which makes lattice-based cryptography
a good candidate for post-quantum security.

1.1 Unstructured lattices

Definition. A n-dimensional Z-lattice L is a discrete additive subgroup of Rn. Its rank is
the dimension of the sub-vector space of Rn spanned by L : rank(L) := dim(span(L)). We
will often consider full rank lattices, i.e lattices with rank n.

Definition. A set of k linearly independent vectors {b1, . . . , bk} ⊂ Rn is a basis of a lat-
tice L ⊂ Rn if it satisfies :

L =
{

k∑
i=1

aibi | ∀ i ∈ {1, . . . , k}, ai ∈ Z
}
.

Conversely, given linearly independent vectors {b1, . . . , bk} ⊂ Rn, it forms a basis for the rank
k lattice B · Zk, where B is the n× k matrix whose columns are the bi’s. This lattice is also
denoted L(B).

Theorem 1.1. Any rank k lattice L ⊂ Rn admits a basis. Bases of L have same cardinal k.

Remarks. • A R-basis of span(L) made of vectors of L may not be a basis of L.

• A lattice of rank ≥ 2 has many bases ; for any B,C ∈ Mn×k(R), we have L(B) = L(C) if
and only if there exists U ∈ GLk(Z) such that C = BU . Therefore, the set of all full rank
n-dimensional lattices is in bijection with GLn(R) \ GLn(Z), where GLn(Z) acts by right
multiplication.

From now on, all lattices we consider are supposed to be full rank, unless stated otherwise.

Definition. Given a basis {b1, . . . , bn} ⊂ Rn of a lattice L, we define the determinant (or
volume) of L as the quantity det(L) := | det(b1, . . . , bn)| = |det(B)|. This is well defined i.e.,
it does not depend on the choice of a basis since other bases are of the form BU for some
unimodular matrix U .

Remarks. • The volume of L is also equal to
√

det(BTB). The matrix BTB is the Gram
matrix associated to the basis B.
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• Geometrically, one can see det(L) as the volume of the fundamental parallelepiped P(B) :=
{
∑n
i=1 λibi | (λi)1≤i≤n ∈ [0; 1]n}.

Definition. The minimum distance of a lattice L ⊂ Rn is :

λ1(L) := min
x∈L\{0}

||x|| = min
x,y∈L, x ̸=y

||x− y||,

where || · || denotes the euclidean norm on Rn. This is well defined since a lattice is by
definition, a discrete subgroup. Similarly, we define the successive minima of L :

∀ i ∈ {1, . . . , n}, λi(L) := min
r>0
{dim(span(B(0, r) ∩ L)) ≥ i},

where B(0, r) is the closed ball centered at 0 and of radius r, for the norm || · ||. We have the
inequalities :

λ1 ≤ λ2 ≤ · · · ≤ λn.

Example. For the orthogonal lattice Zn, we have λ1 = λ2 = · · · = λn = 1.

Theorem 1.2 (Minkowski [27]). Let L ⊂ Rn be a lattice. Any convex, centrally symmetric
body S ⊂ Rn of volume Vol(S) > 2n det(L) contains a non zero lattice point.

Corollary 1.1 (Minkowski’s inequality [27]). For any lattice L ⊂ Rn, we have

λ1(L) ≤
√
n det(L)1/n.

Remark. Notice that the quantity λ1(L)/ det(L)1/n is invariant by dilatation or orthogonal
transformation of the lattice. Its square is called the Hermite constant of L. In practice,
the length of a shortest vector is expected to be roughly equal to the right-hand side of the
inequality, which is called the Gaussian heuristic of L.

1.2 Algorithmic problems and tools

In this paragraph we define some of the most famous algorithmic problems based on
lattices, essential for cryptographic purposes. We also present the LLL algorithm, historically
introduced to factorize polynomial over the field of rationnal numbers, it is an important poly-
nomial time running algorithm to compute « reduced » basis of a given lattice. In particular
it solves the approximate shortest vector problem with approximation factor exponential in
the dimension of the lattice.

Some classical problems on lattices. The following are classical algorithmic problems
in lattice based cryptography.

γ-SVP : Given a lattice basis of L and an approximation factor γ ≥ 1, the γ-approximate
Shortest Vector Problem (γ-SVP) is to find a non zero vector x ∈ L such that ||x|| ≤ γ ·λ1(L).

γ-HSVP : Given a lattice basis of L and an approximation factor γ ≥ 1, the γ-approximate
Hermite Shortest Vector Problem (γ-HSVP) is to find a non zero vector x ∈ L such that
||x|| ≤ γ ·

√
n(det(L))1/n.
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γ-CVP : Given a lattice basis of L, an approximation factor γ ≥ 1 and a target vector
t ∈ span(L), the γ-approximate Closest Vector Problem is to find a vector x ∈ L such that
||x− t|| ≤ γ · δ(t,L), where δ(t,L) is the distance of t to L, i.e., the minimum of ||x− t|| where
x runs though all lattice vectors.

BDD : Given a basis of L and a target vector t ∈ span(L) with distance from L at most
λ1(L)/2, the Bounded Distance Decoding Problem is to compute the closest lattice vector to t.

LLL Algorithm. Let L ⊂ Rn be a lattice with basis b = (b1, . . . , bn). Recall that the result
of Gram-Schmidt process applied to b is an orthogonal basis of Rn, denoted b∗ = (b∗

1, . . . , b
∗
n)

(these vectors may not be in L) such that for all i ≥ 1, {b∗
1, . . . , b

∗
i } generate the same sub-

vector space of Rn as {b1, . . . , bi}. Namely, if we define for all 1 ≤ i, j ≤ n, a2
i := ⟨b∗

i , b
∗
i ⟩ and

ui,j := ⟨bi, b∗
j ⟩/a2

j , then b∗
1 := b1 and b∗

i := bi −
∑i−1
j=1 ui,jb

∗
j for all i ≥ 2.

Definition. With the same notations, the basis b is said LLL-reduced if it satisfies :
1) |ui,j | ≤ 1/2 for all 1 ≤ j ≤ i ≤ n. (size condition)
2) a2

i ≥ (3/4− u2
i,i−1)a2

i−1 for all 1 ≤ i ≤ n (Lovász condition)

Proposition 1.1 (Théorème 1 of [3]). With the notations of the definition above, a LLL-
reduced basis b verifies :

1) det(L) ≤ ∏n
i=1 ||bi||2 ≤ 2n−1

2 det(L)
2) ||bj ||2 ≤ 2i−1a2

i , for all 1 ≤ j ≤ i ≤ n
3) ||b1|| ≤ 2n−1

4 det(L)1/n.

4) ||b1|| ≤ 2n−1
2 λ1(L).

Algorithm 1.1 (Lenstra-Lenstra-Lovász, 1982). Given a lattice L ⊂ Rn and (g1, . . . , gm)
a set of generators of L with ||gi|| ≤ B for i ∈ {1, . . . ,m}, the LLL algorithm returns a
LLL-reduced basis (b1, . . . , bn) of L. The complexity of this algorithm is O(m6 ln(B)3).

This algorithm consists in two steps successively repeated. Suppose (b1, . . . , bk−1) satisfies
both conditions (k− 1 ≤ n). A reduction step allows us to construct bk such that |uk,j | ≤ 1/2
for every j ≤ k − 1. If Lovász’s condition is not verified at step k, we swap bk with bk−1,
compute the new Gram-Schmidt vectors and then we come back to step k − 1. For more
details, see [3] or [10].

Corollary 1.2. γ-SVP is solvable in polynomial time for γ = 2n−1
2 .

Hermite Normal Form. From any generating set of a lattice L ⊂ Zm, 1 we can recover
a (unique) basis whose matrix B = (bi,j) is in reduced echelon form on the lines (if p(i)
corresponds to the index column of the first non-zero element on the line i, we have p(i) >
p(i−1) for all i. Also, bi,p(i) > 0 and 0 ≤ bj,p(i) < bi,p(i) for every j > i). We say that a matrix
M ∈Mm,n(Z) is in HNF if there exists an integer r such that the r first columns are equal to
0 and if the n− r other columns form a reduced echelon (on the lines) matrix.

Theorem 1.3 (Existence and uniqueness of the HNF). For G ∈ Mm,n(Z), there exists a
unique matrix B ∈Mm,n(Z) in HNF such that B = GU with U ∈ GLn(Z).

1For cryptographic application, lattices considered are often ⊂ Zm.
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Remarks. • Given a set of generators of a lattice L, represented by a matrix G ∈Mm,n(Z),
the non-zero columns of the HNF of G form a basis of L.

• There is a polynomial time algorithm computing the HNF of G ∈ Mm,n(Z). It is faster
than LLL reduction algorithm but we have no information on the length of the basis vectors
obtained, it is somehow a bad basis.

Cholesky decomposition. Let L ⊂ Rn be a lattice with basis B ∈ GLn(R) and Q := BTB.
It is a positive definite quadratic form which encodes the geometry of L in the sense that for
any lattice vector x ∈ L, there exists y ∈ Zn such that x = By and

||x|| = ||y||Q,

where || · || is the Euclidean norm on Rn and || · ||Q is the norm given by ||z||Q := ||Bz|| =√
zTQz. A question arising is, from a positive definite quadratic form Q, to recover a matrix

B ∈ GLn(R) such that Q = BTB. If B satisfies this relation, then the set of solutions
is precisely {OB}O∈On(R)}. In terms of lattices, this corresponds to a family of isomorphic
lattices (i.e., the same lattice up to a rotation of the space) with same geometry induced
by Q. More generally, to any positive definite Hermitian matrix (i.e., a matrix A ∈ Mn(C)
such that A∗ := A

T = A and x∗Ax > 0 for all x ∈ Cn \ {0}) we can ask for a decomposition
A = B∗B.

Proposition 1.2 (See [36] for details). Let A ∈ Mn(C) be a positive definite Hermitian
matrix. There exists a unique upper-triangular matrix R ∈ GLn(C) with strictly positive real
diagonal coefficients and such that A = R∗R. Moreover, R is efficiently computable.

Proof. First we deal with the existence part. As A is Hermitian, it is a normal matrix
(it commutes with its adjoint matrix) so there exist P,D ∈ GLn(C) with D diagonal such
that A = P ∗DP . Also, D has real strictly positive coefficients (the eigenvalues of A) so it
has a real square root matrix D1/2 obtained by taking positive square roots of each diago-
nal element. Then, A = (PD1/2)∗(PD1/2) and PD1/2 ∈ GLn(C) has a QR decomposition
; there exist Q ∈ Un(C) a unitary matrix (i.e., Q∗Q = Id) and R ∈ GLn(C) an upper-
triangular matrix with strictly positive diagonal coefficients such that PD1/2 = QR. Thus,
A = (QR)∗(QR) = R∗R.
Now for the uniqueness, suppose we have two decompositions R∗R = A = S∗S where R,S
are upper-triangular with strictly positive diagonal. Then, RS−1 = (R∗)−1S∗ and the left-
hand side is an upper-triangular matrix while the right-hand side is lower triangular, thus
RS−1 = D = (R∗)−1S∗ with D a diagonal matrix. Since D satisfies DS = R, its coefficients
are strictly positive. Moreover, (D∗)−1 = (SR−1)−1 = RS−1 = D so D∗D = Id and this
implies D has its coefficients on the unit circle. Since the coefficients must be positive, we
conclude that D = Id thus S = R.
Explicitly, let A = (ai,j)1≤i,j≤n ∈ H>0

n (C) and R = (ri,j)1≤i,j≤n ∈ GLn(C) an upper-
triangular matrix satisfying A = R∗R. For any 1 ≤ i, j ≤ n, we have ai,j = ∑n

k=1 rk,irk,j but R
is upper-triangular so rk,l = 0 whenever k > l thus ai,j = ∑

k<l rk,irk,j = ri,iri,j+
∑i−1
k=1 rk,irk,j .

Knowing the (i−1)-th first rows of L we can compute the i-th row (starting with the diagonal
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element) :

ri,i =

√√√√ai,i − i−1∑
k=1
|rk,i|2 and ri,j = 1

ri,i

(
ai,j −

i−1∑
k=1

rk,irk,j

)
, i+ 1 ≤ j. (1)

The argument under the square root must be positive and we take the positive root. No-
tice that if A has real coefficients (if A is a real symmetric positive definite matrix) then its
Cholesky factor R is a real matrix. □

1.3 The Lattice Isomorphism Problem

We give an overview of the Lattice Isomorphism Problem (LIP) for unstructured lattices.
It will be stated in a lattice version and translated in terms of (positive definite) quadratic
forms. This reformulation allows us to see any lattice L ⊂ Rn as Zn, but with the geometry in-
duced by the quadratic form. Also, moving to quadratic forms is convenient for cryptographic
purposes. Indeed, starting from a quadratic form Q, the Discrete Gaussian Sampling (DGS,
see Section 3.2.1) allows us to sample an equivalent form Q′, the secret key then consists in
the unimodular transformation between Q and Q′ (Algorithm 1 of [12]). This is used to build
cryptographic schemes (see the signature scheme of [12]) and prove, for example, worst-case
to average-case reductions (Lemma 3.9 of [12]).

1.3.1 Equivalent formulations

Definition. Two lattices L, L′ ⊂ Rn are isomorphic if there exists an orthonormal transfor-
mation O ∈ On(R) such that L′ = O · L := {O · v | v ∈ L}.

We have seen that the set of full rank n-dimensional lattices can be interpreted as GLn(R)/
GLn(Z). Let L = L(B), L′ = L′(B′) be two isomorphic lattices represented by bases
B,B′ ∈ GLn(R). By definition, there exists an orthonormal transformation O ∈ On(R) such
that OB is a basis of L′. Then, there exists a unimodular transformation U ∈ GLn(Z) such
that B′ = OBU . The Lattice isomorphism problem is precisely to find O and U i.e., we want
to reconstruct (or even test) equivalence in the double quotient On(R) \GLn(R)/GLn(Z).

Definition (wc-sLIPB). For B ∈ GLn(R) a basis of a lattice L ⊂ Rn, the worst-case search
Lattice Isomorphism Problem with parameter B (wc-sLIPB) is, given any isomorphic lattice
L′ ⊂ Rn with basis B′ ∈ GLn(R), to find an orthonormal transformation O ∈ On(R) and a
unimodular transformation U ∈ GLn(Z) such that B′ = OBU.

Quadratic form setting. Instead of working with bases, one can consider the Gram
matrices associated; the idea is to work in the same double quotient but first considering
On(R) \GLn(R). In fact, the map GLn(R)→ S>0

n (R); B 7→ Q = BTB is surjective and the
preimage of BTB is exactly On(R) · B. Now if B′ = OBU , with the notations above, then
for Q := BTB and Q′ := B′TB′ we have :

Q′ = UTBTOTOBU = UTQU.
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Definition. Two quadratic forms Q, Q′ ∈ S>0
n (R) are equivalent if their exists a unimodular

U ∈ GLn(Z) such that Q′ = UTQU .

Definition (wc-sLIPQ). For a quadratic form Q ∈ S>0
n (R), the worst-case search LIP prob-

lem with parameter Q (wc-sLIPQ) is, given any equivalent quadratic form Q′ ∈ S>0
n (R), to

find a unimodular transformation U ∈ GLn(Z) such that Q′ = UTQU .

Proposition 1.3. Let B ∈ GLn(R) and Q = BTB ∈ S>0
n (R). Then, wc-sLIPB is equivalent

to wc-sLIPQ.

Proof. Suppose we are given an oracle solving wc-LIPQ (with Q = BTB). For any B′ in the
same class as B in On(R)\GLn(R)/GLn(Z), we get U ∈ GLn(Z) using our oracle with Q′ =
B′TB′ and O := B′(BU)−1 ∈ On(R) (check that OTO = (BT )−1(U−1)TB′TB′U−1B−1 = Id)
are such that B′ = OBU . Converlsy, if we have an oracle solving wc-LIPB and a quadratic
form Q′ equivalent to Q, we apply Cholesky decomposition to Q′ and obtain B′ such that
B′TB′ = Q′. Then we call the oracle to get O ∈ On(R) and U ∈ GLn(Z) which verify
B′ = OBU so Q′ = UTQU. □

Finally we define the decision problem associated to LIP. In pratice, this problem is used
to build cryptographic schemes, see for example the Zero Knowledge Proof of Knowledge,
Key Encapsulation Mechanism and Signature schemes in [12].

Definition (wc-∆-LIPQ0,Q1). For two quadratic forms Q0, Q1 ∈ S>0
n the worst-case dis-

tinguishing Lattice Isomorphism Problem (wc-∆-LIPQ0,Q1) with parameters Q0, Q1 is, given
any quadratic form Q ∈ S>0

n equivalent to Qb (for some b in {0, 1}), to find b.

1.3.2 Invariants for ∆-LIP

A general method to help deciding whether Q is equivalent to Q0 or to Q1 is to compute
invariants i.e., quantities related to Q which are constant on the equivalence class [Q]. On
the other side, to make ∆-LIP hard enough, Q0 and Q1 must share « many » invariants.

Arithmetic invariants. We can first discuss the problem of finding whether or not two
quadratic rational forms Q0, Q1 are equivalent over Q (i.e., if there exists P ∈ GLn(Q) such
that Q1 = P TQ0P ). The answer is given by Hasse-Minkowsi theorem which states that this
occurs if and only if the forms have a common list of arithmetic invariants. Namely, their
signature must be the same (in our setting this is always verified, as we consider positive
definite forms) as well as their discriminant. For any prime number p, we associate a p-adic
invariant to Qb = (qbi,j)1≤i,j≤n (b ∈ {0, 1}), called the Cassel-Hasse invariant at p, and defined
with Hilbert symbols : εp(Qb) = ∏

i<j(ai, aj)p where ai = eTi Qei, {ei}i is any orthogonal basis
for Qb and (·, ·)p denotes the Hilbert symbol at p.

Theorem 1.4 (Hasse-Minkowski, [31]). Q0, Q1 are equivalent over Q if and only if they are
over R and Qp for any prime p, if and only if they have same signature, discriminant and
ε(Q0)p = ε(Q1)p for any prime p.

These invariants can be efficiently computed (see [10]). In ∆-LIP we consider integrally
equivalent forms (i.e., with P ∈ GLn(Z)), this condition is more restrictive than equivalence
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over the rationals, and we only have a partial answer given by a list of arithmetic invariants.
Observe that the quantity gcd(Q0) := gcd{q0

i,j}1≤i,j≤n is an invariant, as well as the parity
par(Q0) ∈ {1, 2} defined by gcd{xTQ0x |x ∈ Zn} = par(Q0) · gcd(Q0).
Indeed, any coefficient q1

i,j of Q1 can be written as εTi Q1εj where εi = (δi,k)k so it is an
integral combination of the q0

i,j thus gcd(Q0) | gcd(Q1). Since P is invertible, the argument is
symmetrical and we get gcd(Q0) = gcd(Q1). Writing xTQ0x = ∑

i q
0
i,ix

2
i + 2∑i ̸=j xjq

0
i,jxi, we

see that gcd(Q0) | gcd{xTQ0x |x ∈ Zn} and 2q0
i,j = (εi + εj)TQ0(εi + εj)− εTi Q0εi − εTj Q0εj

so gcd{xTQ0x |x ∈ Zn} | 2 gcd(Q0) thus par(Q0) ∈ {1, 2} is well-defined. The quantities
gcd{xTQ0x |x ∈ Zn} and gcd{xTQ1x |x ∈ Zn} are equal because P is invertible, thus par(Q0)
is an invariant. The following list is a (partial) system of invariants.

ari(Q) = (det(Q), gcd(Q),par(Q), [Q]Q, ([Q]Zp)p).

Each of them are efficiently computable so we must take care that ari(Q0) = ari(Q1) when
instantiating ∆-LIP.

Geometric invariants. Isomorphic lattices have the same successive minima λ1, . . . , λn and
the sets of lattice vectors with same length are in bijection. All these geometric invariants are
caught in the (formal) Theta-series

ΘL(z) :=
∑
l≥0

Nlz
l,

with Nl = |{y ∈ L | yT y = l}| = |{x ∈ Zn |xTQx = l}|, and where B ∈ GLn(Z) is any basis
of L and Q = BTB ∈ S>0

n (Z).

In practice, the Theta-series and all the quantities it involves are hard to compute. It re-
quires enumerating short vectors. Assuming λ(Q0) < λ(Q1) and γ := λ(Q1)/λ(Q0), then
solving ∆-LIP is no harder than γ-SVP, this is the hardness conjecture made in [12].

1.3.3 State-of-the-art for computing isometries

Haviv-Regev algorithm. An algorithm due to Haviv and Regev (see [16]) solves the task
of computing all isometries between two isomorphic lattices (which is harder than solving
search-LIP) with complexity nO(n). This running time is moreover optimal, up to a constant
in the exponent. Indeed, isometries of L = Zn to itself are made of all the permutations of
the canonical basis vectors and sign change which gives 2nn! = nO(n) isometries. However,
the question of finding a more efficient algorithm solving search-LIP is still open.

The principle is a refinement of the « naive » method : enumerate enough short indepen-
dents vectors in both lattices and then compute isometries matching pairs of vectors with same
norm. The first part is related to the Shortest Vector Problem (SVP), which can be solved
in time 2Õ(n). The second part consists in finding an isomorphism between graphs (whose
vertices are the short vectors and the edges are the scalar products between them) preserving
edges, known as Graph Isomorphism Problem (GIP), and has running time 2O((logm)3) ([17])
where m is the number of vertices. In the case where there is a unique shortest vector (up to
sign) i.e., λ1(L) < λ2(L), this gives only two possibilities to define its image by an isometry.
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Then projecting the lattice to the orthogonal space of this vector, we see that the problem
can be solved recursively so the worst-case appears when L has a lot of shortest vectors. This
number, known as kissing number, could be huge (always upper-bounded by 2n+1) but in
general one would expect it to be quite small.

In [16], the authors use a trick to produce all sets of linearly independent short vectors
in L1 and L2, using dual lattices and the isolation lemma (Theorem 4.2 of [16]). Given a
lattice L, its dual is the lattice defined by L∗ := {u ∈ Rn | ∀ v ∈ L, ⟨u, v⟩ ∈ Z}. Consider
the special case where λ1 = λ2 = · · · = λn. The algorithm enumerates sets Ai ⊂ Li of
shortest lattices vectors and Wi ⊂ L∗

i of lattices vectors with norm less than 5n17/2 · λ1(L∗
i )

(i ∈ {1, 2}). The running time of this step is (5n17/2 · n)O(n) = nO(n), using Corollary 2.16 of
[16], and the sets have size |Ai| = 2O(n), |Wi| = nO(n). Each vector w1 ∈W1 uniquely defines
n linearly independent lattice vectors x1, . . . , xn ∈ L1, via the isolation lemma. Similarly for
any w2 ∈W2, we get lattice vectors y1, . . . , yn ∈ L2, and we check if the linear transformation
O mapping xi on yi is orthogonal. The claim is that this method reaches every orthogonal
linear transformation that maps L1 to L2. For the general case, we compute the vector spaces
V1 = span(A1), V2 = span(A2) (they must have the same dimension otherwise the lattices are
not isomorphic) and we apply the previous special case to L1 ∩ V1 and L2 ∩ V2. Then we call
recursively this step to the projected lattices πV ⊥

i
(Li) (orthogonal projection to V ⊥

i ).

Plesken-Souvignier algorithm. Let L ⊂ Rn be a lattice with basis B = (b1, . . . , bn)
and equipped with a positive definite bilinear form Φ (one may think of Φ as the canonical
scalar product on Rn). In [28] is presented a method to compute automorphisms of L i.e.,
linear transformations θ : Rn → Rn such that θ(L) = L and Φ(θ(bi), θ(bj)) = Φ(bi, bj) for ev-
ery 1 ≤ i, j ≤ n. Let F = (fi,j)1≤i,j≤n be the Gram matrix of Φ in the basis B (if Φ = ⟨· , ·⟩E,
F = BTB is the usual Gram matrix associated to B).

We call k-partial automorphism any tuple (v1, . . . , vk) ∈ Lk satisfying Φ(vi, vj) = Φ(bi, bj)
for every 1 ≤ i, j ≤ k. It is clear that any n-partial automorphism defines an automor-
phism of L by θ : bi 7→ vi and conversely the image vectors of B by any automorphism θ
satisfy the inner product conditions. Let S be the finite set of lattice vectors v such that
Φ(v, v) ≤ maxi∈{1,...,n}{fi,i} (think of S as a set of short vectors, it is efficiently enumerable).
Not every k-partial automorphism can be extended to a (k + 1)-automorphism and the idea
is to reject partial automorphism which can’t be extended as soon as possible, using back-
track informations2. This is done using two quantities efficiently computable for any partial
automorphism and invariant by automorphism. Then we compute these data for the trivial
automorphism θ = id with k-partial automorphisms {(b1, . . . , bk)}k and compare for each
non-trivial partial automorphism (v1, . . . , vk). If it coincides, we extend and keep on, if not,
we reject it.

For the first invariant, notice that the number of extensions of a k-partial automorphism
is preserved by the automorphism of L3, so the algorithm first computes the number of ex-
tensions of the trivial k-partial automorphism (b1, . . . , bk). More precisely, the fingerprint

2It is reasonably easy to check if a partial automorphism can be extended.
3For any automorphism θ of L, there are the same number of extensions of (b1, . . . , bk) as (θ(b1), . . . , θ(bk)).
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of B is the upper-triangular matrix f = (fk,i)1≤k,i≤n defined by fk,i = 0 if i < k and
fk,i = |{v ∈ S |Φ(v, v) = fk,k and Φ(v, bj) = fk,j , ∀ j ≤ i − 1}| otherwise. So fk,i counts
the number of extensions of (b1, . . . , bi−1) to a i-partial automorphism (b1, . . . , bi−1, v) with
Φ(v, v) = fk,k and the fingerprint matrix f stores all these numbers. One may reorder the
basis B such that the diagonal elements of the fingerprint matrix are minimal among the
coefficients of their own row ; smaller coefficients lead to fewer possible extensions of partial
automorphisms. This operation can be done while computing the fingerprint matrix : after
computing each k-th row of the fingerprint, test if the entry fk,k is the minimal non-zero entry
in the row. If so, we do nothing. Otherwise, we swap the k-th column of the fingerprint with
any column containing the minimal non-zero entry in the row involved. From this results a
test to know if a k-partial automorphism (v1, . . . , vk) can be extended.

However, the test of the fingerprint alone may not detect early enough dead ends so we use
a second invariant, based on vector sums. Let v = (v1, . . . , vk) be a k-partial automorphism
of L and s = (s1, . . . , sk) ∈ Zk, we define Xs(v) := {v ∈ S |Φ(v, vi) = si, ∀ i ≤ k}. It is a
finite set (as S is finite) and the vector sum of v with respect to s is Xs(v) := ∑

v∈Xs(v) v ∈ L.
Then, one can check that for any automorphism θ of L, we have equality θ(Xs(b1, . . . , bk)) =
Xs(θ(b1), . . . , θ(bk)). Thus, it provides a second test for a partial automorphism to be ex-
tended. This step requires the computation of vector sums for (b1, . . . , bk) (1 ≤ k ≤ n).
Plesken-Souvignier algorithm can be adapted to compute (one or all) isometries between two
isomorphic lattices (L1,Φ1) and (L2,Φ2) (e.g., with Φ1 = Φ2 = ⟨· , ·⟩E). Once given an isom-
etry ω : L1 → L2, the set of all isometries is given by {ω ◦ θ | θ is an isometry of L1}. It
needs a lot of precomputation such as the set S of short vectors so the overall method runs
in exponential time. For all details we refer to [28] and [2].
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2 Algebraic Number Theory Background

2.1 Reminder on number fields

In this section we recall some general properties of number fields i.e., finite extensions
of Q (with a special attention to cyclotomic power of 2 extensions, which are the number fields
commonly used in cryptography). Most of the proofs can be found in [30] and [23]. For our
purposes, fundamental results on Dedekind rings are stated only in the special case of ring of
integers. Complex embeddings and Minkowski embedding play a key role as they allow us to
see rings of integers as lattices (and more generally any projective module of finite type over
a ring of integers, see the next section). Let K be a number field of degree n over Q, and
L/K a finite extension of degree m.

2.1.1 Integral extensions

Recall that the ring of integers of K is the set of elements of K which are annihilated by
a monic polynomial with coefficients in Z, it is a Dedekind ring denoted OK . The inclusion
OK ⊂ OL is an extension of Dedekind rings and the integral closure of OK in L is precisely OL.
Proposition 2.1 (Théorème 1 and Corollaire, §2.7 of [30]). OL is a sub-OK-module of a free
rank m module over OK . Moreover, if OK is a PID, then OL is free of rank m over OK .
Definition. A consequence of this proposition is that OK is a free Z-module of rank n. A
basis of K/Q made of elements of OK is called an integral basis of K/Q.

Example. For a power-of-two cyclotomic extension, namely L = Q[X]/(Xn + 1) with n
a power of two,4 its ring of integers is OL = Z[X]/(Xn + 1) (this is a general result for cyclo-
tomic fields, see Theorem 4, IV, §1 of [20]) so {1, ζ, . . . , ζn−1} is an integral basis of L/Q. The
subfield K = Q[ζ + ζ−1] is such that L/K is quadratic. It is called the maximal real subfield
of L. For our purposes, we will use the fact that OK = Z[ζ + ζ−1] (this comes from a general
result on integral bases of the maximal real subfield of a cyclotomic field, see [22] or [38] for
a proof).

Remark. In general OK is not a PID and OL is not free over OK . However, by Propo-
sition 2.1, it is a finite OK-module. In Section 2.2.1, we will see that OL is « almost » free
over OK , in the sense that there always exists a pseudo-basis.
Theorem 2.1. Every ideal {0} ≠ a ⊂ OK can be uniquely written (up to permutation of the
factors) as a product

a =
r∏
i=1

pαii ,

where the pi’s are pairwise distinct maximal ideals of OK (these are exactly the maximal ideals
containing a) and αi ≥ 1.
Definition. With the notations of the theorem above, for any 1 ≤ i ≤ r, pi ∩ Z is a prime
ideal of Z so it is equal to piZ for some prime integer pi. Thus, Z/pZ ↪→ OK/p is a finite
extension of fields, whose degree is called the residual degree at pi and is denoted fi.

4If n is a power of two, Xn + 1 is the 2n-th cyclotomic polynomial. In particular it is irreducible over Q
and has degree n.
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Proposition 2.2 (Lemme 3.1.32 and Corollaire 3.1.33 of [23]).
1) Let a ⊂ OK be a non trivial ideal. Then, any ideal of OK/a is principal.
2) Every ideal of OK is generated by at most two elements.

Fractional ideals. A fractional ideal a of K is a sub-OK-module of K such that there exists
d ∈ OK satisfying da ⊂ OK . Equivalently, a is a fractional ideal of K if and only if there
exists α ∈ K and I ⊂ OK an ideal such that a = αI. We denote by I(OK) the set of fractional
ideal of K. Endowed with the multiplication of ideals, it is a commutative monoid. For any
fractional ideal a of K we define

a−1 := {x ∈ K |xa ⊂ OK}.

It is a fractional ideal of K and we have aa−1 ⊂ OK .

Proposition 2.3. I(OK) is a commutative group and the inverse of a ∈ I(OK) is a−1. Every
fractional ideal a ̸= {0} of K can be uniquely written (up to permutation of the factors) as a
product

a =
r∏
i=1

pαii ,

where the pi’s are pairwise distinct maximal ideals of OK and αi ∈ Z \ {0}.

Proof. See Lemme 3.1.15 and Corollaire 3.1.18 in [23]. □

Definition. With the notations of the proposition above and for any prime ideal p of OK ,
the p-adic valuation of a, denoted vp(a), is the integer αi ∈ Z if p ∈ {p1, . . . , pr} and equal to
0 otherwise.

2.1.2 Embeddings and norms

Embeddings. Any number field K is isomorphic to Q(θ) for some θ ∈ C, this is the primi-
tive element theorem. In particular if K has degree n, it comes naturally with n embeddings
K → C corresponding to the conjugates of θ. Any embedding σ : K → C such that σ(K) ⊂ R
(resp. σ(K) ̸⊂ R) is called a real embedding (resp. a complex embedding). Any complex
embedding σ comes with another distinct embedding σ. We denote by n1 the number of real
embeddings and n2 the number of complex embeddings up to complex conjugation, so that
n = n1 +2n2. The pair (n1, n2) is called the signature of K. For any pair of conjugate complex
embeddings we fix arbitrarly one of them. Embeddings are numbered as follow : σ1, . . . , σn1

are the real embeddings and σn1+1, . . . , σn1+n2 , σn1+1, . . . , σn1+n2 are the complex embeddings.

Example. Let ζ ∈ C be a primitive n-th root of unity (n ≥ 3), then the cyclotomic field
K = Q(ζ) has degree φ(n) and signature (0, φ(n)/2). The sub-extension K ′ = Q(ζ + ζ−1)
has degree φ(n)/2 and signature (φ(n)/2, 0).

Trace, norm and discriminant Let x ∈ L and [x] the map L → L corresponding to
the multiplication by x. It is a K-linear morphism of L.

Definition. The trace (resp. the norm) of x overK is TrL/K(x) := Tr([x]) (resp. NL/K(x) :=
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det([x])). This is well defined i.e., the definition does not depend on a K-basis of L (by general
properties of the trace and determinant) but just on the extension L/K.

Remark. The norm over Q is called the algebraic norm. When an extension of number
fields L/K is fixed, we refer to NL/K as the relative norm.

Lemma 2.1. TrL/K : L→ K is K-linear, NL/K : L→ K is multiplicative and NL/K(ax) =
amNL/K(x) for any a ∈ K. Also, if L/F/K is a tower of number fields, then

TrL/K = TrF/K ◦ TrL/F and NL/K = NF/K ◦NL/F .

Proof. The non-trivial result is the last formula for the norms, see [7], III, §9, n°4, Prop 6. □

Lemma 2.2 (Théorème 2.2.17 of [23]). For any x ∈ L,

TrL/K(x) =
∑

σ∈IsomK(L,Q)

σ(x) and NL/K(x) =
∏

σ∈IsomK(L,Q)

σ(x),

where the sum and product are taken over the embeddings σ of L fixing K pointwise.

Remarks. • Suppose L/K is Galois and F/K is a sub-extension, then the restriction map
Gal(L/K) → IsomK(F,K) is surjective and each τ ∈ IsomK(F,K) has [L : F ] pre-images.
The lemma can be first proved when L/K is Galois, see [23].

• For K = Q, the sum and product are indexed over all the embeddings of L.

Proposition 2.4 (Propositions 2.2.9, 2.2.14 and 5.1.2 of [23]). Let x ∈ L and mx,K(X) ∈
K[X] its minimal polynomial over K. Then, x ∈ OL if and only if mx,K(X) ∈ OK [X]. In par-
ticular if x ∈ OL, then TrL/K(x) = [L : K(x)]TrK(x)/K(x) and NL/K(x) = NK(x)/K(x)[L:K(x)]

are elements of OK . Also, if x ∈ OL then x is invertible if and only if NL/Q(x) = ±1.

Proof. If x ∈ OL, all its conjugates are also in OL so by Viète formulae (and because mx(X)
is monic), the coefficients of mx(X) are in OK . The converse is clear.
Since TrK[x]/K(x) and NK[x]/K(x) are, up to the sign, coefficients of mx(X), this gives the
second part of the proposition. If x ∈ OL is invertible with inverse y, then 1 = NL/Q(xy) =
NL/Q(x)NL/Q(y) is a product in Z, so NL/Q(x) = ±1. Conversely if x ∈ OL has norm ±1,
then evaluating mx,Q(X) in x gives a relation x(xm−1 + am−1x

m−2 + · · · + a1) = −a0 =
±NK/Q(x) = ±1, so x is invertible in OL. □

Definition. Let ε = (ε1, . . . , εn) be an integral basis ofK, the number det(TrK/Q(εiεj)1≤i,j≤n) ∈
Z is independant of the choice of the basis ε. It is called the discriminant of K and is denoted
∆K .

Proposition 2.5. For any integral basis ε = (ε1, . . . , εn) of K, we have

∆K = det(σi(εj)1≤i,j≤n)2.

In particular, ∆K ̸= 0.
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Proof. See [30], §2.7, Proposition 3. □

Algebraic norm of an ideal.

Lemma 2.3 (and definition). Let a ⊂ OK be a non trivial ideal, then the quotient ring OK/a
is finite. The absolute norm of I is defined by NK/Q(a) := |OK/a|.

Proof. Let b ∈ a\{0}. Its minimal polynomial over Q has coefficients in Z, say mb(X) = Xm+
am−1X

m+· · ·+a1X+a0 with ai ∈ Z and a0 ̸= 0. Then, a0 = −(bm+am−1b
m+· · ·+a1b) ∈ a so

the ideal a0OK is contained in the kernel of the canonical projection OK → OK/a. It induces
a surjective morphism OK/a0OK → OK/a. By proposition 2.1, there is an isomorphism
OK ≃ Zn thus the composition

Zn/a0Zn ≃ OK/a0OK → OK/a

is surjective. The left term is finite (it has an0 elements) so OK/a must be finite. □

Lemma 2.4. Let p ⊂ OK be a non trivial prime ideal of OK and p the prime integer such
that p ∩ Z = pZ. Then, for any positive integer r,

NK/Q(pr) = prfp ,

where fp = [OK/p : Z/pZ] is the degree of the residual extension.

Proof. We proceed by induction on r. The case r = 1 is trivial and if r ≥ 2, then the canonical
surjection OK/pr → OK/pr−1 has kernel pr/pr−1 ≃ OK/p which cardinal is pfp . □

Proposition 2.6. 1) Let a ⊂ OK be a non-trivial ideal and a = ∏r
i=1 p

ei
i its prime decompo-

sition. Denote by pi the prime integer such that pi ∩Z = piZ and fi the degree of the residual
extension at pi. Then,

NK/Q(a) =
r∏
i=1

peifii .

2) (The absolute norm is multiplicative) Let a, b ⊂ OK be two non trivial ideal. Then,

NK/Q(ab) = NK/Q(a)NK/Q(b).

Proof. 1) The pi’s are pairwise distinct so the Chinese remainder theorem gives OK/a ≃∏r
i=1OK/p

ei
i . Taking the cardinal and applying the previous lemma, we obtain the result.

2) Decompose a, b in product of prime ideals and apply 1). □

Relative norm of an ideal. Recall that fractional ideals of K form a group I(OK). There
is a notion of relative norm for ideals which generalizes the algebraic norm. As stated by Serre
in [32], we consider the map NL/K : I(OL)→ I(OK) defined for prime ideals q ⊂ OL by

NL/K(q) = pfq ,

where p = q∩OK and fq := [OL/q : OK/p]. It is then extended by multiplicativity to I(OL).
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Proposition 2.7 (« Compléments sans démonstrations » [30]). Let L/F/K be a tower of
number fields.
1) NL/K : I(OL)→ I(OK) is multiplicative.
2) Let a ∈ I(OL), then NL/K(a) is the (fractional) ideal of OK generated by {NL/K(x) |x ∈ a}.
3) For any x ∈ L, NL/K(xOL) = NL/K(x)OK .
4) Let a ⊂ OK , then NL/K(aOL) = a[L:K].
5) If K = Q and a ⊂ OK is non trivial, NK/Q(a) is the ideal of Z generated by |OK/a|.
6) For any (fractional) ideal a of OL, NL/K(a) = NF/K(NL/F (a)).

Remark. For a proof of this proposition, we refer to [34] where the notion of module index
is discussed. Our relative norm for ideals in number fields is just a special case of module
index. Namely, if A is a Dedekind ring with fraction field K, suppose we have two finitely
generated A-modules M, N which span the same K-vector space V and p is any prime ideal
of A, then Mp and Np are isomorphic Ap-modules (which is a PID). It extends to a unique
K-automorphism φ of V . Module indices are fractional ideals defined by

(Mp : Np)Ap := (detφ)A and (M : N)A :=
⋂
p

(Mp : Np)Ap .

For example if A = Z and N ⊂ M , then (M : N)Z is the usual index (M : N) = |M/N |.
We recover a relative norm for ideals in number fields L/K by considering the morphism
I(OL)→ I(OK) ; a 7→ (OL : a)OK

(this is well defined even if a is not integral).

2.2 Minkowski theory

Combining the n embeddings of K there is a natural embedding from K to Cn called
Minkowski embedding (or canonical embedding) of K. It will allow us to see any (finitely
generated and torsion-free) module over OK as a lattice.

Definition. The following map is called the Minkoswki embedding of K.

µ :K −→ Cn

x 7−→ (σ1(x), . . . , σn(x)).

2.2.1 The Minkowski space KR.

The real vector-space generated by the image of K via Minkowski embedding is called the
Minkowski space and it is denoted KR.

KR :=
{
z = (zi)i ∈ Cn | z1, . . . , zn1 ∈ R, zn1+i = zn1+n2+i, (1 ≤ i ≤ n2)

}
.

It is a ring containing µ(K), endowed with component-wise multiplication, but not an integral
domain. Depending on the context, elements of K will be identified with their images in KR.
Also, KR is naturally isomorphic to Rn thanks to the map

f : KR −→ Rn

z = (zi)i 7−→ (xi)i
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defined by (xi)i = (z1, . . . , zn1 ,
√

2ℜ(zn1+1),
√

2ℑ(zn1+1), . . . ,
√

2ℜ(zn1+n2),
√

2ℑ(zn1+n2)).
There is a scalar product ⟨· , ·⟩KR : KR×KR → R on KR induced by the canonical Hermitian
form on Cn for which f : (KR, ⟨· , ·⟩KR) → (Rn, ⟨· , ·⟩E) is an isometry (where ⟨· , ·⟩E is the
Euclidean scalar product on Rn). To any z = (zi)i ∈ KR we associate its complex conjugate
z̄ by taking complex conjugates component-wise. The trace map on KR is the R-linear map :

Tr : KR −→ R
z = (zi)i 7−→ z1 + · · ·+ zn

Finally, remark that the composition Tr ◦ µ on K is the usual trace TrK/Q.

Lemma 2.5. For any x, y ∈ KR, we have

⟨f(x), f(y)⟩E = Tr(xy) = Tr(xy).

Proof. Observe that for any s, t ∈ C, st+ st = 2(ℜ(s)ℜ(t) + ℑ(s)ℑ(t)).
Let x = (xi)i, y = (yi)i ∈ KR. By definition of f ,

⟨f(x), f(y)⟩E =
n1∑
i=1

xiyi +
n1+n2∑
i=n1+1

2(ℜ(xi)ℜ(yi) + ℑ(xi)ℑ(yi))

=
n1∑
i=1

xiyi +
n1+n2∑
i=n1+1

xiyi + xiyi

= Tr(xy).

The second equality follows from the symmetry of ⟨· , · ⟩E . □

An element z = (zi)i ∈ KR is invertible if and only if zi ̸= 0 for all 1 ≤ i ≤ n. Invertible
elements form a multiplicative group K×

R . K+
R is defined as the subset of KR which elements

have real positive coordinates. In particular for any x ∈ KR, we have xx̄ ∈ K+
R . There is a

square root map
√
· : K+

R → K+
R defined coordinate-wise.

Lemma 2.6 (Proposition 1, §4.2 of [30], adapted). Let M be a free rank n sub-Z-lattice of
K with a Z-basis (xi)1≤i≤n. Then, µ(M) is a full-rank lattice of Cn ≃ R2n with volume :

det(µ(M)) = |det(σi(xj))1≤i,j≤n|.

Proof. The volume we want to compute is given by |detM |, where M is the matrix whose
i-th column are the coordinates of µ(xi) in the canonical basis of Cn. For any 1 ≤ i ≤ n,
these coordinates are σ1(xi), . . . , σn(xi). Since the x′

is form a Q-basis of K, this determinant
is non zero thus µ(M) is a full-rank lattice of Cn and has the volume announced. □

Proposition 2.8 (Proposition 2, §4.2 of [30], adapted). Let a ⊂ OK be a non-zero ideal, then
µ(OK) and µ(a) are lattices of Rn with volume

det(µ(OK)) =
√
|∆K | ; det(µ(a)) =

√
|∆K |NK/Q(a).
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Proof. OK and a are both free Z-modules of rank n so we can apply the previous lemma.
By definition of the discriminant we get the first equality. For the second, remark that µ(a)
has index NK/Q(a) in µ(OK) so a fundamental domain for µ(a) is given by a disjoint union
of NK/Q(a) fundamental domains of µ(OK). □

2.2.2 Application to number fields.

Embeddings play a key role ; they relate algebraic properties of number fields to geometric
properties of lattices. We recall two important results using this correspondence, namely the
finiteness of the class group and Dirichlet’s unit theorem.

Definition. Fractional ideal of K form a group I(OK) and the set of principal fractional
ideals F (OK) is a subgroup. The quotient group Cl(K) := I(OK)/F (OK) is called the class
group of OK (or K). Its cardinal is called the class number of K and is denoted hK . The
class group is trivial if and only if OK is a PID.

Theorem 2.2 (Finiteness of the class group, Corollaire 1, §4.3 of [30]). Cl(OK) is a finite
group and every class has a representative a with norm

NK/Q(a) ≤ CK
√
|∆K |,

where CK =
( 4
π

)n2 n!
nn

is the Minkowski constant of K.

Corollary 2.1. Cl(OK) is generated by prime ideals p above prime numbers p ≤ CK
√
|∆K |.

Theorem 2.3 (Dirichlet, Théorème 1, §4.4 of [30]). The Log-embedding of K is defined by

Log : K −→ Rn1+n2 ; x 7−→ (ln(|σ1(x)|), . . . , ln(|σn1(x)|), 2 ln(|σn1+1(x)|), . . . , 2 ln(|σn1+n2(x)|)).

We have an isomorphism of groups

O×
K ≃ UK × Zn1+n2−1,

where UK is the set of roots of unity of K, it is a finite cyclic group. The image of O×
K by

the Log-embedding is a lattice of Rn1+n2 with rank r := n1 + n2 − 1. The kernel of Log|O×
K

is
exactly UK .

Remarks. • The theorem implies the existence of units u1, . . . , ur such that every u ∈ O×
K

can be uniquely written u = zua1
1 . . . uarr , with ai ∈ Z and z a root of unity in K. Such a set

{ui}1≤i≤r is called a system of fundamental units of OK .

• By definition of the norm, any u ∈ O×
K satisfies ∏1≤i≤n σi(u) = 1 so its image by the Log

map lies in the hyperplane H := {(x1, . . . , xr+1) ∈ Rr+1 |
∑

1≤i≤r+1 xi = 0}. Therefore for any
system of fundamental units {u1, . . . , ur}, the r × (r+1) matrix (Nj ln(|σj(ui)|))1≤i≤r, 1≤j≤r+1
(with Nj = 1 if j ≤ n1 and Nj = 2 otherwise) has the property that the sum of any row is
equal zero. Thus, the absolute value of the determinant of the submatrix formed by deleting
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one column is independent of the column ; this number is called the regulator of K and de-
noted Reg(K). The Log-unit lattice has volume Reg(K)

√
r.

• Let ζ ∈ K be a generator of UK and d ∈ N>0 its order. That means ζ is a primitive
d-th root of unity so its minimal polynomial over Q is Φd(X) and has degree φ(d). Since the
conjugates of ζ are powers of ζ, we have Q(ζ) ⊂ K and φ(d) = [Q(ζ) : Q] ≤ [K : Q] = n.
Using classical inequality

√
d ≤ φ(d) (for d > 6) we get (|UK | =) d ≤ n2.

The notions introduced in this paragraph are linked together by to the following formula.

Theorem 2.4 (Analytic class number formula). Let K be a number field with signature
(n1, n2) then,

Res1(ζK) = 2n1 · (2π)n2 · hK · Reg(K)
ωK ·

√
|∆K |

, (2)

where ωK is the number of roots of unity in K and Res1(ζK) = lims→1(s − 1)ζK(s) is the
residue of the Dedekind zeta function of K at 1, defined by ζK(s) = ∑

a⊂OK

1
NK/Q(a)s .

Cyclotomic units. Let ζ ∈ C be a n-th primitive root of unity and L = Q(ζ), with n a
power of a prime p. There is a subgroup of O×

L called the cyclotomic units subgroup with
explicit generators and finite index in O×

L .

Definition. For 1 < a < n and (a, p) = 1, the elements ba := ζa−1
ζ−1 belong to O×

L and
the group C generated by −1, ζ and the (ba)a is called the subgroup of cyclotomic units.

Indeed for such 1 < a < n, we have ba = 1 + ζ + · · · + ζa−1 ∈ OL and since a is co-
prime to p, ζa is also a primitive n-th root of unity so one can write ζ = (ζa)m for some
integer m and then (ζ − 1)/(ζa − 1) = 1 + ζa + · · ·+ (ζa)m−1 ∈ OL. Then, ba is a unit.

Theorem 2.5 (Lemma 8.1 and Theorem 8.2 of [37]). Let K := Q(ζ + ζ−1) be the maximal
real subfield of L. Then the cyclotomic units C have finite index in O×

L and,

hK = [O×
L : C].

Conjecture (Weber’s class number problem). For power-of-two cyclotomic fields, the class
number of the maximal real subfield is hK = 1.

2.3 Ramification of number fields

Let p denotes a prime ideal of OK and pOL be the ideal of OL generated by p. As OL is a
Dedekind ring, the latter can be uniquely written

pOL =
s∏
i=1

qeii , (3)

where the qi are distinct prime ideals of OL and ei ≥ 1 is called the ramification index of qi
over OK . For every 1 ≤ i ≤ s, we have qi ∩ OK = p so this defines an extension of fields
OK/p ↪→ OL/qi, whose degree is called the residual degree of qi over OK and is denoted
fi ≥ 1. These quantities satisfy the fundamental following formula.
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Theorem 2.6 (Théorème 1, §5.2 and Proposition 1, §6.2 of [30]). With the notations intro-
duced above, we have the relation

s∑
i=1

eifi = m = [L : K].

Moreover, in the case where L/K is Galois, we have ei = ej and fi = fj for all 1 ≤ i, j ≤ s.

For any prime qi in the formula (3), we say that the extension OK ⊂ OL is unramified at qi
if ei = 1, otherwise it is said ramified. Also, if the extension is unramified at all the qi’s, we
say that OK ⊂ OL is unramified above p. Consider the special case where L/K is quadratic ;
the ideal pOL can be either a prime ideal of OL (we say p is inert), either the product of two
distinct prime ideals (we say p splits) or it can be the square of a prime ideal (this is the case
where p ramifies).
The following proposition tells us which prime ideals p ⊂ OK ramify in OL.

Definition. The ideal discriminant of L over K is the ideal of OK generated by the ele-
ments DL/K(ε) := disc(TrL/K , ε) where TrL/K : L× L→ K is the K-bilinear form (x, y) 7→
TrL/K(xy) and ε = {x1, . . . , xn} ⊂ OL ranges over the K-basis of L contained in OK . This
ideal is denoted DL/K .

Proposition 2.9 (Théorème 1, §5.3 of [30]). A prime ideal p ⊂ OK ramifies in OL if and only
if it contains DL/K . In particular, the set of prime ideals of OK which ramify OL is finite.

Example. In the case where K = Q, the notion of ideal discriminant coincide with the usual
discriminant. If ζ ∈ C is a primitive n-th root of unity with n = 2r and L = Q(ζ), then the
discriminant can be computed : DL/Q = ±22r−1(2r−r−1) (see Theorem 3, IV, §1 of [20]) so the
only prime number which ramifies in OL = Z[ζ] is 2.

2.3.1 Dedekind-Kummer theorem

We end this reminder by a very useful result for computing the splitting in equation (3).

Theorem 2.7 (Dedekind-Kummer, Proposition 25, I, §8 of [20]). Suppose OL = OK [θ] and
let m(X) ∈ OK [X] be the minimal polynomial of θ over K. Fix a prime ideal p ⊂ OK and
put k(p) = OK/p the residue field. Let m(X) ∈ k(p)[X] be the reduction m(X) mod p, and let

m(X) = h1(X)r1 . . . hs(X)rs

be the factorization of m(X) into powers of monic irreducible factors over k(p). For each
1 ≤ i ≤ s, let Hi ∈ OK [X] be a monic lift of hi and put qi := pOL +Hi(θ)OL. Then, the qi’s
are pairwise distinct maximal ideals of OL containing p, we have ri = ei and degHi(X) = fi
for all 1 ≤ i ≤ s, and the following formula holds

pOL =
s∏
i=1

qeii .

It is the splitting of p in OL.
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Example. Suppose K = Q and L = Q(ζ) is a power-of-two cyclotomic field. The only prime
integer which ramifies in OL is 2, and the reduction of the minimal polynomial mod 2 is just
Xn + 1̄ = (X + 1̄)n, so in virtue of Dedekind-Kummer’s theorem (2.7) we have the splitting
2OL = qn, where q = (2, 1 + ζ).

Remark. • Suppose L = K(θ), the conductor of OK [θ] in OL is the biggest ideal c of
OL contained in OK [θ], namely

c = {α ∈ OL |αOL ⊂ OK [θ]}.

Then, the hypothesis « OL = OK [θ] » in theorem 2.7 can be replaced by « pOK [θ] is coprime
to the conductor of OK [θ] in OL ». See Proposition 6.16 of [34] or Proposition 8.3 Chapter I
of [25] for a proof.

• Further, we will discuss the efficiency of this theorem. See Lemma 3.7.

2.4 Lattices over a Dedekind domain

With Minkowski embedding we are able to identify the ring of integers OK of a number
field K with a lattice of Rn. More generally any projective module of finite type over OK
included in Kn embeds into a real vector space (e.g., any ideal of OK). In this section we
give results on the structure of torsion-free modules of finite type over a Dedekind ring (such
modules are projective, see Theorem 2.1.19 of [11]). Notice that a Dedekind ring is not a PID
in general so the well-known structure of modules over a PID does not apply. However we
have similar results ; there is a notion of pseudo-basis and an invariant factors theorem. Also,
we will focus on the extension of the HNF algorithm given by Cohen in [11] to this context.

2.4.1 Structure theorems

In the following we fix a Dedekind domain O with fraction field K, V a n-dimensional
vector space over K and M ⊂ V a finitely generated torsion-free module over O. The sub-
space of V spanned by M is denoted KM := K ⊗RM .

Definition. What we call a module over O is a finitely generated torsion-free (hence projec-
tive) O-module N ⊂ V such that KN = V.

From now on, M denotes a O-module. The main result of this section is the following, we
follow the proof given in [11], Chapter 1.

Theorem 2.8 (Theorem 1.2.19 of [11]). There exists an ideal a of O such that

M ≃ On−1 ⊕ a. (4)

Moreover if n,m ∈ N>0 and a, b are fractional ideal5 of O, then we have On−1⊕a ≃ Om−1⊕b
if and only if n = m and a, b are in the same ideal class (i.e., there exists α ∈ K \ {0} such
that a = αb). Therefore, M is fully determined by its rank and the class Cl(M) := Cl(a),

5A fractional ideal a of O is a sub-O-module of K such that there exists d ∈ R satisfying da ⊂ O.
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called the Steinitz class of M .

When (4) is an equality, this is called an almost free (or Steinitz) representation of M .

Lemma 2.7 (Lemma 1.2.20 of [11]). Let a, b be two fractional ideals of O. Then,

a⊕ b ≃ O ⊕ ab.

Proof. For any α ∈ K \ {0}, αa is isomorphic to a, so we can suppose that a, b are integral.
Let a′ ∼ a−1 be an integral ideal and p1, . . . , pn the list of primes ideals dividing b. By the
Chinese remainder theorem, there exists an element r ∈ a such that vpi(r) = vpi(a′) for all
i ∈ {1, . . . , n}6. The ideal rO is contained in a so by Theorem 2.1, there exists an integral
ideal c such that rO = a′c and by construction vpi(c) = vpi(r)− vpi(a′) = 0 so c is coprime to
b. Also, a′c is principal so c ∼ a′−1 ∼ a. Therefore, without loss of generality, we can suppose
a, b are integral and coprime.
Thus, the linear map f : a ⊕ b → O = a + b given by (a, b) 7→ a − b is surjective and has
kernel {(a, a) | a ∈ a ∩ b} ≃ a ∩ b = ab since a and b are coprime. It remains to prove that
a⊕ b ≃ O⊕ ker f . As O is trivially a projective O-module, the identity map of O extends to
a linear map g : a + b→ O such that

a⊕ b
f // O // 0

A

g

bb

idO

OO

is a commutative diagram i.e., we get a section g of f . Then, for any x ∈ a ⊕ b, the ele-
ment y = x − g(f(x)) satisfies f(y) = 0 so a ⊕ b ⊂ g(O) + ker f and the inverse inclusion is
clear. Now if y ∈ g(O) ∩ ker f, we can write y = g(x) hence 0 = f(y) = f(g(x)) = x and
y = g(0) = 0, so g(O)∩ker f = {0}. Finally, the relation f ◦g = idO implies that g is injective
so g(O) ≃ O and a⊕ b = g(R)⊕ ker f ≃ O ⊕ ab. □

Lemma 2.8 (Lemma 1.2.22 of [11]). Let e be a non-zero vector of V = KM and

a := {λ ∈ K |λe ∈M}.

1) a is a fractional ideal of O
2) M/ae is a torsion-free O-module of rank n− 1.

Proof. 1) a is a non-zero O-module and a ≃ ea ⊂M is a sub-module. Since O is Noetherian
and M is finitely generated, we deduce that a is a finitely generated O-module. Let d be a
common denominator of the generators of a, then da ⊂ O i.e., a is a fractional ideal of O.
2) Let x ∈ M/ae be a torsion element ; there exists r ∈ O \ {0} such that rx ∈ Ie ⊂ Ke.
Then, x ∈M ∩Ke so one can write x = λe ∈M and λ ∈ K is by definition an element of a.

6More precisely, let ai := p1 . . . pi−1pi+1pn (i ∈ {1, . . . , n}), then aia
′ ∩pia

′ ⊊ aia
′ (because vpi (aia′ ∩pia

′) =
vpi (pia′) > vpi (a′) = vpi (aia′)) so we can take ri ∈ aia

′ such that ri /∈ pia
′. This means we get ri ∈ a′ with

pi-valuation vpi (a′) (i ∈ {1, . . . , n}). Then r := r1 + · · · + rn ∈ a′ satisfies vpi (r) = vpi (ri) = vpi (a′) for all
i ∈ {1, . . . , n}.
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This means x ∈ ae so x = 0.
Recall that the rank of M/ae is the dimension of K(M/ae) as a K-vector space. But
K(M/ae) = (KM)/(Ke) and Ke has dimension 1 so M/ae has rank n− 1. □

Proof. (of Theorem 2.8). If M has rank 0, then M = {0} since it is torsion-free. Now suppose
n > 0 and the result is proved up to rank n− 1. Let M be a module of rank n and e ∈M a
non-zero element. By the lemma above, M/ae is torsion-free of rank n− 1 so by assumption
there exists an ideal b ⊂ O such that M/Ie ≃ On−2 ⊕ b (take b = {0} if n = 1). The
canonical projection f : M → M/ae has a section g (same argument 2.7 and because M/ae
is a projective O-module) so we get M ≃ g(M/ae)⊕ Ie ≃M/ae⊕ ae (because g is injective).
Then,

M ≃ On−2 ⊕ b⊕ ae

≃ On−2 ⊕ b⊕ a

≃ On−1 ⊕ ab, by Lemma 2.7.

This completes the induction and finishes the first part of the proof. For the « unicity » part,
first observe that if a is principal, then On−1 ⊗ a is a free O-module. The converse is true,
this is Theorem 1.2.23 of [11] and we omit the proof. Now let n,m ∈ N>0 and a, b fractional
ideals such that Rn−1 ⊕ a ≃ Rm−1 ⊕ b. Since a, b have rank 1, we must have n = m. Also,

On−1 ⊕ a ≃ On−1 ⊕ b

⇒ On−1 ⊕ a⊕ a−1 ≃ On−1 ⊕ b⊕ a−1

⇒ On+1 ≃ On ⊕ ba−1, using Lemma 2.7 on both sides.

Thus, by Theorem 1.2.23 of [11] we find out ba−1 is principal i.e., a ∼ b. □

Pseudo-basis. Theorem 2.8 gives a full description of the isomorphism classes of O-modules.
A direct consequence of this result is the existence of pseudo-basis. This notion is the natural
object to represent module-lattices and do computations with them. For algorithmic purposes,
lattices over Dedekind rings will always be assumed to be given by a pseudo-basis.

Theorem 2.9 (Corollary 1.2.25 of [11]). There exist elements b1, . . . , bn ∈ V and fractional
ideals a1, . . . , an of O (called coefficient ideals) such that

M = a1b1 ⊕ · · · ⊕ anbn.

The Steinitz class of M is the class of the product a1 . . . an.

Proof. By Theorem 2.8 there exists a non-zero7 (fractional) ideal a of O such that M ≃
On−1 ⊕ a. Let a ∈ a \ {0}, as a is isomorphic to the fractional ideal 1

aa, we can further
suppose 1 ∈ a. Let f : On−1⊕a→M be the isomorphism and for i ∈ {1, . . . , n}, denote by ei
the element of On−1 ⊕ a with coordinates (0, . . . , 0, 1, 0, . . . , 0) with 1 at the i-th coordinate,
and let bi = f(ei) ∈ M. Since f is an isomorphism, we have M = a1b1 ⊕ · · · ⊕ anbn with
a1 = · · · = an−1 = O and an = a.

7Since M has rank n, a must be non-trivial.

26



Applying Lemma 2.7 several times, we get a1b1⊕· · ·⊕ anbn ≃ On−1⊕ a1 . . . an so the Steinitz
class of M is the class of a1 . . . an. □

Definition. Let (bi)1≤i≤n ∈ V n and (ai)1≤i≤n be a set of fractional ideals of O. We say
that (bi, ai)1≤i≤n is pseudo-basis of M if we have the equality

M = a1b1 ⊕ · · · ⊕ anbn. (5)

Remarks. • By Theorem 2.9, modules over O always have a pseudo-basis.

• Coefficient ideals can be taken integral ; let di ∈ O \ {0} such that diai ⊂ O, then
biai = bi

di
diai. In the same way, we can suppose bi ∈ M and adjust the coefficient ideals.

However it is not possible, in general, to have both conditions. In the following, we fix the
convention that the vectors of a pseudo-basis belong to the module.

• The writing (5) is not unique ; the following proposition gives a condition for two pseudo-
bases to represent the same module.

Proposition 2.10 (Pseudo-base change, Proposition 1.4.2 of [11]).
Let (bi, ai)1≤i≤n and (b′

i, bi)1≤i≤n be two pseudo-bases for M and U = (ui,j)1≤i,j≤n ∈ GLn(K)
the matrix expressing the b′

i in terms of the bi ; that is b′
j = ∑n

i=1 ui,jbi for every j ∈ {1, . . . , n}.
Then,

ui,j ∈ aib
−1
j and a = (detU)b,

where a = a1 . . . an and b = b1 . . . bn.
Conversely, if we have U = (ui,j)1≤i,j≤n ∈ GLn(K) and fractional ideals (bi)1≤i≤n such that
ui,j ∈ aib

−1
j and a = (detU)b, then (b′

i, bi)1≤i≤n is a pseudo-basis of M , where b′
j = ∑n

i=1 ui,jbi.

Proof. For j ∈ {1, . . . , n}, since b′
jbj ⊂M , we get b′

j ∈
⊕n

i=1 b
−1
j aibi, so ui,j ∈ aib

−1
j and

detU =
∑
σ∈Sn

ε(σ) u1,σ(1) . . . un,σ(n)︸ ︷︷ ︸
∈a1b

−1
σ(1)...anb

−1
σ(n)=ab−1

∈ ab−1.

From detU ∈ ab−1, we deduce that (detU)b ⊂ a. Playing the same game with U−1 we get
(detU−1)a ⊂ b so finally a = (detU)b.

Conversely, suppose that ui,j ∈ aib
−1
j and a = (detU)b. Let adj(U) be the adjugate matrix of

U , so that adj(U)i,j is equal, up to the sign, to the minor detUi,j of U . This determinant is

detUi,j =
∑
σ∈Sn
σ(i)=j

ε(σ)
n∏
l=1
l ̸=i

ul,σ(l) ∈ (a1 . . . ai−1ai+1 . . . an)(b−1
1 . . . b−1

j−1b
−1
j+1 . . . b

−1
n ),

so adj(U)i,jaib−1
j ⊂ ab−1 = (detU)R. Since the inverse matrix V = (vi,j)1≤i,j≤n of U is given

by V = 1
detU adj(U)T , we deduce that vi,j ∈ a−1

j bi. Now let m and X = (x1, . . . , xn)T the
columns vectors of its components in the pseudo-basis (bi, ai)1≤i≤n. Then, m = (b1, . . . , bn)X =
(b′

1, . . . , b
′
n)U−1X and U−1X =: (y1, . . . , yn)T satisfies yi ∈ bi for 1 ≤ i ≤ n. Also, the yi are
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uniquely determined so we have a direct sum M = ⊕n
i=1 bib

′
i i.e., (b′

i, bi)1≤i≤n is a pseudo-
basis for M . □

Remark. We proved that if U satisfies ui,j ∈ aib
−1
j and a = (detU)b, then the inverse

matrix V = (vi,j)1≤i,j≤n is such that vi,j ∈ bia
−1
j .

We end this theoretical section with the elementary divisor theorem for modules over
Dedekind rings. Its proof is omitted and we refer to [11].

Theorem 2.10 (Elementary divisors, Theorem 1.2.35 of [11]). Let N ⊂ M be a sub-O-
module of rank m ≤ n. Then, there exists a pseudo-basis (bi, bi)1≤i≤n of M and fractional
ideals d1, . . . , dm of O such that

N = d1b1b1 ⊕ · · · ⊕ dmbmbm,

and di−1 ⊂ di for all 2 ≤ i ≤ m. Moreover, the ideals di and the classes of the products
b1 . . . bm and bm+1 . . . bn (if m < n) depends only on M and N .

2.4.2 Algorithmic tools

Computing a pseudo-basis. In [19] Section 2 is given an algorithm to compute a pseudo-
basis of a module-lattice from a set of generators. This and the CHNF algorithm are based on
the following theorem which is somehow a generalization of the extended Euclidean algorithm
to Dedekind rings.

Theorem 2.11 (Theorem 1.3.3 of [11]). Let a and b be two (fractional) ideals of K and
a, b ∈ K not both equal to zero. Put d = aa + bb It is possible to find in polynomial time
elements u ∈ ad−1 and v ∈ bd−1 such that au+ bv = 1.

Proposition 2.11 (Corollary A.2. of [6]). There exists a probabilistic polynomial-time algo-
rithm that given nonzero integral ideals a and b of K returns an element x ∈ K \ {0} such
that xa is integral and coprime to b.

Corollary 2.2. Let a and b be two (fractional) ideals of K, there exists a probabilistic
polynomial-time algorithm that computes α1 ∈ a, α2 ∈ b, β1 ∈ a−1 and β2 ∈ b−1 such
that α1β1 + α2β2 = 1

Proof. Multiplying by an element of Q \ {0}, we can reduce to the case where a−1, b are
integral. By the proposition above, we can find in polynomial time an element x ∈ O such
that xa−1 is integral and coprime to b, with positive probability. Then with the algorithm
of Theorem (2.11), we get in (deterministic) polynomial-time elements u ∈ xa−1 and v ∈ b
(b = 1 and d = O by coprimality) such that u+ v = 1. Taking α1 = u, α2 = v, β1 = u/x and
β2 = 1 we get the result. □
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Algorithm 1 Compute a pseudo-basis of a torsion-free R-module from a generating set
Require: A set of vectors {m1, . . . ,ms} generating a rank r module M (r ≤ s).
Ensure: A pseudo-basis (bi, ai)1≤i≤r of M.

1: (v1, . . . , vr)← a K-basis of KM.
2: if r = 0 then
3: return ∅
4: end if
5: for i ∈ {1, . . . , s} do
6: Compute (νi,j)1≤j≤r ∈ Kr such that mi = ∑r

j=1 νi,jvj .
7: end for
8: a1 ←

∑s
i=1 νi,1R.

9: Use Corollary 2.2 to compute α1, α2 ∈ a1 and β1, β2 ∈ a−1
1 such that α1β1 + α2β2 = 1.

10: for l ∈ {1, 2} do
11: Compute (ri,l)1≤i≤r ∈ Rr such that αl = ∑r

i=1 ri,lνi,1.
12: hl ←

∑r
i=1 ri,lmi.

13: wl ← αlv1 − hl ∈
⊕

k≤2 vkK.
14: end for
15: b1 ← v1 − (β1w1 + β2w2).
16: for i ∈ {1, . . . , s} do
17: m′

i ← mi − νi,1b1.
18: end for
19: (bi, ai)2≤i≤r ← the output of Algorithm 1 with {m′

2, . . . ,m
′
s}.

20: return (bi, ai)1≤i≤r.
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Lemma 2.9. Given a torsion-free module M over R of rank r with generating set {m1, . . . ,ms}
(s ≥ r), Algorithm 1 outputs a pseudo-basis of M .

Proof. For l ∈ {1, 2}, wl is in ⊕r
k=2Kvk because hl = ∑r

i=1 ri,lmi = ∑r
j=1(∑r

i=1 ri,lνi,j)vj =
αlv1 +∑r

j=2(∑r
i=1 ri,lνi,j)vj . Also at step 15, b1 = v1− (β1w1 +β2w2) = v1− (β1(α1v1−h1) +

β2(α2v1 − h2)) = β1h1 + β2h2 (using α1β1 + α2β2 = 1). Since h1, h2 ∈ M and β1, β2 ∈ a−1
1 ,

it gives b1 ∈ a−1
1 M. Let i ∈ {1, . . . , s}, then νi,1 ∈ a1 implies a−1

1 ⊂ (νi,1R)−1 = ν−1
i,1 R, so

νi,1b1 ∈M and this proves m′
i ∈M.

For any i ∈ {1, . . . , s}, we have by construction m′
i ∈ M and mi −m′

i = νi,1b1 ∈ a1b1 ∩M
thus a1b1 ⊂M (by definition of a1). Using the latter equality and the fact that {mi}1≤i≤s is
a generating set of M , we obtain

M = a1b1 +
s∑
i=1

m′
iR. (6)

Also, b1 ∈ {v1}+⊕r
k=2Kvk so for any i ∈ {1, . . . , s},

m′
i = mi − νi,1b1

= mi − νi,1v1 + νi,1(β1w1 + β2w2)

=
r∑
j=2

νi,jvj + νi,1(β1w1 + β2w2)

∈
r⊕

k=2
Kvk.

Therefore, the sum in (6) is direct and M ′ := ∑s
i=1m

′
iR ⊂

⊕r
k=2Kvk so M ′ has rank r− 1 =

rank(M)− 1. An induction on the rank of M completes the proof. □

Remark. Another application of Lemma 2.11 is an algorithmic procedure to transform a
pseudo-basis of M into a Steinitz representation (see Fig. 5 of [15] or Algorithm 4.6.2 of
[18]).
Pseudo-matrices and the CHNF. In his book [11], Cohen defines the notion of pseudo-
matrices and he gives an algorithm to compute their CHNF (Cohen-Hermite Normal Form),
which is an adaptation of the HNF to pseudo-matrices.

Definition. A pseudo-matrix is a pair (B, (ai)i) where B ∈ Ml×m(K) and (ai)i is a list
of m fractional ideals. Another convention to represent the pseudo-matrix (B, (ai)i) is(

a1 . . . am
b1 . . . bm

)
,

where (bi)1≤i≤m are the column vectors of B. The module associated with this pseudo-
matrix is M = ∑

1≤i≤m aibi ⊂ K l.8 Two pseudo-matrices (B, (ai)i), (B′, (bi)i) such that
B ∈ Ml×m(K) and B′ ∈ Ml×m′(K) are said multiplication equivalent if there exists U =
(ui,j) ∈Mm×m′(K) and V = (vi,j) ∈Mm′×m(K) satisfying :

8This means (bi, ai)i is a (pseudo-)generating set for M but it is a priori not a pseudo-basis since the sum
is not direct.
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• BU = B′.
• For all i ∈ {1, . . . ,m} and j ∈ {1, . . . ,m′}, ui,j ∈ aib

−1
j .

• B = B′V
• For all i ∈ {1, . . . ,m′} and j ∈ {1, . . . ,m}, vi,j ∈ bia

−1
j .

Lemma 2.10. Multiplication equivalence is an equivalence relation on the set of pseudo-
matrices. Two pseudo-matrices are equivalent if and only if the modules associated are equal.

Proof. See Proposition 4.3.2 of [18]. □

Now we are interested in giving a « canonical » representative of an orbit for this ac-
tion : the Cohen-Hermite Normal Form.

Theorem 2.12 (Cohen-Hermite Normal Form in Dedekind domains, Theorem 1.4.6 of [11]).
Let (B, (ai)i) be a pseudo-matrix with B ∈ Ml×m(K) of rank l and M be the module-lattice
of K l associated. Then, B is equivalent to a pseudo-matrix of the form

(
d1 . . . dm−l dm−l+1 . . . dm
0 . . . 0 b′

1 . . . b′
l

)
and H := (b′

1| . . . |b′
l) =


1 ∗ . . . ∗
0 1 . . . ∗
... . . . . . . ∗
0 . . . 0 1

 ∈ GLl(K)

is reduced echelon on the lines. Putting bi := dm−l+i for 1 ≤ i ≤ l, we say that (H, (bi)1≤i≤l)
is in CHNF (Cohen-Hermite Normal Form). Moreover, (b′

i, bi)1≤i≤l is a pseudo-basis of M .

Proof. The construction of U ∈ GLl×k(K) such that BU = (0|H) is given as an algorithm
in [11]. We refer to section 4.5 of [18] or [4] for more details. By the previous lemma, the
module generated by (H, (bi)1≤i≤l) is equal to M i.e., M = ∑

1≤i≤l b
′
ibi and the sum must be

direct because H is a triangular matrix. □

Proposition 2.12. With the notations used in the previous theorem, the pseudo-matrix
(H, (bi)i) is unique in the sense that two equivalent pseudo-matrices in CHNF are equal.

Thus, H is called the CHNF of M (it depends only on M and not on the choice of a pseudo-
generating set).

Proof. See Proposition 4.4.4 in [18]. □

Proposition 2.13 (Algorithm 5 and Theorem 34 of [4]). There is a probabilistic polynomial-
time algorithm computing the CHNF of a full rank pseudo-matrix.

Corollary 2.3 (Corollary A.3. of [6]). There is a probabilistic polynomial-time algorithm that
given a pseudo-generating set of a module M ⊂ K l, computes a Steinitz form for M
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2.4.3 Module lattices and their representations.

In the case of a module M contained in K l, it is possible to embed M into Rnl (where
n = [K : Q] and l is the rank of M), by applying component-wise Minkowski embedding.
The result is a full-rank lattice denoted f ◦ µ(M). Whereas M is a purely algebraic object,
the embedded lattice must also have geometric considerations.

Definition. A rank l module-lattice over K is a module M ⊂ K l (in the sense of the
previous paragraph) identified with the lattice µ(M) ⊂ Rnl which is equipped with the geom-
etry induced by the one of Rnl.

Let M be a rank l module-lattice over K with pseudo-basis (bi, ai)1≤i≤l and integral
coefficient ideals (or equivalently the module-lattice associated to the pseudo-matrix B =
((b1| . . . | bl), (ai)1≤i≤l)). We give a R-basis for the lattice µ(M) (or equivalently the image of
B by the canonical embedding). Recall that each (integral) ideal ai is represented by a Z-
basis {ε(i)

1 , . . . , ε
(i)
n } ⊂ K therefore for any i ∈ {1, . . . l}, the image of the rank one OK-module

biai ⊂ K l is a rank n lattice of Rnl with matrix (in the canonical basis)

Mi :=


f ◦ µ

(
bi,1ε

(i)
1

) T

· · · f ◦ µ
(
bi,1ε

(i)
n

) T

... · · ·
...

f ◦ µ
(
bi,lε

(i)
1

) T

· · · f ◦ µ
(
bi,lε

(i)
n

) T

 ∈Mnl,n(R),

where bi has coordinates (bi,1, . . . bi,l)T in the canonical basis of K l and µ
(
bi,jε

(i)
k

)
∈ Rn is

a row vector. Equivalently, Mi is the image of the pseudo matrix (bi, ai). Then, a basis for
µ(M) in the canonical basis of Rnl is

emb(B) := (M1| . . . |Ml) ∈Mnl(R).
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3 Contributions to module-LIP
In [13] is introduced (the uncompressed version of) Hawk, a signature scheme which

security relies on a Lattice Isomorphism Problem (LIP) problem in the special case where
K = Q(ζ) is a power-of-two cyclotomic field and L is the free rank 2 module-lattice O2

K .
Explicitly, the secret key is given by a basis B ∈ GL2(OK) of L and the public key is the
Hermitian form Q = B∗B. To sign a message m, first hash m and a salt r to a point h
= (h0, h1)T ∈ {0, 1}2n and compute the target t = 1

2B · h. Then sample an element x in the
target coset’s O2

K + 1
2B ·h close to t, using Gaussian sampling. Finally, s := 1

2h±B−1x ∈ O2
K

should be close to 1
2h with respect to || · ||Q. The verification step is to compute ||12h − s||Q

and this only requires the public key Q. Notice that the problem of recovering the secret key
B from Q is indeed a LIP problem (stated with hermitian forms) : the two Hermitians forms
Id2(K) and Q are equivalent and the problem asks for finding a matrix U ∈ GL2(OK) such
that U∗Id2(K)U = U∗U = Q. Lattices considered there have a special shape compared to
module lattices in general. Indeed, free module lattices have a basis and not only a pseudo-
basis, or said equivalently, their coefficient ideals are trivial. A first goal of this section is
to define a lattice isomorphism problem for module lattices generalizing the example used
in Hawk. We need to incorporate coefficient ideals to the problem so the natual objects to
consider are pseudo-bases or pseudo-Gram matrices (in perspective of a reformulation in terms
of Hermitian forms).

3.1 The module-Lattice Isomorphism Problem

As for unstructured lattices, we state the Lattice Isomorphism Problem over modules in
two different ways, the first in terms of module-lattices and the second with pseudo-Gram
matrices. Let K be a number field of degree n, OK its ring of integers and l ≥ 1 an integer.
M ⊂ K l denotes a module-lattice with pseudo-basis B = (B, (ai)1≤i≤l). The latter is a pseudo-
matrix, as defined in [11]. In [13] the authors ask for the secret key U to have coefficients
in OK and determinant one, in order to make key generation more effective (see Algorithms
4 and 6 in [13]). This is not a condition we can keep in general, as U is the matrix of a
pseudo-base change.

3.1.1 Statements

Module-lattice setting. Let M ′ ⊂ K l be a module-lattice, we say that M, M ′ are iso-
morphic if there exists a unitary transformation O ∈ Ul(KR) (i.e., O ∈ Ml(KR) satisfying
O∗O = Id) such that M ′ = O ·M.

Let B’ = (B′, (bi)1≤i≤l) be a pseudo-basis for M ′, then M and M ′ are isomorphic if and
only if there exists a unitary transformation O ∈ Ul(KR) such that

M ′ = b′
1b1 ⊕ · · · ⊕ b′

lbl = Ob1a1 ⊕ · · · ⊕Oblal = O ·M,

where the bi (resp. b′
i) are the columns vectors of B (resp. B′). Applying proposition 2.10,

this means there exists U = (ui,j)1≤i,j≤l ∈ GLl(K) such that B′ = OBU and ui,j ∈ aib
−1
j ,

a = (detU)b, where a = a1 . . . al and b = b1 . . . bl. We saw in the proof of this proposition
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that the conjunction of these two last conditions is equivalent to{
ui,j ∈ aib

−1
j

vi,j ∈ bia
−1
j

(⋆)

for any i, j ∈ {1, . . . , l} and where V = (vi,j)1≤i,j≤l is the inverse of U . From now on, (⋆)
will refer to the system of conditions above. Finding such O and U is what we define to be a
(worst-case) search module-lattice isomorphism problem.

Definition (wc-smodLIPB
K). For B = (B, (ai)1≤i≤l) a pseudo-basis of a module-lattice

M ⊂ K l, the worst-case search module-Lattice Isomorphism Problem with parameters K
and B denoted by wc-smodLIPB

K is, given any pseudo-basis B’ = (B′, (bi)1≤i≤l) representing
an isomorphic module-lattice M ′ ⊂ K l, to find a unitary transformation O ∈ Ul(KR) and
U = (ui,j)1≤i,j≤l ∈ GLl(K) such that B′ = OBU and (⋆) are satisfied.

Remark. Finding either U or O in wc-smodLIPB
K is sufficient to find the other one effi-

ciently, using linear algebra.

Hermitian form setting. Let H>0
l (K) be the set of Hermitian definite positive matri-

ces (i.e., the set of matrices G ∈ Ml(K) such that G∗ = G and x∗Gx ∈ K+
R \ {0} for all

x ∈ Kl \ {0}.)

Definition. A pseudo-matrix (G, (bi)1≤i≤l) with G ∈ H>0
l (K) is called a pseudo-Gram ma-

trix. To the pseudo basis B = (B, (ai)1≤i≤l) of M we associate a pseudo-Gram matrix defined
by G := (G, (ai)1≤i≤l), where G = B∗B ∈ H>0

l (K). There is a natural notion of equivalence
of pseudo-Gram matrices, compatible with the pseudo-basis change property.

Let G′ ∈ H>0
l (K) and (bi)1≤i≤l a list of fractional ideals of K. We say that the pseudo-

matrix G’ = (G′, (bi)1≤i≤l) is equivalent to G if there exists U = (ui,j)1≤i,j≤l ∈ GLl(K) such
that G′ = U∗GU and condition (⋆) is verified. This defines an equivalence relation on the set
of pseudo-Gram matrices (of size l × l). The class of G is denoted [G].

Proposition 3.1. Let B = (B, (ai)1≤i≤l) be a pseudo-basis of M and G = B∗B ∈ H>0
l (K).

Then, the ideal (detG)(a1 . . . al)2 depends only on M and not on the pseudo-basis B. It is
called the discriminant ideal of M and denoted disc(M).

Proof. Let (B′, (bi)1≤i≤l) be another pseudo-basis for M . By Proposition 2.10, there exists
U ∈ GLl(K) such that B′ = BU and a = (detU)b (with same notations as the proposition).
Let G′ = B′∗B′ = U∗GU then,

(detG′)b2 = (detG)(detU)2b2 = (detG)a2.

□
Definition (wc-smodLIPG

K). For G := (G, (ai)1≤i≤l) with G ∈ H>0
l (K), the worst-case search

module-Lattice Isomorphism Problem with parameter K and G denoted wc-smodLIPG
K is,

given any equivalent pseudo-matrix G’ = (G′, (bi)1≤i≤l), to find a matrix U = (ui,j)1≤i,j≤l ∈
GLl(K) such that G′ = U∗GU and condition (⋆) is verified.
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Finally, we define the decisional problem associated to module-LIP.

Definition (wc-∆-modLIPG1,G2
K ). For two pseudo-Gram matrices G0, G1 the worst-case

distinguishing Lattice Isomorphism Problem (wc-∆-modLIPG1,G2
K ) with parameters G1,G2

is, given any pseudo-Gram matrix G equivalent to Gb (for some b in {0, 1}), to find b.

3.1.2 Equivalence over KR.

Cholesky factorization over KR. For unstructured lattices, we have seen in Proposition
1.3 that the search-LIP problems stated with lattices or quadratic forms are equivalent. The
proof uses the fact that from a positive definite quadratic form Q we can efficiently recover B
such that BTB = Q e.g., the Cholesky factorization of Q. For Hermitian forms over K, the
Cholesky factorization may not have coefficients in K (the formula (1) requires taking square
roots) so the same argument fails. However, we have a factorization for positive definite Her-
mitian forms over KR. We follow the definitions given by Okuda and Yano in [26] to extend
the objects involved in mod-LIP over K to KR.

Definition. A Hermitian form G with coefficients in KR is said positive definite if for
all x ∈ (KR)l \ {0}, x∗Gx ∈ K+

R \ {0}. The norm associated to G is ||x||G := Tr(x∗Gx),
where x ∈ (KR)l. This set of matrices is denoted H>0

l (KR). Two forms G,G′ ∈ H>0
l (KR)

are said K-equivalent if there exists U ∈ GLl(K) such that G′ = U∗GU . To any matrix
B = (bi,j)1≤i,j≤l ∈ GLl(K), we associate B̃ := (µ(bi,j))1≤i,j≤l ∈ GLl(KR). Notice that if
G ∈ H>0

l (K), then G̃ ∈ H>0
l (KR).

Remark. For any B ∈ GLl(KR), we have B∗B ∈ H>0
l (KR) as for any y = (y1, . . . , yl)T ∈

(KR)l \ {0}, y∗y = ∑l
i=1 yiyi ∈ K+

R .

Proposition 3.2 (Cholesky factorization over KR). Let G ∈ H>0
l (KR), then there exists a

Cholesky factorization G = R∗R with coefficient in KR and it is computable in polynomial
time.

Proof. For l = 1, we have G = (g) with g ∈ K+
R so it has a square root R = (r) ∈ KR. Now

suppose there is a factorization for all G0 ∈ H>0
l−1(KR) and let G ∈ H>0

l (KR). We write G as

G =
(
G0 g

g∗ e

)
,

where G0 ∈ H>0
l−1(KR) (it is positive definite by restriction of G to (KR)l−1 × {0}), g ∈

Ml−1,1(KR) and e ∈ KR. By hypothesis, there exists R0 ∈ GLl−1(KR) upper-triangular such
that G0 = R∗

0R0. We look for R ∈ GLl(KR) such that G = R∗R and with shape

R =
(
R0 r

0 s

)
,

where r ∈ Ml−1,1(KR) and s ∈ KR. From G = R∗R we obtain the conditions R∗
0r = g

and r∗r + ss = e, so r = (R∗
0)−1g and ss = e − g∗R−1

0 (R∗
0)−1g = e − g∗G−1

0 g. Therefore
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the only thing to prove is that e − g∗G−1
0 g ∈ K+

R (this implies the existence of s). Let

v =
(
−G−1

0 g
1

)
∈Ml,1(KR), we check that

v∗Gv = (−g∗G−1
0 1)

(
G0 g

g∗ e

)(
−G−1

0 g
1

)
= (−g∗G−1

0 1)
(

0
−g∗G−1

0 g + e

)
= e− g∗G−1

0 g.

The computation of R is effective since it is given by the formulae 1. □

Modules over KR. A natural extension of module-lattices is to consider OK-modules M ⊂
(KR)l which admit a pseudo-basis i.e., OK-modules of the form

M = a1b1 ⊕ · · · ⊕ albl,
9

with fractional ideals ai ∈ I(OK) and bi ∈ (KR)l are KR-linearly independent vectors. We call
pseudo-matrices with coefficients in KR the pseudo-objects (B, {ai}1≤i≤l) with B ∈ GLl(KR).

One can prove that for any module M as above, there exists g ∈ GLl(KR) such that g(M) is a
module-lattice (contained in K l). Considering its Steinitz form g(M) ≃ Ol−1

K ⊕a and a system
of representatives OK , a1, . . . ar for the class group Cl(OK), we see that the set of modules
in (KR)l can be identified with the disjoint union ⊔1≤i≤ Li where Li is the GLl(KR)-orbit of
Ol−1
K ⊕ ai. Pseudo-bases change for modules in (KR)l formulates identically as 2.10.

Representing modules in (KR)l. Let B = (bi,j)1≤i,j≤l ∈ GLl(KR), a1, . . . , al ⊂ OK and
ε(i) = {ε(i)

1 , . . . , ε
(i)
l } a Z-basis of ai (i ∈ {1, . . . , l}). The lattice associated to B:= (B, (ai)1≤i≤l)

has rank nl with basis

φ(B) =


f
(
b1,1ε

(i)
1

) T

· · · f
(
b1,1ε

(i)
n

) T

· · · f
(
bl,1ε

(i)
1

) T

· · · f
(
bl,1ε

(i)
n

) T

... · · ·
... · · ·

... · · ·
...

f
(
b1,lε

(i)
1

) T

· · · f
(
b1,lε

(i)
n

) T

· · · f
(
bl,lε

(i)
1

) T

· · · f
(
bl,lε

(i)
n

) T

 ,

where f : KR → Rn is the canonical isometry defined in Section 2.2.1 and the ε(i)
j are seen as

elements of KR. Thus, φ(B) ∈ GLnl(R) is a basis of a full-rank lattice ⊂ Rnl.

Definition (wc-smodLIPB
KR

). For B = (B, (ai)1≤i≤l) a pseudo-basis of a module-lattice
M ⊂ (KR)l, the worst-case search module-Lattice Isomorphism Problem with parameters K
and B denoted by wc-smodLIPB

KR
is, given any pseudo-basis B’ = (B′, (bi)1≤i≤l) representing

an isomorphic module-lattice M ′ ⊂ (KR)l, to find a unitary transformation O ∈ Ul(KR) and
U = (ui,j)1≤i,j≤l ∈ GLl(K) such that B′ = OBU and (⋆) are satisfied.

Definition (wc-smodLIPG
KR

). For G := (G, (ai)1≤i≤l) with G ∈ H>0
l (KR), the worst-case

9The theory of modules over a Dedekind ring does not apply anymore since KM is not a K-vector space of
finite dimension, so the existence of a pseudo-basis is not guaranteed. We restrict ourselves to modules with
this shape, as defined in [26].
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search module-Lattice Isomorphism Problem with parametersK and G denoted wc-smodLIPG
KR

is, given any K-equivalent pseudo-matrix G’ = (G′, (bi)1≤i≤l), to find U = (ui,j)1≤i,j≤l ∈
GLl(K) such that G′ = U∗GU and condition (⋆) is verified.

Proposition 3.3. For G = B∗B, wc-smodLIPB
KR

is equivalent to wc-smodLIPG
KR

.

Proof. Given an oracle that solves wc-smodLIPB
KR

in time T (·) and any pseudo-matrix
G’ = (G′, (bi)1≤i≤l) K-equivalent to G, one can solve wc-smodLIPG

KR
by first computing

B′ ∈ GLl(KR) such that B′∗B′ = G′ using Cholesky decomposition over KR, in time poly(l),
and then apply the oracle to (B′, (bi)1≤i≤l) ; we obtain O ∈ Ul(KR) and U ∈ GLl(K) such
that B′ = OBU and (⋆) are verified. In particular, G′ = U∗GU , so this solves wc-smodLIPG

KR
instantiated with G’ in time T (B’) + poly(l).
Conversely, suppose we can solve wc-smodLIPG

KR
in time S(·) and let B’ = (B′, (bi)1≤i≤l) be

a pseudo-basis of an isomorphic module-lattice M ′ ⊂ (KR
l). Let G′ = B′∗B′ ∈ Hl>0(KR)

and G’ = (G′, (bi)1≤i≤l). This time, our oracle applied to G’ gives U ∈ GLl(K) such that
G′ = U∗GU and (⋆) is satisfied, in time S(G’). Then, O = B′(BU)−1 ∈ GLl(KR) and we
check O ∈ Ul(KR) so (O,U) is a solution to wc-smodLIPB

KR
instantiated with B’ and it is

computed in time S(G’) + poly(l). □

3.2 Average-case problem

3.2.1 Gaussian sampling

Discrete Gaussian Sampling (DGS) is a useful tool in lattice-based cryptography ; from
a (secret) basis of a lattice L we are able to sample short vectors of L, following a Gaus-
sian distribution and without leaking any information on the basis. This has been developed
for general lattices, i.e., unstructured lattices, so we state the fundamental properties of the
DGS in this context. This section is inspired from [12] where the authors did a worst-case to
average-case reduction for free rank two module-lattices.

Notations. Let Q ∈ S>0
m (R) be a positive definite quadratic form on Rm, BQ be the re-

sult of Cholesky algorithm applied to Q and B∗
Q the Gram Schmidt orthogonalisation of BQ.

The norm on Rm associated to Q is defined by

||x||2Q := xTQx, for x ∈ Rm.

For i ∈ {1, . . . ,m}, λi(Q) is the smallest positive real number r such that {x ∈ Zm | ||x||Q ≤ r}
spans a vector space of dimension at least i. Notice that this corresponds to λi(L), where
L is the lattice of Rm with basis BQ. Indeed, every lattice vector y in L can be written
y = BQ · x with x ∈ Zm thus ||y|| is equal to ||x||Q. Finally, we define ||B∗

Q|| to be the max
of the euclidean norms of the columns vectors of B∗

Q.

Definition. The Gaussian function on Rm with parameter s > 0 (and centered at the
origin) is defined by

∀x ∈ Rm, ρQ,s(x) := exp(−π||x||2Q/s2).
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The Discrete Gaussian Distribution DQ,s is the distribution on Zm obtained by

P(X = x)
X∼DQ,s

:=
{
ρQ,s(x)/ρQ,s(Zm), if x ∈ Zm.
0, otherwise.

Lemma 3.1 (Lemma 2.3 of [8]). There is an algorithm DiscreteSample(Q, s) that given Q
and a parameter s ≥ ||B∗

Q||
√

log(2m+ 4)/π, returns a sample y ∈ Zm distributed as DQ,s. It
runs in time poly(m, log s).

3.2.2 Worst-case to average-case reduction

In the following, we fix a number field K of degree n over Q and an integer l ≥ 1. Let
G = (G, (ai)1≤i≤l) be a pseudo-Gram matrix with coefficient in K, using DGS and the CHNF
algorithm of [11], we give an algorithm sampling pseudo-Gram matrices equivalent to G such
that the distribution depends only on the class of equivalence [G] and not on G, in a sense
that will be precised in Lemma 3.4 (this provides security against an opponent having access
to the sampling algorithm). From this follows an average case version of smod-LIP (with
parameters K and G) called ac-smodLIPG

K ; the input is an equivalent form sampled from
this distribution and the problem is still to find the pseudo-base change. Finally, we prove a
reduction result : if one can solve the average-case problem, then the worst-case can be solved
(within approximately same time).

Sampling from a class of equivalence. First we describe a method to sample elements in
a1 × · · · × al following a Gaussian distribution. This combined with the CHNF algorithm of
[11] produces equivalent forms ; this is Algorithm 2. To be able to sample in a1× · · · × al, we
consider Z-basis of each ideal and we use DGS in Rnl. This requires to associate a quadratic
form Q ∈ S>0

nl (R) to the pseudo-Gram matrix G. This can be done in the following way.

Definition. For any g ∈ K and ordered set ε = {ε1, . . . , εn} ⊂ K we put

ψε(g) :=
(
Tr
(
εi · g · εj

))
1≤i,j≤n

∈Mn(R).

Now writing G = (gi,j)1≤i,j≤l and given Z-bases ε(i) = {ε(i)
1 , . . . , ε

(i)
n } of ai for every i ∈

{1, . . . , l}, we define

ψ(G) :=


ψε(1)(g1,1) · · · ψε(l)(g1,l)

... · · ·
...

ψε(1)(gl,1) · · · ψε(l)(gl,l)

 ∈ Snl(R).

Lemma 3.2. Given a Cholesky factorization BG ∈ GLl(KR) of G̃, we have

ψ(G) = φ(BG)T · φ(BG),

where BG = (BG, (ai)1≤i≤l). In particular ψ(G) is positive and definite.
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Proof. By assumption, (gi,j)1≤i,j≤l := G̃ = B∗
GBG so gi,j = ∑n

k=1 bk,i · bk,j , where BG =
(bi,j)1≤i,j≤l. Let 1 ≤ s, t ≤ nl and s = in + α, t = jn + β the Euclidean divisions by n.
We define a := α + 1 and b := β + 1 so a, b ∈ {1, . . . , n} and the s-th column of φ(BG) is(
f
(
b1,iε

(i)
a

)
. . . f

(
bl,iε

(i)
a

))T
and the t-th column is

(
f
(
b1,jε

(j)
b

)
. . . f

(
bl,jε

(j)
b

))T
. Using

Lemma 2.5, the coefficient (s, t) of φ(BG)T · φ(BG) is
l∑

k=1

〈
f
(
bk,iε

(i)
a

)
, f
(
bk,jε

(j)
b

)〉
E

=
l∑

k=1
Tr

(
bk,iε

(i)
a bk,jε

(j)
b

)
= Tr

(
ε

(i)
a · gi,j · ε(j)

b

)
.

which is by definition the coefficient (s, t) of ψ(G). □

Definition. The distribution DG,s on a1 × · · · × al with parameter s > 0 is defined by

P(X = x)
X∼Da1×···×al,s

:= exp(−π||x||2G/s2)∑
y∈a1×···×al

exp(−π||y||2G/s2)
,

where x ∈ a1 × · · · × al and ||y||2G := Tr
(
y∗G̃y

)
≥ 0, for any y ∈ a1 × · · · × al.

Lemma 3.3. Let ε(i) = {ε(i)
1 , . . . , ε

(i)
n } be a Z-basis of ai and x := (x1, . . . , xl) ∈ a1× · · · × al.

For every 1 ≤ i ≤ l we put
(
z

(i)
j

)
j

the coefficients of xi in the Z-basis of ai i.e., xi =∑n
j=1 z

(i)
j ε

(i)
j and z =

(
z

(i)
j

)T
i,j
∈ Znl. Then for any s > 0,

P(X = x)
X∼Da1×···×al,s

= P(X = z)
X∼Dψ(G),s

.

Proof. Let s > 0. It is enough to prove that

exp(−π||x||2G/s2) = ρψ(G),s(z) = exp(−π(zTψ(G)z)/s2).

Let BG = (b1 | . . . | bl) ∈ GLl(KR) be a Cholesky factorization of G̃, then by the previous
lemma zTψ(G)z = (φ(BG)z)Tφ(BG)z and if b̃ni+a ∈ Rnl denotes the (ni + a)-th column of
φ(BG), then

φ(BG) · z =
l∑

i=1

n∑
a=1

˜bn(i−1)+a · z(i)
a = f

( l∑
i=1

bi

n∑
a=1

ε(i)
a · z(i)

a

)
= f

( l∑
i=1

bixi
)

= f(BG · x).

Therefore, zTψ(G)z = ⟨φ(BG)z, φ(BG)z⟩E = Tr
(
(BG · x)∗(BG · x)

)
= Tr

(
x∗G̃x

)
= ||x||2G.□

Using the algorithm DiscreteSample with inputs ψ(G) and s > 0 we deduce a sampling
algorithm in a1 × · · · × al (recall that the ideal coefficients are represented with a Z-basis so
any output of DiscreteSample(ψ(G),s) corresponds to a coordinate vector of an element
in the product). Suppose that G is a pseudo-Gram matrix associated to a pseudo-basis of
a module lattice M then, sampling enough vectors in the product of ideals (enough to get
a rank l matrix), we can apply the CHNF algorithm to extract another pseudo-basis of M
together with the pseudo-basis change matrix. It follows a pseudo-Gram matrix equivalent
to G. Details are given in the following pseudo-code and lemma.
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Algorithm 2 Sample equivalent pseudo-Gram matrix.
Require: A pseudo-Gram matrix G = (G, (ai)1≤i≤l) coming from a known pseudo-basis of

M , and some s > 0.
Ensure: A pseudo-Gram matrix G’ = (G′, (bi)1≤i≤l) equivalent to G together with the

pseudo-base change matrix U = (ui,j)1≤i,j≤l ∈ GLl(K) such that G′ = U∗GU .
1: C ← 1− (1 + e−π)−1 and m← ⌈2l

C ⌉
2: for 1 ≤ i ≤ m do
3: Znl ∋ zi ← DiscreteSample(ψ(G), s)
4: a1 × · · · × al ∋ yi with coordinates zi.
5: end for
6: Y ← (y1 | . . . | ym) ∈Ml×m(K)
7: if Y has rank < l then
8: Restart
9: end if

10: (H, (b−1
i )1≤i≤l, U0)← CHNF(Y T , (a−1

i )1≤i≤l), Algorithm 1.4.7 of [11]
11: U ← U−T

0
12: return (G’ = (U∗GU, (bi)1≤i≤l), U)

Lemma 3.4. For any pseudo-Gram matrix G = (G, (ai)1≤i≤l) with Cholesky decomposition
BG ∈ GLl(KR) and parameter

s ≥ max
{
λnl(ψ(G)), ||φ(BG)∗||

√
log(2nl + 4)/π

}
,

Algorithm 2 returns a pseudo-Gram matrix G’ = (G′, (bi)1≤i≤l) equivalent to G together with
U = (ui,j)1≤i,j≤l ∈ GLl(K) such that G′ = U∗GU and (⋆) is verified, with the notation of
the previous section. Is it a probabilistic algorithm which runs in expected time poly(n,l, log s).

Moreover, the result depends only on the equivalence class of the input, in the sense that
for any equivalent pseudo-Gram matrix H = (W ∗GW, (di)1≤i≤l), running steps 9-11 with H
and W−1Y instead of G and Y gives the same pseudo-Gram matrix. Thus, Algorithm 2 de-
fines a distribution over [G] which follows a Gaussian distribution. This is called the Gaussian
form distribution with parameter s > 0, denoted Ds([G]).

Proof. Correctness. At step 9, properties of the CHNF give u0
i,j ∈ a−1

i bj (where U0 =
(u0
i,j)1≤i,j≤l), and a−1 = (detU0)b−1. Thus at step 10, the matrix U has coefficient ui,j ∈ aib

−1
j

and a = (detU)b, so the algorithm ensures an equivalent pseudo-Gram matrix G’ together
with the pseudo-base change.

Complexity. Sampling with DiscreteSample (from Lemma 3.1) and the CHNF Algorithm
of [11] run in polynomial time in nl and log s. We need to estimate the probability of failure
at step 6. Let T be the random variable counting the number of iteration before founding
a set of full rank vectors. By Lemma 5.1 of [16] (and because s ≥ λnl(ψ(G)) ), for any
i ∈ {1, . . . , l − 1} and set of vectors {y1, . . . , yi} sampled with DiscreteSample, the prob-
ability that y ← DiscreteSample does not belong to the span of y1, . . . , yi is greater than
C := 1− (1 + e−π)−1. Let m = ⌈2l

C ⌉ and X1, . . . , Xl Bernoulli variables with succes parameter
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C, and Sl = X1 + · · ·+Xm. Then, the probability pfail of not finding l linearly independent
vectors within m sampled vectors is upper bounded by the probability P(Sl ≤ n− 1), where
Sm follows a binomial distribution with parameters m and C i.e.,

pfail ≤ P(Sm ≤ l − 1).

Using Hoeffding’s inequality,

pfail ≤ P
(Sm
m
− C ≤ l − 1

m
− C

)
≤ exp

(
− 2m

(
C − l − 1

m

)2)
≤ exp(−mC)
≤ exp(−2l)
≤ e−2.

Therefore,
E[T ] ≤ 1

1− pfail
< 2.

Independance from G. Finally we prove that the result depends only on the equivalence
class of G. Let (W ∗GW, (a′

i)1≤i≤l) be equivalent to G, where W = (wi,j)1≤i,j≤l ∈ GLl(K).
Denote by (H ′, (b′−1

i )1≤i≤l, U
′
0) the CHNF Algorithm of [11] applied to the pseudo-matrix

(Y TW−T , (a′
i
−1)1≤i≤l) and U ′ = U ′

0
−T . By unicity of the CHNF (there is a unique pseudo-

matrix in CHNF in the orbit of G for the multiplication equivalence relation), we obtain

(U ′)−1W−1Y = U ′
0
T
W−1Y = (Y TW−TU ′

0)T = H ′ = H = (Y TU0)T = U−1Y,

so (U ′)−1W−1 = U−1 and U ′ = W−1U . Then,

(U ′)∗W ∗GWU ′ = U∗W−∗W ∗GWW−1U = U∗GU.

Also, the unicity of the CHNF implies b′
i = bi for all 1 ≤ i ≤ n so the pseudo-Gram matrix

returned is the same and this concludes the proof. □

Average-case problem. To build cryptographic schemes based on LIP (such as Hawk [13]),
one needs to efficiently sample equivalent forms (e.g., to generate keys). Thus, the security
relies on a weaker problem than wc-smodLIP (because the distribution is known) and this
defines an average-case version of LIP. We must make sure that this problem is not to easy,
to provide security.

Definition (ac-smodLIPG,s
K ). The average-case search module-Lattice Isomorphism Prob-

lem with parameter K and G is, given any equivalent pseudo-matrix G’ = (G′, (bi)1≤i≤l)
sampled with Algorithm 2 with parameter s > 0, to find U = (ui,j)1≤i,j≤l ∈ GLl(K) such
that G′ = U∗GU and (⋆) is verified.

The main result of this paragraph is a worst-case to average-case reduction i.e., solving
ac− smodLIPG

K is as hard as solving wc− smodLIPG
K .
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Proposition 3.4 (ac-smodLIPG
K ≥ wc-smodLIPG

K). Given an oracle that solves ac-smodLIPG
K,s

in time τ with probability p > 0, one can solve wc-smodLIPG
K in time τ + poly(n, l, log s) and

probability p, where s ≥ max{λnl(ψ(G)), ||φ(BG)∗||
√

log(2nl + 4)/π}.

Proof. Let G’=(G′, (bi)i) be any pseudo-Gram matrix equivalent to G. First, we sample
G”=(G′, (di)i) equivalent to G together with U ′′ = (u′′

i,j) such that G′′ = U ′′∗GU ′′ and
u′′
i,j ∈ aid

−1
j . This is done in time poly(n, l, log s). Now we can apply our oracle to solve an

average-case LIP instance ; we find U ′ = (u′
i,j) with inverse V ′ = (v′

i,j) such that G′′ = U ′∗G′U ′

and u′
i,j ∈ bid

−1
j , v′

i,j ∈ dib
−1
j . Let U = U ′′U ′−1 =: (ui,j) ∈ GLl(K), then G′ = U∗GU and

∀ (i, j) ∈ {1, . . . , l}2, ui,j =
l∑

k=1
u′′
i,k · v′

k,j︸ ︷︷ ︸
∈ (aid−1

k
)(dkb−1

j )

∈ aib
−1
j ,

so U is a solution to the worst-case problem. □
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3.3 Attack for free rank 2 modules

This section deals with a special case of module-LIP problem which contains Hawk set-
ting. Let K be a number field (not necessarily a cyclotomic extension), L the free rank-two
lattice O2

K with a basis B0 ∈ GL2(OK), and put Q = B∗
0B0.

Definition (sq-modLIPK). For a number field K, the squared module-Lattice Isomorphism
Problem (sq-modLIPK) with parameter K is, given Q = B∗

0B0 (where B0 ∈ GL2(OK)), to
recover any B1 ∈ GL2(OK) such that B∗

1B1 = Q.

Remark. A solution B1 ∈ GL2(OK) to sq-modLIPK is not unique. More precisely, B2 ∈
GL2(OK) is another solution if and only if it is in the orbit of B1 under the action of O2(K).

3.3.1 The case of totally real number fields.

We give a method to solve sq-modLIPK when K is a totally real number field (in fact we
will compute all matrices B such that B∗B = Q, which is stronger than solving sq-modLIPK).
It is relevant to first consider the simplest case, namely K = Q and OK = Z. Let Q ∈ S>0

2 (Z)
be a Gram matrix (so it can be expressed as Q = B∗

0B0 for some B0 ∈ GL2(Z)), we consider

the set of matrices B =
(
a c
b d

)
∈ GL2(Z) such that

Q = B∗B =
(
aa+ bb ∗
∗ cc+ dd

)
.

The first coefficient q1 and the last coefficient q4 of Q are therefore sum of two squares in Z.
Also, we must have |a|2, |b|2, |c|2, |d|2 ≤ max{q1, q4} so this set of matrices is finite. Integers
which can be written as the sum of two squares are well described ; these are the integers
whose prime factors p = 3 (mod 4) have even valuation. A standard proof of this result
uses the fact that such integers can be written as norms of Gaussian integers (see §5.6 in
[30]). Let L = Q(i) (so OL = Z[i]), the idea is to look for all z = z1 + iz2 ∈ Z[i] such that
z2

1 + z2
2 = NL/K(z) = q1, so that one of them has to be z1 = a and z2 = b. We can enumerate

all such z and do the same for q4. For every guess, we can efficiently check if the corresponding
matrix satisfies the relation, so by the end we should be able to find a solution B1. Now let’s
see how to generalize this method to arbitrary totally real number fields.

Overview of the method. Let K be a totally real number field and L = K(i) (for example,
K = Q(ζ + ζ−1) and L = Q(ζ) = K(i), whenever ζ is a n-th primitive root of unity, with n
a power-of-two integer). Similarly, consider M = O2

K and a (secret) basis B0 ∈ GL2(OK) of
M . Suppose we are given the associated (public) Gram matrix Q = B∗

0B0. As K is a totally
real number field, the first coefficient q1 of Q is a sum of two squares in OK . We want to
compute all elements z = z1 + iz2 ∈ OK + iOK such that z2

1 +z2
2 = NL/K(z) = q1. Notice that

OK + iOK ⊂ OL but the equality may not be true in general. As for the case of Gaussian
integers, there are finitely many such elements.

Lemma 3.5. Given a totally real number field K, the extension L = K(i) and an element
y ∈ OK , there are finitely many z ∈ OL with relative norm NL/K(z) = y.
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Proof. There are finitely many integral ideals J ⊂ OL of absolute norm N := NK/Q(y). Also,
if NL/K(J) = yOK , then NL/Q(J) = NK/Q(yOK) = N by transitivity. A fortiori, there are
finitely many integral ideals J ⊂ OL such that NL/K(J) = yOK . Now, if z, z′ ∈ OL are such
that zOL = z′OL and NL/K(z) = NL/K(z′) = y, then there exists u ∈ O×

L such that z′ = zu.
The condition on the norms implies that 1 = NL/K(u) = uū = |u|2 and this implies u is a root
of unity in L. Indeed, the 2n complex embeddings of L come from the n real embeddings of
K extended to L by i 7→ i or i 7→ −i. Therefore, for any x ∈ L and σ : L→ C embedding, we
have σ(x) = σ(x). In particular this proves |σ(u)|2 = σ(u)σ(u) = σ(u)σ(u) = σ(uu) = 1, so
all the conjugates of u have module 1. The minimal polynomial of u over Q has coefficients in
Z and all its roots have module 1. A theorem of Kronecker10 implies u and its conjugates are
roots of unity. As the degree of L over Q is finite, there are finitely many roots of unity in L. □

To find elements of OL with relative norm q1 (resp. q4) we compute all principal ideal of
OL of relative norm q1OK (resp. q4OK). For instance, let I := q1OK ; its factorization in OK
and the data of the primes of OL above its factors allow us to compute all ideal J of OL with
relative ideal norm I (see Algorithm 4 below). Among these ideals, we keep the principal ones
and compute generators. Say we found J = zOL with NL/K(z)OK = NL/K(J) = I. Then,
NL/K(z) is equal to q1 up to a unit. To remove this unit and find an element with relative norm
exactly q1, we use Algorithm 3. Then we test if this element belongs to OK + iOK . Finally,
for each pair of elements (z1 + iz2, w1 + iw2) ∈ (OK + iOK)2 such that NL/K(z1 + iz2) = q1
and NL/K(w1 + iw2), we check if it is a solution i.e., if

BTB = Q, where B =
(
z1 w1
z2 w2

)
.

Algorithms. For our needs, we present a preliminary algorithm that computes a unit of OL
with given relative norm (when it is possible). In [35] (Section 6) are presented algorithms
for finding S-units solutions to the norm equation NL/K(z) = q1 when q1 is a S-unit (S is a
fixed set of prime ideals of OK and an element in K∗ (resp. in L∗) is a S-unit if it is divisible
only by prime ideals in S (resp. by prime ideals above those in S)). The idea is first to
enumerate fundamental systems of S-units (ui)i of K and (vi)i of L ; this is [35, Algorithm
6.1], it supposes known the structure of the class group Cl(OK). [35, Algorithm 6.3] is applied
to express the norms NL/K(vi) and q1 in terms of powers of the ui’s. Then, a linear algebra
step gives the result. Now we present an algorithm which solves the norm equation for units
(i.e., given N ∈ O×

K , we look for v ∈ O×
L such that NL/K(v) = N). It is based on the linear

algebra step of [35, Algorithm 6.9], and we assume we are given sets of fundamental units of
OK and OL. We denote by O×

K ∩K
+
R the set of units u of OK such that µ(u) ∈ K+

R i.e., units
whose embeddings are all positive numbers.

Lemma 3.6. For any unit N ∈ O×
K ∩K

+
R and sets of fundamental units V = {v1, . . . , vn−1}

(resp. U = {u1, . . . , vn−1}) of OL (resp. OK), Algorithm 3 runs in classical polynomial-time,
it returns a unit v ∈ O×

L such that NL/K(v) = N if it exists, and outputs ⊥ otherwise.

Proof. Correctness. As K is totally real, the group of roots of unity of K must be UK = {±1}.
Indeed, for any ζ ∈ UK and σ embedding of K, we have by definition σ(ζ) ∈ R and if ζn = 1

10Let P ∈ Z[X] be a monic polynomial such that P (0) ̸= 0. If all the complex roots of P have module less
or equal to 1, then these are roots of unity.
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Algorithm 3 Compute a unit of OL of given relative norm
Require: A totally real number field K of degree n, L = K(i) and a unit N ∈ O×

K ∩K
+
R . A

set of fundamental units V = {v1, . . . , vn−1} (resp. U = {u1, . . . , un−1}) of OL (resp. OK)
Ensure: v ∈ O×

L such that NL/K(v) = N or ⊥
1: Compute (βi)1≤i≤n−1 ∈ Zn−1 such that N = ±∏n−1

i=1 u
βi
i

2: B ← (β1, . . . , βn−1)T
3: for i ∈ {1, . . . , n− 1} do
4: Compute (αi,j)1≤j≤n−1 ∈ Zn−1 such that NL/K(vi) = ±∏n−1

j=1 u
αi,j
j

5: end for
6: A← (αi,j)1≤i,j≤n−1
7: X ← a solution to AX = B or ⊥ if no solution exist
8: if X ̸= ⊥ then
9: X = (x1, . . . , xn−1)T

10: v ←
∏n−1
i=1 v

xi
i

11: end if
12: return v or ⊥

for some n ∈ N>0, then σ(ζ)n = σ(ζn) = 1 i.e., σ(ζ) is a real root of unity, so σ(ζ) ∈ {±1}.
As σ fixes rational numbers and is injective, we must have ζ ∈ {±1}. Also, K has n1 = n
real embeddings and L = K(i) is totally imaginary with 2n imaginary embeddings (the n
embeddings of K are extended to L by i 7→ i or i 7→ −i). By Dirichlet’s unit theorem 2.3,
the free parts of O×

K and O×
L have same rank n − 1, and N (resp. NL/K(vi) ∈ O×

K) can be
uniquely expressed as in step 1 (resp. step 4).
The matrix A built at step 6 has size (n− 1)× (n− 1) and if the linear system at step 7 has
a solution, then the unit v = ∏n−1

i=1 v
xi
i has relative norm

NL/K(v) =
n−1∏
i=1

NL/K(vi)xi

= ±
n−1∏
j=1

u

∑n−1
i=1 αi,jxi

j

= ±
n−1∏
j=1

u
βj
j = ±N.

As N and NL/K(v) ∈ K+
R (the relative norm here is just | · |2), we must have equality

NL/K(v) = N . Finally if such v exist, the linear system AX = B must have a solution so the
algorithm ensures ⊥ if and only no v exist.

Complexity. Steps 1 and 4 reduce to linear algebra by taking the Log map (see the defi-
nition in 2.3) and solving linear systems. These systems have solutions because V and U are
fundamental systems, and N, NL/K(vi) ∈ O×

K . If it exists, the solution can be computed in
classical polynomial-time. □

Remark. To run the previous algorithm, sets of fundamental units for O×
K and O×

L are
needed. More generally the problem of computing the unit group of a number field (i.e.,
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computing a set of fundamental units and the group of roots of unity) can be done in quan-
tum polynomial-time in the degree and the logarithm of its discriminant, see [14]. For the
case of power-of-two cyclotomic fields and under Weber’s conjecture 2.2.2, explicit systems of
fundamental units are known (lemma 8.1 in [37]), as well as the torsion group.

Let us recall quickly our idea to solve sq-modLIPK . Fix Q ∈ H>0
2 (OK) a Gram matrix,

its first coefficient q1 is a sum of two squares in OK and we want to enumerate all such
writings. This is equivalent to find all the elements in OL (L = K(i)) with relative norm q1.
To do so, we build all the integral ideal of L with relative norm ideal q1OK and keep only the
principal ones, from which we compute a generator. These generators have relative norm q1
up to a unit which we are able to remove using Algorithm 3. Knowing the prime factorization
of NK/Q(q1) ∈ Z, we can use Dedekind-Kummer theorem to compute the decomposition
q1OK = ∏r

i=1 p
αi
i (see the following lemma). An ideal of OL with relative norm ideal q1OK

has its prime factors among the set of primes above the pi’s. Once computed this list of prime
ideals, it is then possible to enumerate all the ideals of OL with good relative norm.

Lemma 3.7. Given a number field K represented by an irreducible polynomial P such that
K ≃ Q[X]/(P ), there is an algorithm which computes the prime factorization of any ideal
I ⊂ OK , it runs in polynomial quantum-time in log |∆K | and log |NK/Q(I)|.

Proof. Compute N := NK/Q(I) ∈ Z and its prime factorization N = ±∏m
i=1 p

αi
i . This can

be done in quantum polynomial-time in log |N | by Shor’s algorithm (see section 5 of [33]).
For each prime factor pi, use Dedekind-Kummer theorem 2.7 to compute the splitting of
piOK : this requires to compute the factorization of m(X) in Fpi and it can be performed
in classical polynomial-time in degm(X) = n = [K : Q], using for example Berlekamp or
Cantor-Zassenhaus algorithms. Above each prime factor are at most n ideals of OK , whence
the complexity. □

Lemma 3.8. Given a number field K of degree with discriminant ∆K , there is an algorithm
deciding if an ideal I ⊂ OK is principal and if it is, it computes a generator of I. It runs in
polynomial quantum-time in logNK/Q(I) and log |∆K |.

Proof. See [5]. □

Proposition 3.5. Given a totally real number field K of degree n with ring of integers OK ,
discriminant ∆K and the quadratic extension L = K(i) with ring of integers OL, Algorithm 4
takes as input q1 ∈ OK and returns the set of all elements z ∈ OK + iOK ⊂ OL with relative
norm NL/K(z) = q1 in quantum time

poly(log |NK/Q(q1)|, log |∆K |) · (log |NK/Q(q1)|)r,

where r is the number of distinct prime ideals of OK appearing in the decomposition of q1OK .
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Algorithm 4 Compute elements in OK + iOK of given relative norm
Require: A totally real number field K with ring of integers OK , the extension L = K(i)

with ring of integers OL and an element q1 which is a sum of two squares in OK .
Ensure: All elements z ∈ OK + iOK such that NL/K(z) = q1.

1: Factorize q1OK = ∏r
i=1 p

αi
i

2: J0 ← {q ⊂ OL prime ideal | ∃ i ∈ {1, . . . , r} : q | piOL}
3: J← {J = q1 . . . qs | s ≤ r, qi ∈ J0, NL/K(J) = q1OK}
4: U ← {u1, . . . , un−1} a set of fundamental units of OK
5: V ← {v1, . . . , vn−1} a set of fundamental units of OL
6: UL ← the set of roots of unity in L
7: for J ∈ J do
8: Test if J is principal and compute a generator gJ
9: vJ ← Run Algorithm 3 with N = q1NL/K(gJ)−1 ∈ O×

K , V and U
10: if vJ ̸= ⊥ then
11: zJ ← vJgJ
12: SJ ← {ζ × zJ | ζ ∈ UL}
13: end if
14: for sJ ∈ SJ do
15: asJ + ibsJ ← sJ
16: if asJ , bsJ ∈ OK then
17: S.append(asJ + ibsJ )
18: end if
19: end for
20: end for
21: return S
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Proof. Correctness. To apply Algorithm 3 at step 9 we must check that N = q1NL/K(gJ)−1 ∈
O×
K∩K

+
R . First notice that q1 ∈ K+

R since it is the sum of two squares in OK (and K is totally
real so squares are positive), and NL/K(gJ) ∈ K+

R because the relative norm is just | · |2. By
construction we have NL/K(gJ)OK = NL/K(J) = q1OK so NL/K(gJ) is equal to q1 up to a
unit, thus N ∈ O×

K . By construction, for any J ∈ J we have NL/K(vJgJ) = q1. At the end
all the elements in S are in OK + iOK (checked at step 11) with relative norm q1 (because
NL/K(ζ) = 1 for any ζ ∈ UL). Now let us explain why the algorithm returns all such elements.
First of all, steps 1-3 build all ideals of OL with relative norm q1OK . Indeed, consider an
ideal I ⊂ OL with relative norm q1OK and write its decomposition in OL : I = ∏s

j=1 q
βj
j .

With the notation of step 1, ∏s
j=1NL/K(qj)βj = ∏r

i=1 p
αi
i . The latter is a decomposition

in prime ideals of OK . By unicity of the writting in theorem 2.1, we deduce that for any
j ∈ {1, . . . , s}, there exists ij ∈ {1, . . . , r} such that pij |NL/K(qj). This means I has all its
prime factors above the pi’s, so they must be contained in the set J0. Thus for any z ∈ OL
such that NL/K(z) = q1, the corresponding principal ideal I = zOL is in J (step 3).
When it is possible, steps 9-11 construct a generator with relative norm q1 for each ideal in J
(step 9 always succeeds when a solution exists) and the proof of Lemma 3.5 shows any other
generator with same relative norm differs from a root of unity. At step 12 we multiply the
generators with good norm by all the roots of unity, so the set SJ contains all the solution in
OL. Among them, we keep those in OK + iOK (step 16).

Complexity. Step 1 can be done via lemma 3.7 in quantum polynomial-time in n and
log |NK/Q(q1)|. Following the notation of step 1, above each pi are at most two prime ideals
of OL (this is a consequence of Theorem 3 because L/K is quadratic). More precisely there
are three possible cases :

piOL =


qi,0 is prime (inert case).
qi,1 qi,2 is the product of two distinct primes (split case).
q2
i,3 is the square of a prime (ramified case).

Also, the relative norm ideals are : NL/K(qi,0) = pi
2 ; NL/K(qi,1) = NL/K(qi,2) = pi ;

NL/K(qi,3) = pi. To find the qi,j ’s we apply again Lemma 3.7 to each pi ; since pi | q1OK , we
have NK/Q(pi) ≤ NK/Q(q1) so all the factorizations can be computed in quantum polynomial-
time in [L : Q] = 2n and log |NK/Q(q1)|. This must be repeated r times, where r is the number
of distinct prime ideals dividing q1OK . Complexity of step 2 is thus r ·poly(n, log |NK/Q(q1)|).

To build the set J from the set of prime ideals qi,j , we proceed as follows. Let pi be a prime
factor of q1OK . Any ideal I ∈ J is divisible by a prime ideal above pi. From the condition on
the norm of I and the computation of the NL/K(qi,j), we can enumerate all the possibilities
for the prime factors of I. First consider the case where piOL = qi,0 is inert, then αi is an even
number and I must have qi,0-valuation αi/2. If piOL = q2

i,3 ramifies, then I has qi,0-valuation
αi. The last case is the most interesting, as it leads to more solutions. If piOL = qi,1 qi,2
splits, then we have to choose (a, b) ∈ N2 such that a+b = αi, so that qai,1 qbi,2 divides I. There
are exactly αi + 1 acceptable pairs (a, b) (choose 0 ≤ a ≤ αi, then b is determined) and this
number is bounded by (log |NK/Q(q1)| + 1) so we get at most (log |NK/Q(q1)| + 1)r different
ways to choose the prime factors of I ; this is a bound for the cardinal of J.
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As mentioned in the previous remark, U , V and UL are computed in time poly(n, log |∆K |).
Step 8 runs in time poly(n, logNK/Q(q1), log |∆K |), by lemma 3.8. Algorithm 3 runs in (clas-
sical) polynomial-time and the set SJ at step 12 has size at most n2 (see the remark following
Dirichlet’s unit theorem 2.3). We assume step 15 can be done in polynomial time and step
16 can be checked easily (we have a Z-basis of OK). Finally, the set S has cardinal at most
n2|J| = n2(log |NK/Q(q1)|+ 1)r. □

Remarks. • In the case where OL = OK [i], the prime ideals qi,j ⊂ OL can be computed
using Dedekind-Kummer theorem 2.7 in the quadratic extension L/K : keeping the same
notations, m(X) is X2 + 1 and to compute its factorization in k(pi) = Fqi (qi = pfii , where
piZ = pi ∩ Z and fi = [OK/pi : Fpi ]) comes down to testing if −1 is a square in Fqi and
computing square roots, see [10].

• If the estimation αi ≤ log |NK/Q(q1)| is tight, then the number of prime factors r is small.

Heuristic. Let ω denote the arithmetic function which associates to n ∈ N \ {0} the number
of distinct prime factors of n. A famous result of Erdös and Kac states that in general, one
would expect ω(n) to be of order log logn. This result transposes perfectly to number fields.
An ideal I ⊂ OK has on average log log |NK/Q(I))| distinct prime factors in OK , in the sense
that the quantity

(
ω(I)− log log |NK/Q(I))|

)
/
√

log log |NK/Q(I)| follows a normal distribu-
tion. We refer to [24] Corollary 1, or [29] Theorem 1 (for counting the principal divisors).
Therefore, Algorithm 4 runs in average time

poly(n, log |NK/Q(q1)|, log |∆K |) · exp
(
(log log |NK/Q(q1)|)2

)
.

Proposition 3.6. Let K be a totally real number field. There is a quantum algorithm that

given a Gram matrix Q =
(
q1 q2
q3 q4

)
with coefficients in OK , computes all the matrices B ∈

GL2(OK) such that B∗B = Q, in time

poly(logB, log |∆K |) · (logB)rmax ,

with B = max{log |NK/Q(q1)|, log |NK/Q(q4)|} and rmax = max{r, s}, where the decomposi-
tions in distinct prime ideals are q1OK = ∏r

i=1 p
αi
i and q4OK = ∏s

i=1 p
′
i
βi.

In particular, this algorithm computes the secret key of the signature scheme Hawk in a
totally real number fields.

Proof. Run Algorithm 4 with q1 and q4. This builds two finite sets S, S′ ⊂ OK + iOK within
the time complexity announced. For each pair (a + ib, c + id) ∈ S × S′, we can efficiently

check if the matrix B =
(
a c
b d

)
satisfies B∗B = Q. If it does, we add this matrix to a set

S. There are at most n4(logB+1)r+s trials. At the end, the set S contains all the solutions. □
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4 Related works on module-LIP
This last section contains known results which can be applied to module-LIP. In [21], the

authors present an algorithm to test equality in the Witt-Picard group of a CM-order. For
example, OK is a CM-order whenever K is a cyclotomic field and its Witt-Picard group is the
quotient of the multiplicative group {(I, v) ∈ I(OK)×(K+

R ∩K) | such that I ·I = vOK} by the
subgroup {(vOK , vv) | v ∈ K×}. This can be done in classical polynomial time and it is based
on a variant of Gentry-Szydlo algorithm. Also, Plesken-Souvignier algorithm can be adapted
to module-lattices so that the outputs are automorphisms preserving the structure. As well
as the original algorithm, it can be modified to compute isometries between module-lattices.

4.1 Module-LIP for ideal lattices over CM-fields.

Suppose K is a degree n CM extension of Q (i.e., a number field equipped with an
involution¯: K → K that mimics complex conjugation. Equivalently, it is the totally imagi-
nary quadratic extension of a totally real number field. One may think of a cyclotomic field
K = Q(ζ) with the usual complex conjugation). For rank one module i.e., ideal lattices
over OK , the problem is known to be solved in classical-polynomial time, using a variant of
Gentry-Szydlo algorithm. A rank one module M over OK has a pseudo-basis B = (b, a) where
b ∈ K \ {0} and a ∈ I(OK), so that M = ba. We can always suppose that b ∈ OK . Then the
associated pseudo-Gram « matrix » is G = (g, I), where g = bb ∈ K+

R ∩OK and the problem
is, given any equivalent G’ = (g′, J), to find u ∈ IJ−1 ⊂ K such that g′ = uug.

Lemma 4.1 (Theorem 1.4 of [21], adapted). There is a deterministic polynomial-time algo-
rithm that given OK (where K is a CM number field), fractional ideals I1, I2 ∈ I(OK), and
elements v1, v2 ∈ K+

R ∩K satisfying I1 · I1 = v1OK and I2 · I2 = v2OK , decides whether there
exists u ∈ K such that I2 = uI1 and v2 = uuv1, and if so computes such an element u.

Then wc-smodLIPG
K can be solved applying the previous lemma with I1 = bOK , I2 = b′OK

where b′ ∈ OK satisfies bb = g′ and v1 = g, v2 = g′.

4.2 Plesken-Souvignier algorithm for module lattices

A module-lattice M ⊂ K l naturally embeds into K l
R ≃ Rnl via Minkowski embedding so

Plesken-Souvignier [28] algorithm can be applied using this identification but this increases
the dimension. In [9], the author adapts the algorithm to avoid this issue (although the
identification is still needed when enumerating sets of short vectors). Let B = (B, (ai)1≤i≤l)
be a pseudo-basis for M ⊂ K l. Using the identification and applying Plesken-Souvignier
algorithm to M we get θ ∈ GLK(K l) (bijective K-linear map θ : K l → K l) preserving M
and such that ⟨θ(bi), θ(bj)⟩ = ⟨bi, bj⟩ for any i, j ∈ {1, . . . , l} and where B = (b1, . . . , bl).
However, this does not guarantee that θ is orthogonal. Orthogonality is characterized with
the following lemma (Proposition 3.0.12 of [9]).

Lemma 4.2. Let M as above and e = (e1, . . . , en) be a Q-basis of K. Then, θ ∈ GLK(K l) is
orthogonal if and only if ⟨θ(erbi), θ(esbj)⟩ = ⟨erbi, esbj⟩ for any 1 ≤ i, j ≤ l and 1 ≤ r, s ≤ n.

Proof. This is clearly necessary and the converse comes from the fact that any x ∈ K l can be
written x = ∑

i,r xi,rerbi, with xi,r ∈ Q for all 1 ≤ i ≤ l and 1 ≤ r ≤ n. □
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Thus we modify the notion of k-partial automorphisms : Fixing a basis e = (e1, . . . , en) of
K over Q and a pseudo-basis B ofM (in fact onlyB is to consider since the coefficient ideals are
not involved in the algorithm), a k-partial automorphism of M is a tuple (v1, . . . , vk) ∈ Mk

such that ⟨ervi, esvj⟩ = ⟨erbi, esbj⟩ for any 1 ≤ i, j ≤ l and 1 ≤ r, s ≤ n. As well as the
unstructured case, the fingerprint provides an invariant and a first test to see if a partial
automorphism can be extended. The set short vectors S = {v ∈ M | ||v|| ≤ maxi,j ||eibj ||}
is computed and vector sums are defined, for v = (v1, . . . , vk) a k-partial automorphism of
M and s = (si,r,s)1≤i≤k, 1≤r,s≤n ∈ Okn

2
K , by Xs(v) := ∑

v∈Xs(v) v ∈ M , where Xs(v) := {v ∈
S | ⟨erv, esbi⟩ = si,r,s, ∀ 1 ≤ i ≤ k, 1 ≤ r, s ≤ n}. It is still true that any automorphism θ
of M satisfies θ(Xs(b1, . . . , bk)) = Xs(θ(b1), . . . , θ(bk)) (Proposition 3.2.3 of [9]) so we get a
second invariant.

The precomputation step of the algorithm consists in enumerating the set S, computing
the fingerprint and the vector sums of (b1, . . . , bk). Given a 1-partial automorphism of M
i.e., an element v ∈ S such that ⟨erv, esv⟩ = ⟨erb1, esb1⟩, we recursively extend v as follows :
suppose v is a k-partial automorphism of M , if k = l we are done. Otherwise, we compute the
set {x ∈ S | (v, x) is a (k + 1)-partial automorphism }. Explicitly, it is given by Ck+1 := {x ∈
S | ⟨erx, esx⟩ = ⟨erbk+1, esbk+1⟩ (1 ≤ r, s ≤ n) and ⟨erx, esvi⟩ = ⟨erbk+1, esbi⟩ (1 ≤ r, s ≤ n,
1 ≤ i ≤ k)}. Choosing x ∈ Ck+1, we check if (v, x) passes the fingerprint and vector sums
tests [9, Algorithm 3]. If it does, we take vk+1 = x and go to the next step. If it doesn’t, we
take another x ∈ Ck+1, and if all x ∈ Ck+1 have been tested, we go to the previous step, see
[9, Algorithm 4].

Conclusion
Module-LIP is in some sense the natural way to define a Lattice Isomorphism Problem on

module lattices, taking into account the algebraic structure. It can be seen as a special case
of LIP, via Minkowski embedding, with restricted set of solutions. Current methods to solve
module-LIP over an arbitrary number field and arbitrary rank are not more efficient than the
ones solving LIP. However in the setting of Hawk, i.e., for free rank two modules, it is possible
to efficiently recover the secret key when K is a totally real field (e.g., when K = Q(ζ + ζ−1)
is the maximal real subfield of a cyclotomic extension). But in general, the first and last
coefficients of the public key in Hawk are still sum of four squares in the real subfield (when
K = Q(ζ) with ζ a power-of-two primitive root of unity, q1, q4 ∈ OK are sums of four squares
in Z[ζ + ζ−1]) and the effectiveness of this decomposition (if fact we are interested in finding
all such decompositions) permits to recover the secret key.

Besides the search version of module-LIP, the distinguishing problem also deserves atten-
tion. Invariants for isometry classes of module lattices arise from the completion at finite and
infinite places. More precisely, isomorphic OK-module lattices L,L′ are isomorphic locally
everywhere i.e., Lp ≃ L′

p for any prime ideal or complex embedding p ; we say that L,L′ are
in the same genus. However the converse is in general not true and a theorem of Borel shows
that the genus decomposes into a finite disjoint union of classes. A further question would be
to distinguish algorithmically between isometry classes with same genus.
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Algorithm 5 Finding all congruence matrices for integral rank 2 modules.

Require: A pseudo-basis B⃗ = (B, (a1, a2)) with pseudo-Gram matrix G⃗, and G⃗′ =
(G, (b1, b2)) ∼ G⃗ an instance of wc-smodLIPB⃗K .

Ensure: All congruence matrices between G⃗ and G⃗′.
1: q ← 0 ; S← ∅
2: while q · OK = {0} or q · OK is not a prime ideal do
3: b1 × b2 ∋ (u, v)← DiscreteSample(G⃗′, s), using Algorithm ??
4: q ← (u, v) ·G′ · (u, v)T .
5: end while
6: S ← {(t1, t2) ∈ O2

K | t21 + t22 = q}, using Theorem 2.
7: Go to 1 and run 2-5 to get (u′, v′) non-colinear to (u, v) and q′.
8: S ′ ← {(t′1, t′2) | t′1

2 + t′1
2 = q′}, using Theorem 2.

9: for ((t1, t2), (t′1, t′2)) ∈ S × S ′ do
10: Solve the linear system (

t1 t′1
t2 t′2

)
= D ·

(
u u′

v v′

)

11: V ← B−1 ·D
12: end for
13: return S.
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