Preprints
M. D. GROVES & M. HARAGUS
A bifurcation theory for three-dimensional oblique travelling gravity-capillary water waves  (postscript)
soumis.

 
M. HARAGUS, D. P. NICHOLLS & D. H. SATTINGER
Solitary wave interactions of the Euler-Poisson equations   (postscript)
soumis.

 
Revues à comité de lecture
M. D. GROVES, M. HARAGUS & S.-M. SUN
A dimension-breaking phenomenon in the theory of steady gravity-capillary water waves   (postscript)
Phil. Trans. Roy. Soc. Lond. A., to appear.
 
M. HARAGUS & A. SCHEEL
Linear stability and instability of ion-acoustic plasma solitary waves   (postscript)
Physica D, 170 (2002), 13-30.

 
M. HARAGUS & A. SCHEEL
Finite-wavelength stability of capillary-gravity solitary waves
Comm. Math. Phys. 225 (2002), 487-521.

 
L. BREVDO, R. HELMIG, M. HARAGUS-COURCELLE & K. KIRCHGÄSSNER
Permanent fronts in two-phase flows in a porous medium
Transport in Porous Media 44 (2001), 507-537.

 
M. HARAGUS-COURCELLE & R. L. PEGO
Spatial wave dynamics of steady oblique wave interactions
Physica D 145 (2000), 207-232.

 
F. DIAS & M. HARAGUS-COURCELLE
On the transition from two-dimensional to three-dimensional water waves
Stud. Appl. Math. 104 (2000), 91-127.

 
M. HARAGUS-COURCELLE & G. SCHNEIDER
Bifurcating fronts for the Taylor-Couette problem in infinite cylinders
Z. angew. Math. Phys. 50 (1999), 120-151.

 
M. HARAGUS-COURCELLE & A. IL'ICHEV
Three Dimensional Solitary Waves in the Presence of Additional Surface Effects
Eur. J. Mech. B/Fluids 17 (1998), 739-768.

 
M. HARAGUS-COURCELLE & D. H. SATTINGER
Inversion of the linearized Korteweg-de Vries equation at the multi-soliton solutions
Z. angew. Math. Phys. 49 (1998), 436-469.

 
M. HARAGUS
Reduction of PDEs on unbounded domains. Application: unsteady water wave problem
J. Nonlinear Sci. 8 (1998), 353-374.

 
M. HARAGUS
Model equations for water waves in the presence of surface tension
Eur. J. Mech. B/Fluids 15 (1996), 471-492.

 


Chapitre dans un ouvrage collectif

M. HARAGUS-COURCELLE & K. KIRCHGÄSSNER
Three-dimensional steady capillary-gravity waves
Dans "Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems",
B. Fiedler ed., Berlin: Springer-Verlag, 2001, 363-397.

 


Notes aux CRAS

M. D. GROVES, M. HARAGUS & S.-M. SUN
Transverse instability of gravity-capillary line solitary water waves
C. R. Acad. Sci. Paris, t. 333, Série I (2001), 421-426.

 
M. HARAGUS-COURCELLE & R. L. PEGO
Travelling waves of the KP equations with transverse modulations
C. R. Acad. Sci. Paris, t. 328, Série I (1999), 227-232.

 
M. HARAGUS-COURCELLE
Nonlocal dimension breaking in turning points
C. R. Acad. Sci. Paris, t. 327, Série I (1998), 149-154.


Comptes-rendus de congrès à comité de lecture

M. HARAGUS & K. KIRCHGÄSSNER
Breaking the dimension of solitary waves
Dans "Progress in partial differential equations: the Metz surveys 4",
M. Chipot, I. Shafrir eds., Pitman Research Notes in Mathematics Series 345 (1996), 216-228.

 
M. HARAGUS
Reduction of high order nonlinear PDEs on the real line
Proceedings of the 24th National Conference of Geometry and Topology,
Timisoara, Roumanie (1996), 111-126.

 
M. HARAGUS & K. KIRCHGÄSSNER
Breaking the Dimension of a Steady Wave: Some Examples
Dans "Nonlinear dynamics and pattern formation in the natural environment",
A. Doelman, A. van Harten eds., Pitman Research Notes in Mathematics Series 335 (1995), 119-129.

 
M. HARAGUS
The orbital stability of fronts for high order parabolic partial differential equations
Dans "Structure and Dynamics of Nonlinear Waves in Fluids",
A. Mielke, K. Kirchgässner eds., Adv. Ser. Nonlinear Dynamics 7 (1995), 268-274.

 


Thèses

M. HARAGUS
Existence et stabilité d'ondes hydrodynamiques (postscript)
Habilitation, Université de Bordeaux, 2001.

 
M. HARAGUS
Réduction d'équations d'évolution en domaines cylindriques
et stabilité de solutions de type onde solitaire
Thèse de doctorat, Université de Nice, 1994.