Publications


  • Real diffusion with complex spectral gap, avec J.-F. Bony
  • Journal of Spectral Theory, à paraitre
  • Exit time and principal eigenvalue of non reversible elliptic diffusions, avec D. Le Peutrec et B. Nectoux
  • Comm. Math. Phys., à paraitre
  • Metastable diffusions with degenerate drifts, avec M. Assal et J.-F. Bony
  • Annales Institut Fourier, à paraitre
  • Eyring-Kramers type formulas for some piecewise deterministic Markov processes, avec D. Le Peutrec et B. Nectoux
  • Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, à paraitre
  • Eyring-Kramers law for Fokker-Planck type differential operators, avec J.-F. Bony et D. Le Peutrec
  • J. Eur. Math. Soc., à paraitre
  • Spectral asymptotics for Metropolis algorithm on singular domains,
  • Bulletin Soc. Math. France, 150, 3 (2022), pp 579-623
  • Applications of resonance theory without analyticity assumption, avec J.-F. Bony et T. Ramond,
  • Annales Henri Poincarré, 22 (2021), no 11, pp 3641--3697
  • Sharp spectral asymptotics for non-reversible metastable diffusion processes, avec D. Le Peutrec
  • Probability and Mathematical Physics, Vol. 1, No. 1, 2020, pp. 3--53
  • About small eigenvalues of Witten Laplacian
    Pure and Applied Analysis 1 (2019), no. 2, 149–206.
  • A semiclassical approach to Kramers-Smoluchowski equation, avec M. Zworski
  • SIAM Journal of Math. Analysis, Vol. 50 (2018), No. 5, pp. 5362–5379
  • Around supersymmetry for semiclassical second order differential operator,
    Proc. Amer. Math. Soc., 144 (2016), no. 10, 4487-4500.
  • Tunnel effect for semiclassical random walk, avec J.-F. Bony et F. Hérau
    Analysis and PDE, Vol 8 (2015), no. 2, 289-332.
  • Spectral analysis of hypoelliptic random walks, avec G. Lebeau
    Journal de l'Institut Mathématique de Jussieu, 14 (2015), no. 3, 451-491.
  • Gibbs/Metropolis algorithms on a convex polytope, avec P. Diaconis et G. Lebeau
    Math. Zeitschrift, 272 (2012), no 1-2, 109-129.
  • Spectral analysis of random walk operators on euclidean space, avec C. Guillarmou
    Math. Res. Letters, Volume 18, Issue 3, May 2011, 405-424.
  • Random walk on surfaces with hyperbolic cusps, avec H. Christianson et C. Guillarmou
    Annales Henri Poincaré, Volume 12, 2011, 743-775.
  • Analyse semiclassique d'algorithmes de type Metropolis
    Gazette des mathématiciens, 123 (2010), 16-34.
  • Geometric analysis for the Metropolis algorithm on Lipschitz domains, avec P. Diaconis et G. Lebeau
    Inventiones mathematicae, 185 (2011), no. 2,  239-281.
  • Semiclassical analysis of a random walk on a manifold, avec G. Lebeau
    Annals of Probability, 38 (2010), 277-315.
  • Remarks on non-linear Schrödinger equation with magnetic fields
    Comm. Partial Diff. Eq., Volume 33, Issue 7 July 2008 , 1198 - 1215.
  • Scattering amplitude for the Schrödinger equation with strong magnetic field and strong electric potential
    Int. Math. Res. Not., 49 (2005), 3005-3053.
  • Scattering amplitude and scattering phase for the Schrödinger equation with strong magnetic field
    J. Math. Phys., 46 (2005), 043514.
  • Scattering theory for the Schrödinger equation with repulsive potentialavec  J.-F. Bony, R. Carles et D. Häfner
    J. Math. Pures Appl., 84, 509-579 (2005).
  • Scattering pour l'équation de Schrödinger en présence d'un potentiel répulsif , avec  J.-F. Bony, R. Carles et D. Häfner
    C.R. Acad. Sci. Paris, 338, 2004, 453-456.
  • Microlocalization of resonant states and estimates of the residue of the scattering amplitude, avec J.-F. Bony
    Comm. Math. Phys., 246, 375-402 (2004).
  • Semi-classical estimate of the residue of the scattering amplitude for long-range potentials
    J. Phys. A, 36 (2003), 4375-4393
  •  Semi-classical behavior of the scattering amplitude for trapping perturbations at fixed energy
    Can. J. Math., 56 (2004), 794-824.
  •  Estimation des résidus de l'amplitude de diffusion pour des perturbations de longue portée
    C.R. Acad. Sci. Paris, 336, 2003, 907-912.
  •  Semi-classical limit of the scattering amplitude for trapping perturbations
    Asympt. Analysis, 32 (2003), 221-255. 
  •  Comportement asymptotique semiclassique de l'amplitude de diffusion pour des perturbations captives
    C.R. Acad. Sci. Paris, 334 (I), 655-660 (2002).



  • Thèses


    Exposés

    • Semiclassical methods for the analysis of reversible and non reversible metastable processes (lecture at CIRM 2023), slides-cirm.pdf
    • Sharp asymptotics on the exit time of non-reversible processes diffusions, exit-nonrev.pdf
    • Eyring-Kramers law for Fokker-Planck type differential operators diffusions, exp-KFP.pdf
    • Sharp spectral gap for non-reversible metastable diffusions, nonrev.pdf
    • About small eigenvalues of the Witten Laplacian, witten.pdf
    • Tunnel effect for semiclassical random walk, tunnel.pdf
    • Semiclassical random walks on unbounded manifolds, exp_rnb.pdf
    • Geometric analysis of the Metropolis algorithm on Lipschitz domain, exp_metro.pdf
    • Scattering amplitude for the Schrödinger equation with magnetic field: exposeforges.pdf