Next: About this document ...
Articles parus ou à paraître dans des revues
à comité de lecture
- [A1]
- M. HARAGUS,
Model equations for water waves in the presence of
surface tension, Eur. J. Mech. B/Fluids 15
(1996), 471-492.
- [A2]
- M. HARAGUS,
Reduction of PDEs on unbounded domains. Application:
unsteady water wave problem,
J. Nonlinear Sci. 8 (1998), 353-374.
- [A3]
- M. HARAGUS-COURCELLE & D. H.
SATTINGER, Inversion of the
linearized Korteweg-de Vries equation at the multi-soliton
solutions, Z. angew. Math. Phys. 49 (1998), 436-469.
- [A4]
- M. HARAGUS-COURCELLE & A. IL'ICHEV,
Three Dimensional Solitary
Waves in the Presence of Additional Surface Effects,
Eur. J. Mech. B/Fluids 17 (1998), 739-768.
- [A5]
- M. HARAGUS-COURCELLE & G.
SCHNEIDER, Bifurcating fronts for the
Taylor-Couette problem in infinite cylinders,
Z. angew. Math. Phys. 50 (1999), 120-151.
- [A6]
- F. DIAS & M. HARAGUS-COURCELLE,
On the transition from two-dimensional to
three-dimensional water waves,
Stud. Appl. Math. 104 (2000), 91-127.
- [A7]
- M. HARAGUS-COURCELLE & R. L.
PEGO, Spatial wave dynamics of steady oblique wave interactions,
Physica D 145 (2000), 207-232.
- [A8]
- L. BREVDO, R. HELMIG, M. HARAGUS-COURCELLE & K. KIRCHGÄSSNER, Permanent fronts in two-phase flows in a porous
medium, Transport in Porous Media 44 (2001), 507-537.
- [A9]
- M. HARAGUS & A. SCHEEL,
Finite-wavelength stability
of capillary-gravity solitary waves, Comm. Math. Phys., à
paraître.
Chapitre dans un ouvrage collectif
- [C1]
- M. HARAGUS-COURCELLE & K. KIRCHGÄSSNER,
Three-dimensional steady capillary-gravity waves, dans
Ergodic Theory, Analysis, and Efficient
Simulation of Dynamical Systems, B. Fiedler ed.,
Berlin: Springer-Verlag, 2001, 363-397.
Articles soumis dans des revues
à comité de lecture
- [S1]
- M. D. GROVES, M. HARAGUS & S.-M. SUN, A dimension-breaking phenomenon in the theory
of steady gravity-capillary water waves,
Phil. Trans. Roy. Soc. Lond. A., 54 p.
- [S2]
- M. D. GROVES & M. HARAGUS,
Three-dimensional oblique travelling
gravity-capillary water waves, J. Nonlinear Sci., 35 p.
- [S3]
- M. HARAGUS, D. P. NICHOLLS & D. H. SATTINGER, Solitary wave interactions of the Euler-Poisson
equations, SIAM J. Appl. Math., 33 p.
Notes aux CRAS
- [N1]
- M. HARAGUS-COURCELLE,
Nonlocal dimension breaking in turning points,
C. R. Acad. Sci. Paris, t. 327, Série I
(1998), 149-154.
- [N2]
- M. HARAGUS-COURCELLE & R. L.
PEGO, Travelling waves of the KP equations with
transverse modulations,
C. R. Acad. Sci. Paris, t. 328, Série I
(1999), 227-232.
- [N3]
- M. D. GROVES, M. HARAGUS & S.-M. SUN, Transverse instability of gravity-capillary
line solitary water waves, à paraître.
Comptes-rendus de congrès à comité de lecture
- [P1]
- M. HARAGUS, The orbital stability of fronts for high order
parabolic partial differential equations, dans ``Structure
and Dynamics of Nonlinear Waves in Fluids'', A. Mielke,
K. Kirchgässner eds., Adv. Ser.
Nonlinear Dynamics 7 (1995), 268-274.
- [P2]
- M. HARAGUS & K. KIRCHGÄSSNER, Breaking the
Dimension of a Steady Wave: Some Examples, dans ``Nonlinear
dynamics and pattern formation in the natural environment'',
A. Doelman, A. van Harten eds., Pitman Research Notes
in Mathematics Series 335 (1995), 119-129.
- [P3]
- M. HARAGUS & K. KIRCHGÄSSNER, Breaking the
dimension of solitary waves, dans ``Progress in partial
differential equations: the Metz surveys 4'', M. Chipot,
I. Shafrir eds., Pitman Research Notes
in Mathematics Series 345 (1996), 216-228.
- [P4]
- M. HARAGUS,
Reduction of high order nonlinear PDEs on the real
line, Proceedings of the 24th National Conference of Geometry and
Topology, Timisoara, Roumanie
(1996), 111-126.
Autres
- [D1]
- M. HARAGUS, Réduction du problème des vagues, Stage de D.E.A.,
Université de Nice, 1991.
- [D2]
- M. HARAGUS, On how to use invariants in the 2D water waves
problem, Matarom (Revue éditée dans le cadre du Projet
Européen TEMPUS) 1 (1992), 27-33.
- [D3]
- M. HARAGUS, Réduction d'équations
d'évolution en
domaines cylindriques et stabilité de solutions de type onde
solitaire, Thèse, Université de Nice, 1994.
Next: About this document ...
Mariana Haragus
2001-10-11