next up previous
Next: About this document ...

Articles parus ou à paraître dans des revues à comité de lecture

[A1]
M. HARAGUS, Model equations for water waves in the presence of surface tension, Eur. J. Mech. B/Fluids 15 (1996), 471-492.

[A2]
M. HARAGUS, Reduction of PDEs on unbounded domains. Application: unsteady water wave problem, J. Nonlinear Sci. 8 (1998), 353-374.

[A3]
M. HARAGUS-COURCELLE & D. H. SATTINGER, Inversion of the linearized Korteweg-de Vries equation at the multi-soliton solutions, Z. angew. Math. Phys. 49 (1998), 436-469.

[A4]
M. HARAGUS-COURCELLE & A. IL'ICHEV, Three Dimensional Solitary Waves in the Presence of Additional Surface Effects, Eur. J. Mech. B/Fluids 17 (1998), 739-768.

[A5]
M. HARAGUS-COURCELLE & G. SCHNEIDER, Bifurcating fronts for the Taylor-Couette problem in infinite cylinders, Z. angew. Math. Phys. 50 (1999), 120-151.

[A6]
F. DIAS & M. HARAGUS-COURCELLE, On the transition from two-dimensional to three-dimensional water waves, Stud. Appl. Math. 104 (2000), 91-127.

[A7]
M. HARAGUS-COURCELLE & R. L. PEGO, Spatial wave dynamics of steady oblique wave interactions, Physica D 145 (2000), 207-232.

[A8]
L. BREVDO, R. HELMIG, M. HARAGUS-COURCELLE & K. KIRCHGÄSSNER, Permanent fronts in two-phase flows in a porous medium, Transport in Porous Media 44 (2001), 507-537.

[A9]
M. HARAGUS & A. SCHEEL, Finite-wavelength stability of capillary-gravity solitary waves, Comm. Math. Phys., à paraître.

Chapitre dans un ouvrage collectif

[C1]
M. HARAGUS-COURCELLE & K. KIRCHGÄSSNER, Three-dimensional steady capillary-gravity waves, dans Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, B. Fiedler ed., Berlin: Springer-Verlag, 2001, 363-397.

Articles soumis dans des revues à comité de lecture

[S1]
M. D. GROVES, M. HARAGUS & S.-M. SUN, A dimension-breaking phenomenon in the theory of steady gravity-capillary water waves, Phil. Trans. Roy. Soc. Lond. A., 54 p.

[S2]
M. D. GROVES & M. HARAGUS, Three-dimensional oblique travelling gravity-capillary water waves, J. Nonlinear Sci., 35 p.

[S3]
M. HARAGUS, D. P. NICHOLLS & D. H. SATTINGER, Solitary wave interactions of the Euler-Poisson equations, SIAM J. Appl. Math., 33 p.

Notes aux CRAS

[N1]
M. HARAGUS-COURCELLE, Nonlocal dimension breaking in turning points, C. R. Acad. Sci. Paris, t. 327, Série I (1998), 149-154.

[N2]
M. HARAGUS-COURCELLE & R. L. PEGO, Travelling waves of the KP equations with transverse modulations, C. R. Acad. Sci. Paris, t. 328, Série I (1999), 227-232.

[N3]
M. D. GROVES, M. HARAGUS & S.-M. SUN, Transverse instability of gravity-capillary line solitary water waves, à paraître.

Comptes-rendus de congrès à comité de lecture

[P1]
M. HARAGUS, The orbital stability of fronts for high order parabolic partial differential equations, dans ``Structure and Dynamics of Nonlinear Waves in Fluids'', A. Mielke, K. Kirchgässner eds., Adv. Ser. Nonlinear Dynamics 7 (1995), 268-274.

[P2]
M. HARAGUS & K. KIRCHGÄSSNER, Breaking the Dimension of a Steady Wave: Some Examples, dans ``Nonlinear dynamics and pattern formation in the natural environment'', A. Doelman, A. van Harten eds., Pitman Research Notes in Mathematics Series 335 (1995), 119-129.

[P3]
M. HARAGUS & K. KIRCHGÄSSNER, Breaking the dimension of solitary waves, dans ``Progress in partial differential equations: the Metz surveys 4'', M. Chipot, I. Shafrir eds., Pitman Research Notes in Mathematics Series 345 (1996), 216-228.

[P4]
M. HARAGUS, Reduction of high order nonlinear PDEs on the real line, Proceedings of the 24th National Conference of Geometry and Topology, Timisoara, Roumanie (1996), 111-126.

Autres

[D1]
M. HARAGUS, Réduction du problème des vagues, Stage de D.E.A., Université de Nice, 1991.

[D2]
M. HARAGUS, On how to use invariants in the 2D water waves problem, Matarom (Revue éditée dans le cadre du Projet Européen TEMPUS) 1 (1992), 27-33.

[D3]
M. HARAGUS, Réduction d'équations d'évolution en domaines cylindriques et stabilité de solutions de type onde solitaire, Thèse, Université de Nice, 1994.




next up previous
Next: About this document ...
Mariana Haragus
2001-10-11