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Abstract

The inverse problem of cardiac electrophysiology is notoriously ill-posed, but is nonetheless ex-
tremely useful. In particular, it is difficult to reconstruct the transmembrane voltage in the volume
of the heart, since an infinite dimensional space of transmembrane voltages can produce the same
observation on the body surface. A widely used alternative is to consider only the outer surface of
the heart, the epicardium, and solve a Cauchy problem for the Laplace equation in the torso domain.
However, this approach only allows reconstruction of the extracellular potential on the epicardium,
thus missing the information contained in the volume of the heart and in the transmembrane voltage.

We propose a new methodology for reconstructing activation maps from torso surface data, which
incorporates information from the myocardial volume, while solving a surface problem on the heart.
We formulate a static forward model, derived from the bidomain model, by averaging equations in
the heart. The averaged equations are coupled with the usual Laplace equations in the surrounding
domains. For solving the inverse problem, this «depth-averaged» forward model is used as a constraint
in an optimal control problem that allows to recover depth-averaged transmembrane voltage and
extracellular potential in the heart, corresponding to observations on the body surface. Activation
maps are computed by post-processing the recovered signals in the heart. This method retains the
ability to include the interactions between the heart, torso and blood cavities, while maintaining the
simplicity of the usual inverse procedure. The inverse problem is solved with a simple linear system,
using the Lagrangian formalism, and thus in a single iteration.

We emphasize on the post-processing techniques for recovering activation maps. We observe
that using a threshold on the transmembrane voltage allows to recover smoother and more accurate
activation maps than with a maximal deflection method on the extracellular potential.

Keywords Inverse problem, cardiac electrophysiology, activation times, asymptotic models

1 Introduction

Cardiac rhythm disorders is a leading cause of death around the globe [7, 24]. Sudden cardiac deaths
account for between 20 and 25 % of total worldwide deaths [29]. However, the observation of arrythmias
remains a challenge. Currently, identifying the sources of preexisting arrhythmias involve an invasive
technique called the electroanatomical mapping (EAM). Clearly, this procedure carries inherent risks and
requires prior knowledge of an existing disease. A promising approach called ECGi (electrocardiographic
imaging) allows to reconstruct the heart’s electrical activity, and notably its activation pattern, with a
non-invasive technique [1]. The ECGi entails positioning a high density of electrodes on the patient’s
chest and solving a mathematical inverse problem known as the inverse problem of electrocardiography.
However, the precise resolution of the inverse electrocardiography problem, and especially activation maps
recovery, is still a work in progress [6].

The bidomain equations [30, 10, 18, 17] constitute the reference model for cardiac action potential,
its propagation, and the generated electrical field. As the heart is surrounded by conductive media
(blood, torso), the bidomain equations in the heart are coupled to potential equations in the torso
and blood cavities. The heart being surrounded by conductive mediums (blood, torso), the bidomain
equations in the heart are coupled with potential equations on the torso and blood. Considering a domain
Ω = ΩB ∪ΩH ∪ΩT (blood cavities, heart and torso respectively - see Figure 1), we denote by v : ΩH −→ R
the transmembrane voltage and u : Ω −→ R the extracellular potential in the heart, and extracardiac
potential in the blood or torso. In this article, we consider the non-dimensional following bidomain
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equation 

− div(σi∇(u+ v)) + ∂tv + f(v, t) = 0 in ΩH ,

− div((σe + σi)∇u)− div(σi∇v) = 0 in ΩH ,

− div(σT/B∇u) = 0 in ΩT / ΩB ,

[u] = 0 on Ω̄T/B ∩ Ω̄H ,

σT/B∇u · n = σe∇u · n on Ω̄T/B ∩ Ω̄H ,

σi∇(u+ v) · n = 0 on Ω̄T/B ∩ Ω̄H ,

σT∇u · n = 0 on ∂Ω.

(1)

The vector n denotes the normal pointing outward of ΩH or of Ω. The parameter σ is the (scaled)
conductivity tensor in the different mediums depending on the index, and f is the time-dependent ionic
current. In practice the function f also depends on some ionic variables such as gating variables or
ion concentration, that solve a system of ODEs. Concerning the inverse problem, those ODEs and the
ionic model do not need to be specified. The potential u and transmembrane voltage v are searched
as functions of H1(ΩH) and H1(Ω) respectively. Note that the transmission conditions [u] = 0 and
σT/B∇u · n = σe∇u · n on Ω̄T/B ∩ Ω̄H derive directly from the condition u ∈ H1(Ω). During the

ΩH

ΩT

ΩB

ΓT

ΓH

Figure 1: Schematic view of the domain Ω = ΩB ∪ ΩH ∪ ΩT .

activation of the heart, the transmembrane voltage undergoes an action potential, the first phase of
which is a rapid transition from a resting state to a plateau phase, known as depolarization. For a fixed
x ∈ ΩH , the activation time is defined as the time of maximum temporal derivative of the transmembrane
voltage. Activation occurs during depolarization. At a fixed x, the activation time is well understood,
although it has several formal definitions. It can be characterized as the moment at which a threshold
value is crossed, or equivalently, as the moment of minimum time derivative of the extracellular potential
(maximal negative time derivative) [22, 1, 5]. The juxtaposition of the activation times of all the points
in the heart constitutes the activation map, which is a valuable tool for cardiologists.

Activation maps can be reconstructed by solving the inverse problem of electrocardiography [25]. It
consists in recovering the transmembrane voltage in the heart, or the extracellular potential, that produce
a body surface potential which matches given measurements (data). Usually, the inverse problem is static,
solved at several times independently, and relies on the electrostatic equilibrium equations contained in
the bidomain model [1, 25]. Then the recovered signals are post-processed to compute activation maps.
The inverse problem of electrocardiography is an ill-posed problem, making activation maps very difficult
to recover. In addition, the reconstruction of activation maps from the reconstructed signals in the heart
suffers from the formation of artificial lines of block [28, 5], which may falsely suggest a pathology. As the
activation time can be detected on the extracellular potential via a minimal slope, the inverse problem is
often limited to retrieving the extracellular potential u on the outer surface of the heart, the epicardium
[1, 13, 25]. This problem, known as the "Potential-based inverse problem" [25] consists in finding u in the
torso, and in particular its trace on the epicardium such that for a potential zT measured on the surface
of the torso ΓT (ΓT coincides with the former ∂Ω),

− div(σT∇u) = 0 in ΩT

u = zT on ΓT

∂nu = 0 on ΓT .

(2)

Note that in this formulation, the interactions with the heart do not appear, and that only volume ΩT

between the epicardium and the torso surface is taken into account. This is a ill-posed Cauchy problem,



3

so the solution does not necessarily exist, although is unique when it does [2]. It is usually solved using
a Tikhonov regularization.

Another method consists in recovering the transmembrane voltage v. This version has the great ad-
vantage of directly recovering the variable of interest for activation times. Some works aim to reconstruct
the transmembrane voltage v in the thickness of the heart [11, 33, 23], while others seek only to retrieve
this one on a surface, typically the epicardium or endorcardium or both [21]. As a matter of fact, the
authors of [15, 14] justify the surface reconstruction by proving, under certain assumptions about the
operators, that v can be reconstructed up to a constant on a surface, whereas throughout the myocardial
domain (volume), an infinite dimensional distribution of transmembrane voltages can produce the same
potential at the surface of the torso. Thus, regularization techniques and a priori solutions must be
chosen wisely to reduce the space of solutions.

The inverse problem can also be directly formulated in terms of activation times. For instance, in
[31, 26], the authors propose a predefined shape of transmembrane voltage v, that depends on a small
number of parameters, including the activation time. Activation maps are then reconstructed through
the resolution of a non-linear parameter identification problem. These parameter identification problems
have a more constrained space of solution, and thus the effects of ill-conditioning are attenuated, however,
they have the disadvantage of being non-linear, and therefore difficult to solve numerically. In addition,
imposing a fixed shape for the action potential hampers the possibility of identifying a pathological signal.

Some researchers [19] have shown the ability to solve a complete bidomain-based inverse problem, using
a given function f . However, this type of approach is very time-consuming and depends on extended
knowledge about the ionic current f , which bears lots of uncertainty, especially in pathological cases.

In this article, we propose an intermediate mixed volume and surface inverse problem, that combines
the advantages of reconstructing the transmembrane voltage on a surface, while incorporating some
information on the interior of the myocardial wall via averaging.

We derive coupled equations between a surface-like heart and volumic torso and blood, by averaging
the electrostatic equilibrium equation of the bidomain model �����equations in the cardiac wall thickness.
It follows techniques used to derive fracture models in porous media [20, 16, 12]. The myocardial wall
is assumed thin relatively to its extend, and we average the potential u and the voltage v along the
wall thickness. As a consequence, the myocardial volume is replaced by an average surface. The model
involves average potential ū and voltage v̄ defined on the surface. These functions are easier to identify
than their volumic conterparts the volumic ones while retaining information on electrical transmission
through the endocardial and epicardial layers.

This model is finally used as a constraint in an optimal control problem, in order to recover the average
potential ū and voltage v̄ in the heart, from observations on the body surface. The cost function for the
optimal control problem compares the data (electric field) on the torso boundary to the output of the
model in a L2 norm. This quadratic problem can be formulated as a linear system using the Lagrangian
formalism. Therefore, it is solved in a single iteration as in [23]. We recover the average potential ū and
transmembrane voltage v̄ in the heart, as well as u in both torso and blood volumes, with a formulation
that naturally incorporates the couplings between the different domains. From the signals reconstructed
over a discrete set of times, we recover tickness-averaged activation maps using two different methods,
that we compare. In the light of our results, we suggest using a threshold on v̄ to recover smoother and
more accurate activation maps.

The paper is organized as follows: in Section 2, we develop the forward model, by averaging elec-
trostatic equilibrium equation of the bidomain model �����equations in the thickness of the heart, in 2D
geometries. Thus volumes become surfaces, and surfaces become curves. We verify its well-posedness,
and implement the model in cartesian and polar geometries. We compare the depth-averaged model
to the full 2D bidomain equations and pinpoint its limitations. In Section 3, we write an optimal con-
trol problem, based on the forward model, to recover the electrical potential and voltage in the heart
from data available on the torso surface only. We prove the existence and uniqueness of the solution
with regularization, and use a Lagrangian formulation for the implementation. In Section 4, we present
some results, and test the ability of the method to reconstruct activation maps. We also highlight the
importance of reconstructing the transmembrane voltage for activation maps recovery.
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2 A depth-averaged heart forward model

2.1 Derivation of the model
2.1.1 Assumptions

We place ourselves in a 2D geometry. Let Ω = ΩB ∪ ΩH ∪ ΩT be a bounded domain. ΩB , ΩH and
ΩT represent respectively the blood, heart and torso, and ΩH separates the blood cavity from the torso.
All boundaries are smooth. We denote by L the characteristic length of the heart. The thickness h of
ΩH is supposed to be small compared to the length L, h ≪ L, and assumed constant. We denote by
ΓT = ∂Ω the torso surface. We also consider ΓH a regular curve embedded in Ω̄H . For instance, ΓH

may be given by the 0 level set of a C1 signed distance function d: ΓH = {x ∈ Ω s.t. d(x,ΓH) = 0} .
Generally, the heart domain closure Ω̄H encompasses the curve ΓH such that, for λ ∈ [0, 1], ΩH =
{x ∈ Ω s.t. − λh ≤ d(x,ΓH) ≤ (1− λ)h}. Note that if λ = 0, ΓH is located on the endocardium, while if
λ = 1, ΓH is located on the epicardium. We define the extended domains of blood Ω̃B and torso Ω̃T such
that Ω̃B = {x ∈ Ω s.t. d(x,ΓH) < 0} , and Ω̃T = {x ∈ Ω s.t. d(x,ΓH) > 0} . Some example geometries of
this form are presented in Figures 2, 3, 4.

We suppose that the fibers of the myocardium are parallel to ΓH . This hypothesis is realistic, since
up to a relatively small angle, the myocardial fibers are almost in the same plane as the boundaries
of the heart (see [4]). The coordinate system associated to the heart determines a basis in which the
conductivity tensors are diagonal. Indeed, in a cartesian geometry, the conductivity tensors write in the
cartesian system

σi/e =

(
σi/e,ℓ 0
0 σi/e,p

)
.

In a polar heart geometry, they are of the form

σi/e = PT (θ)

(
σi/e,p 0
0 σi/e,ℓ

)
P (θ),

where P is the rotation matrix used to switch from the cartesian canonical basis to the (r, θ) polar
basis. Note that the longitudinal direction is along x in the cartesian case and along θ in the polar case.
The longitudinal and transverse conductivities σℓ ≥ σp > 0 are taken constant. Outside of the heart,
the conductivity tensors are isotropic, and thus reduce to scalars σT and σB . The indices i/e denote,
respectively, the intracellular or extracellular medium. The conductivity σℓ is the sum of σi,ℓ + σe,ℓ.

Note: This type of geometry does not include branching in the heart volume, so that the septum cannot
be represented for example. The model would have to be adapted to deal with this type of geometry.

2.1.2 Model

We consider ū : ΓH −→ R an average potential in the heart, uT , uB : ΩT/B −→ R the torso and blood
electrical potentials, and v̄ : ΓH −→ R an average transmembrane voltage. Mathematically, we define
(ū, uT , uB) in H1(ΓH)×H1(Ω̃T )×H1(Ω̃B) and v̄ in H1(ΓH) such that σi,ℓh

∂2

∂s2 v̄ belongs to L2(ΓH). We
replace the bidomain equations (1) by the following static "depth-averaged " equations:

σℓh
∂2

∂s2
ū+ σT

∂uT

∂n
|ΓH

+ σB
∂uB

∂n
|ΓH

+ σi,ℓh
∂2

∂s2
v̄ = 0 on ΓH ,

div(σT∇uT ) = 0 in Ω̃T ,

div(σB∇uB) = 0 in Ω̃B ,

(3)

coupled with the boundary conditions
σT∂nu = 0 on ΓT ,

σe,p
uT − ū

h
= (1− α)σT∂nuT on ΓH ,

σe,p
uB − ū

h
= ασB∂nuB on ΓH .

(4)

The values ū and v̄ represent the in-depth averaged values of the potential u and transmembrane voltage
v of the bidomain equations across the heart. The normal n is again directed from ΓH to ΩB/T or outward
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of Ω. The factor 0 < α < 1 is the barycentric coordinate of the average value location in the depth of
the heart ΩH . Note that α and λ may be different. For instance, in the cartesian geometry developed
below, λ = 1, while in the polar geometry λ = 1

2 . For the numerical experiments, the value of α will be
set at 1

2 in both cases.
The Robin boundary conditions in (4) hide two assumptions: firstly, the average values v̄ and ū are

located at the distance αh from the endocardium, and secondly, the potentials are assumed piecewise
affine in the depth of the heart (see the section below on cartesian geometry). In the case α = 0 or α = 1,
the Robin boundary conditions become Dirichlet conditions, changing the nature of the model. For the
sake of simplicity, we will not address the case α = 0 or α = 1 in this paper.

The derivation of the "depth-averaged" model is justified in two particular cases, a cartesian geometry,
and a polar geometry. By extension, we believe that it can be generally derived through a local map
approach. This generalization will be studied in future work, in three dimensions.

Note: The model was also derived in the case of a variable heart thickness h(x) in a cartesian geometry.
Terms of order h′(x) appear in the equations, however, if ∥h′∥ is small respectively to h/L, the model
remains identical at the leading order.

2.1.3 Example 1: Cartesian geometry

n−

ΩB

ΩT

ΩHh

n+

y−

y+

Figure 2: Cartesian geometry

We consider a rectangular geometry (Figure 2), where the blood and torso are separated by the heart.
The heart is oriented along the x-axis, and the y-axis gives the transverse direction. The blood-heart and
torso-heart interfaces are located, respectively, at y = y− = −h

2 and at y = y+ = +h
2 . We suppose that

σB∇u · n = 0 on ∂ΩB \ ∂ΩH and that (σe + σi)∇u · n = σi∇v · n = 0 on ∂ΩH \ ∂ (ΩT ∪ ΩB).
Integrating the second equation of (1) in the heart along the y coordinate, and using the transmission

conditions of the bidomain equations (1), we obtain

0 =

∫ y+

y−

div((σi + σe)∇u)dy +

∫ y+

y−

div(σi∇v)

=∂x((σi,ℓ + σe,ℓ)∂x(hū)) + σT∇uT · n+ + σB∇uB · n− + ∂x(σi,ℓ∂x(hv̄)) on ΩH ,

(5)

where v̄ = 1
h

∫ y+

y−
vdy and ū = 1

h

∫ y+

y−
udy. These equations no longer depend on the depth of the heart,

with the exception of the value of the fluxes, which are conditioned by the extracardiac potentials in the
blood and torso. Since h/L is supposed small, we consider that the heart can be reduced to a line called
ΓH . We then extend the torso and blood domains to bridge the gap between ∂ΩH and ΓH , which yields
the domains Ω̃T and Ω̃B . We denote by Γ− and Γ+ the interface ΓH approached, respectively, from
the side of the blood or the torso. For a given depth-average transmembrane voltage v̄, we then write a
system of equations involving (ū, uT , uB) ∈ H1(ΓH)×H1(ΩT )×H1(ΩB), such that

∂x((σi,ℓ + σe,ℓ)∂x(hū)) + σT∇uT · n+ + σB∇uB · n− = −∂x(σi,ℓ∂x(hv̄)) on ΓH ,

div(σT∇uT ) = 0 in Ω̃T ,

div(σB∇uB) = 0 in Ω̃B ,

uT = ū on Γ+,

uB = ū on Γ−.

(6)
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However, the imposed Dirichlet conditions to link the values in and outside the heart are not satisfying,
since we do not want to force u to be constant through the thickness of the heart. We will no longer
consider them in the following. Instead, we choose to impose a Robin condition derived from the first-
order approximation of the partial derivative in the y direction in ΩH :

1

αh
(ū− u(y−)) = −∂nu(y−), (7)

1

(1− α)h
(ū− u(y+)) = −∂nu(y+), (8)

if we suppose that the value ū is located at a distance αh from the endocardium surface (0 < α < 1).
Note that this finite difference type approximation of the derivative amounts to supposing that u is affine
between the endocardium and an αh heart depth, and then between this αh depth and the epicardium.
Thus u is assumed piecewise affine in the heart. Conversely, if u is assumed piecewise affine in depth in
the heart and the value ū located at a distance αh from the endocardium, we naturally recover the Robin
conditions given. Using the continuity of the fluxes between the heart and the surrounding domains, and
then mapping the actual heart boundaries to ΓH , we recover the boundary conditions (4) presented in
the previous section.

Note: The assumption of a piecewise affine potential u in the heart depth is not derived from the
physiology of the heart, where u may have a more complex behavior. Considering that the heart is thin,
it relies on a choice of using the minimal order approximation able to match the blood and torso fluxes
on both sides of the heart.

Note: If there exists a bijective application from the actual interface Ω̄B/T ∩ Ω̄H to ΓH , then we do
not necessarily need to extend the blood and torso domains. We can establish a correspondance between
the points of the Ω̄B/T ∩ Ω̄H boundaries and ΓH , thus keeping the initial torso and blood boundaries
positions. The system solved is then

σℓh
∂2

∂x2
ū+ σT

∂uT

∂n
|Ω̄T∩Ω̄H

+ σB
∂uB

∂n
|Ω̄B∩Ω̄H

+ σi,ℓh
∂2

∂x2
v̄ = 0 ΓH ,

div(σT∇uT ) = 0 ΩT ,

div(σB∇uB) = 0 ΩB ,

(9)

coupled with 
σT∂nu = 0 on ∂ΓT ,

σep
uT − ū

h
= (1− α)σT∂nuT on Ω̄T ∩ Ω̄H ,

σep
uB − ū

h
= ασB∂nuB on Ω̄B ∩ Ω̄H .

(10)

2.1.4 Example 2: Polar geometry

ΩT

ΩB

ΩH

r+

r−

Figure 3: Polar geometry

If the heart geometry is an annulus, centered at the origin, we have

ΩH =

{
(r, θ) | r ∈ (r−, r+) = (r̄ − h

2
, r̄ +

h

2
), θ ∈ [0, 2π]

}
. (11)
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The shape of the torso is free of constraint. In polar coordinates and using the notation σ = σi + σe, the
balance equation between u and v in the heart becomes

1

r

∂

∂r

(
σpr

∂u

∂r

)
+

1

r2
∂

∂θ

(
σℓ

∂u

∂θ

)
+

1

r

∂

∂r

(
σipr

∂v

∂r

)
+

1

r2
∂

∂θ

(
σiℓ

∂v

∂θ

)
= 0,

that we multiply by r2 and integrate across the heart thickness. The first two terms (in u) of the left-hand
side yield: ∫ r+

r−

[
r
∂

∂r

(
σpr

∂u

∂r

)
+

∂

∂θ

(
σℓ

∂u

∂θ

)]
dr

=σℓ
∂2

∂θ2
hū+ r2+σp

∂u

∂r
|r+ − r2−σp

∂u

∂r
|r− − σpr+u(r+) + σpr−u(r−) + σphū

(12)

We apply the hypothesis
1

αh
(ū− u(r−)) = −∂nu(r−), (13)

1

(1− α)h
(ū− u(r+)) = −∂nu(r+), (14)

analogous to (7) in the radial direction. Thus equality (12) becomes

σℓ
∂2

∂θ2
hū+

[
r̄ +

h

2

]2
σp

∂u

∂r
|r+ −

[
r̄ − h

2

]2
σp

∂u

∂r
|r− − σp

[
r̄ +

h

2

]
ū+ σp

[
r̄ − h

2

]
ū

− σp

[
r̄ +

h

2

]
(1− α)h∂nu|Γ+

+ σp

[
r̄ − h

2

]
αh∂nu|Γ− + σphū

=σℓ
∂2

∂θ2
hū+ r̄2

[
1 + α

h

r̄
+ α

1

4

h2

r̄2

]
σp

∂u

∂n
|Γ+ + r̄2

[
1− (1− α)

h

r̄
+ (1− α)

1

4

h2

r̄2

]
σp

∂u

∂n
|Γ−

(15)

From now on, we define A1 = r̄2
[
1 + αh

r̄ + α 1
4
h2

r̄2

]
and A2 = r̄2

[
1− (1− α)hr̄ + (1− α) 14

h2

r̄2

]
. Note that

if h/r̄ ≪ 1, A1 and A2 are at leading order equal to r̄2. Applying the same development calculations on
the terms in v and the transmission conditions from (1), the heart equation simplifies to

σℓh
∂2

∂θ2
ū+A1σep

∂u

∂n
|Γ+ +A2σep

∂u

∂n
|Γ− + σi,ℓh

∂2

∂θ2
v̄ = 0 on ΩH . (16)

Again, we reduce that equation on a curve ΓH using the hypothesis that h/r̄ is small, and we extend
the torso and blood domains to Ω̃B/T . Coupled with the usual Laplace equation in the blood cavity and
torso, and the Robin boundary conditions, the complete model in the polar case writes

σℓh
∂2

∂θ2
ū+A1σT

∂uT

∂n
|Γ +A2σB

∂uB

∂n
|Γ + σi,ℓh

∂2

∂θ2
v̄ = 0 on ΓH ,

div(σT∇uT ) = 0 in Ω̃T ,

div(σB∇uB) = 0 in Ω̃B ,

(17)

with the boundary conditions (4). On the curve ΓH , the θ derivative also writes ∂θ = r̄∂s, with s =
r̄θ. With that notation, we can uniformize the formulation at the order 0 to recover the more general
formulation (3).

2.2 Variational formulation and properties of the problem
From now on, the domains Ω̃B and Ω̃T are assimilated to ΩB and ΩT : when considering the depth-
averaged model, we will always deal with the extended domains of blood and torso.

2.2.1 Variational formulation

Let ϕT ∈ H1(ΩT ), ϕB ∈ H1(ΩB), and ϕ̄ ∈ H1(ΓH) be three test functions. Multiplying the three
equations of (3) by the three test functions, using Green’s theorem and summing, we get

σℓh

∫
ΓH

∂

∂s
ū
∂

∂s
ϕ̄+ σT

∫
ΩT

∇uT · ∇ϕT + σB

∫
ΩT

∇uB · ∇ϕB

−
∫
ΓH

σT∂nuT (ϕ̄− ϕT )−
∫
ΓH

σB∂nuB(ϕ̄− ϕB) =

∫
ΓH

σi,ℓh
∂v̄2

∂s2
ϕ̄,

(18)
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with n the normal directed towards the exterior of the heart. Let us denote F = hσi,ℓ∂ssv̄. Using the
Robin boundary conditions (4) on the blood and torso sides, the variational formulation becomes:
Find (ū, uT , uB) in V = H1(ΓH)×H1(ΩT )/R×H1(ΩB) such that

σℓh

∫
ΓH

∂

∂s
ū
∂

∂s
ϕ̄+ σT

∫
ΩT

∇uT · ∇ϕT + σB

∫
ΩT

∇uB · ∇ϕB

+
σe,p

(1− α)h

∫
ΓH

(ū− uT )(ϕ̄− ϕT ) +
σe,p

αh

∫
ΓH

(ū− uB)(ϕ̄− ϕB) =

∫
ΓH

Fϕ̄, ∀(ϕ̄, ϕT , ϕB) ∈ V.

(19)

By a classical reasoning with test functions, the two equations (19) and (3) are proved to be equivalent.

2.2.2 Well-posedness

Compatibility condition Note that if the problem is formulated in terms of F , replacing the test
functions ϕ̄, ϕT and ϕB by 1 in the variational formulation, the following compatibility condition must
be satisfied ∫

ΓH

F = 0. (20)

However, with F = hσi,ℓ∂ssv̄, and ΓH a closed surface, the condition (20) is automatically true.

Theorem 1 (Well-posedness of the model (19)) Given F ∈ L2(ΓH) that verifies (20), there exists
a unique solution (ū, uT , uB) to the equation (19) in V = H1(ΓH)×H1(ΩT )/R×H1(ΩB). In addition,
there exists a constant C such that

∥(ū, uT , uB)∥V ≤ C∥F∥L2(ΓH).

Proof In order to obtain the uniqueness of the solution (ū, uT , uB), we impose uT to be a 0-mean function
over ΩT . Hence, the equation is posed in V = H1(ΓH) × H1(ΩT )/R × H1(ΩB), and we show that all
hypotheses of Lax-Milgram’s theorem are verified. We consider the product norm on V : ∥(ū, uT , uB)∥2V =
∥ū∥2H1(ΓH) + ∥uT ∥2H1(ΩT ) + ∥uB∥2H1(ΩB). We set

L
(
ϕ̄, ϕT , ϕB

)
=

∫
ΓH

Fϕ̄ ds

and

a
(
(ū, uT , uB), (ϕ̄, ϕT , ϕB)

)
= σℓh

∫
ΓH

∂sū∂sϕ̄ ds+

∫
ΩT

σT∇uT∇ϕT +

∫
ΩB

σB∇uB∇ϕB

+
σe,p

(1− α)h

∫
ΓH

(ū− uT )(ϕ̄− ϕT ) dΓ +
σe,p

αh

∫
ΓH

(ū− uB)(ϕ̄− ϕB) ds.

First, let us recall some useful inequalities that will be used in the following.

1. Jump inequality: Using Young’s inequality,

g2 = (g − h+ h)2 = (g − h)2 + 2(g − h)h+ h2 ≤ 2((g − h)2 + h2).

And so (g − h)2 ≥ 1
2g

2 − h2.

2. Poincaré-Friedrich: For Ω a domain (lipschitz bounded connected open), there exists CPF > 0
such that

CPF ∥ϕ∥2H1(Ω) ⩽
∫
Ω

|∇ϕ|2 +
(∫

∂Ω

ϕ(x)

)2

⩽
∫
Ω

|∇ϕ|2 + |∂Ω|
∫
∂Ω

ϕ2, ∀ϕ ∈ H1(Ω).

3. Poincaré-Wirtinger: For Ω a domain, there exists CPW > 0 such that for all u ∈ H1(Ω),∥∥∥∥u− 1

|Ω|

∫
Ω

u

∥∥∥∥2
L2(Ω)

≤ CPW ∥∇u∥2L2(Ω).

4. Trace continuity: For Ω a domain, there exists CTr such that for u ∈ H1(Ω), ∥u∥L2(∂Ω) ≤
CTr∥u∥H1(Ω).
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The right-hand side of (19) is obviously linear, and continuous:

∣∣L (ϕ̄, ϕT , ϕB

)∣∣ = ∣∣∣∣∫
ΓH

Fϕ̄

∣∣∣∣ ≤ ∥F∥L2(ΓH)∥ϕ̄∥L2(ΓH) ≤ ∥F∥L2(ΓH)∥
(
ϕ̄, ϕT , ϕB

)
∥V .

We also have the inequality below, where C > 0 denotes any constant independent from (ū, uT , uB)∣∣a ((ū, uT , uB), (ϕ̄, ϕT , ϕB)
)∣∣ ≤ C∥ū∥H1(ΓH)∥ϕ̄∥H1(ΓH) + C∥uT ∥H1(ΩT )∥ϕT ∥H1(ΩT ) + C∥uB∥H1(ΩB)∥ϕB∥H1(ΩB)

+ C∥ū− uT ∥L2(ΓH)∥ϕ̄− ϕT ∥L2(ΓH) + C∥ū− uB∥L2(ΓH)∥ϕ̄− ϕB∥L2(ΓH)

≤ C∥ (ū, uT , uB) ∥V ∥
(
ϕ̄, ϕT , ϕB

)
∥V ,

using the triangular inequality on ∥ū− uT/B∥L2(ΓH) and then the trace continuity. Thus a is continuous
on V . Applying the jump inequality to

∣∣ū− uB/T

∣∣2, we get

a ((ū, uT , uB), (ū, uT , uB)) = σℓh

∫
ΓH

|∂sū|2 +
∫
ΩT

σT |∇uT |2 +
∫
ΩB

σB |∇uB |2

+
σe,p

(1− α)h

∫
ΓH

|ū− uT |2 +
σe,p

αh

∫
ΓH

|ū− uB |2

≥ σℓh

∫
ΓH

|∂sū|2 +
∫
ΩT

σT |∇uT |2 +
∫
ΩB

σB |∇uB |2

+ C3

∫
ΓH

|ū− uT |2 + C4

∫
ΓH

|ū− uB |2

≥ σℓh∥∂sū∥2L2(ΓH) + σT ∥∇uT ∥2L2(ΩT ) + σB∥∇uB∥2L2(ΩB)

+
C3

2
∥ū∥2L2(ΓH) − C3∥uT ∥2L2(ΓH)︸ ︷︷ ︸

≥−C3CTr∥uT ∥2
H1(ΩT )

+
C4

2
∥uB∥2L2(ΓH) − C4∥ū∥2L2(ΓH),

where σe,p

(1−α)h ≥ C3 > 0, σe,p

αh ≥ C4 > 0. Using the Poincaré-Friedrich inequality and regrouping some
terms, we finally get

a ((ū, uT , uB), (ū, uT , uB)) ≥ min
(
σℓh,

C3

2

)
∥ū∥2H1(ΓH)−C4∥ū∥2H1(ΓH)

+
σT

2
min

(
1, C−1

PW

)
∥uT ∥2H1(ΩT )−C3CTr∥uT ∥2H1(ΩT )

+ CPFmin
(
σB ,

C4

2
|ΓH |−1

)
∥uB∥2H1(ΩB)

(21)

The constants C3 > 0 and C4 > 0 initially appear in front of positive terms. They can therefore be chosen
to be arbitrarily small. We choose C3 = 1

2
1

CTr

σT

2 min
(
1, C−1

PW

)
, and C4 = 1

2min
(
σℓh,

C3

2

)
. Denoting

c = min
(
C4, CPFmin

(
σB ,

C4

2
|ΓH |−1

))
,

a ((ū, uT , uB), (ū, uT , uB)) ≥ c
[
∥ū∥2H1(ΓH) + ∥uT ∥2H1(ΩT ) + ∥uB∥2H1(ΩB)

]
, (22)

and so a(., .) is coercive.

2.3 Numerical strategy and validation
We compare numerically the depth-averaged model (3) with the bidomain model (1) in cartesian and
polar geometries.

2.3.1 Method

Geometries considered The geometries used for the numerical validation of the model are presented
in Figure 4. The cartesian geometry is the square [−1, 1]×[−1, 1]. We use a mesh size of 0.01. Concerning
the polar geometry, the torso is approximately a 3 by 2 unit rectangle, with round corners, and the heart
is a circle of medium radius 0.3 and width h = 0.06. The relative size of the human heart with the torso
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(a) (b) (c) (d)

Figure 4: Geometries used for the numerical simulations: (a) Cartesian bidomain model, (b) Cartesian
depth-averaged model, (c) Polar bidomain model, (d) Polar depth-averaged model.

is approximately respected. The mesh size is 0.02. Several possibilities exist for placing the heart layer
ΓH in the original bidomain geometry (it can be expressed in terms of λ introduced in section 2.1.1). We
chose to place the layer on the epicardium (λ = 1) for the cartesian geometry and halfway between the
epicardium and the endocardium (λ = 0.5) for the polar geometry. The void originally occupied by the
heart is filled with blood mesh or torso mesh, to define the extended domains Ω̃B/T . Our simulations
showed that the placement of the layer does not have a significant impact on the solutions.

Bidomain model parameters and scenarios The bidomain simulations are performed with anisotropic
conductivity tensors in the heart: σi,ℓ = 1.741, σi,p = 0.1934, σe,ℓ = 3.906, σe,p = 1.970, and isotropic
in the torso and blood: σT = σB = 2. The eigenvalues in the heart were taken from [27]. The ionic
model chosen is the Mitchell-Shaeffer model [22], with parameter values given in the paper. We designed
several scenarios of activation in the heart corresponding to different number and location of initial ex-
citation sites. An excitation site is a localized current source applied to the heart and characterized
by its application point xs, radius rs and intensity. The stimulations are of constant intensity 1 in
{x ∈ ΩH | |xs − x| < rs}, and decrease smoothly (cubic function) to 0 in {x ∈ ΩH | |xs − x| < rs + e},
with Mesh Size < e < rs. For the cartesian geometry, the propagation of the activation was initiated
in two stimulation sites located at coordinates (−0.2, 0) and (0, 0). In the polar geometry, four pacing

(a) Pacing protocol 1. (b) Pacing protocol 2. (c) Pacing protocol 3. (d) Pacing protocol 4.

Figure 5: Pacing protocols 1, 2, 3 and 4 from left to right used in the polar geometry.

protocols for the bidomain were designed, see Figure 5. In protocol 1, we initiate the propagation of the
action potential at angles θ = 0 and θ = 3π/4, in the middle of the myocardium wall. In protocol 2, 3
and 4, we stimulate on the endocardium, as it is the case in a regular sinusal rythm. In the protocol 2,
the angles of stimulation are the same as in protocol 1, but on the endocardium. In stimulation protocol
3, the points of stimulation are brought together at θ = 0 and π/4. The last protocol presents three
stimulation points, located in θ = 0, π/2 and 0.9π.

Numerical methods On the one hand, the depth-averaged problem was solved using P 1 Lagrange
finite elements. The heart layer ΓH was approximated by a polygon. On the heart, the mass matrix
was computed exactly with a Simpson quadrature. On the other hand, the bidomain equations were
implemented with the Discrete Duality Finite Volume (DDFV) scheme in space, and the Semi-implicit
second order Backward Differentiation Formula (SBDF2) temporal scheme [8] with a time step of 0.1 ms
for the ionic Mitchell-Shaeffer model.
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Discrete system for the depth-averaged model For the discrete system, we consider the unknown
vector

X =
[
UB , UT , Ū

]T
=
[
UB|Ω̊B

, UB|ΓH
, UT |ΓH

, UT |Ω̊T
, UT |ΓT

, Ū
]T

,

where the components of the vectors UB/T (resp. Ū) are the values of the functions uB/T (resp. ū) at the
nodes of the mesh. We denote by (φi)i the P 1 Lagrange basis functions. The mass and stiffness matrices
on ΓH , namely MΓH

and KΓH
write

[MΓH
]i,j =

(∫
ΓH

φiφj ds

)
, [KΓH

]i,j =

(∫
ΓH

∂sφi∂sφj ds

)
.

In the blood and torso domains, the mass and stiffness matrix MB/T and KB/T write

[MB/T ]i,j =

(∫
B/T

φiφj ds

)
, [KB/T ]i,j =

(∫
B/T

∇φi · ∇φj ds

)
.

The vector U contains the nodal values of a function u of the finite elements space. The projection matrix
from the finite element space on ΩB (resp. ΩT ) to the finite element space on ΓH are called PB

H , and
PT
H . We also denote C1 =

σe,p

(1−α)h and C2 =
σe,p

αh . Then, in the finite-dimensional space generated by the
P 1 Lagrange basis, the equation (19) writes

A

UB

UT

Ū

 =

 0
0

MΓH
F

 .

In the case of a closed surface ΓH , MΓH
F = −σi,lhKΓH

V̄ . The matrix of the system is given by

A =

A2σBKB + C2(P
B
H )tMΓH

PB
H 0 −C2(P

B
H )tMΓH

0 A1σTKT + C1(P
T
H)tMΓH

PT
H −C1(P

T
H)tMΓH

−C2MΓH
PB
H −C1MΓH

PT
H σℓhKΓH

+ (C1 + C2)MΓH

 .

Resolution of the linear system To ensure the invertibility of the system, we use the usual technique
of adding a scaled lumped mass matrix on the ΩT domain in the equation. The system solved in practice
is

A+ εC

0 0 0
0 σTMT 0
0 0 0

UB

UT

Ū

 =

 0
0

−σi,lhKΓH
V̄

 .

The parameter εC is taken as 10−14. Then, the constant of the solution is adjusted to impose
∫
ΩT

uT = 0.
We used a direct LU solver from the scipy.sparse Python library.

Averaged values of reference The reference data ū and v̄ are obtained by averaging the bidomain
potential u and voltage v over the heart thickness.

2.3.2 Numerical validation

One must keep in mind that the solution of the bidomain and the solution of the depth-averaged model
can differ by a constant. Indeed, in the bidomain model, the constant is fixed such that

∫
ΩH∪ΩB∪ΩT

u = 0,
while in the averaged model, only uT is of 0-mean:

∫
ΩT

uT = 0. Our numerical simulations showed no
significant differences between the solutions of the depth-averaged model with different values of the
parameter α. Thus, in all the following tests, α is fixed at α = 0.5.

Some examples of numerical solutions are presented in Figure 6 for the cartesian geometry, and in
Figure 7 for a polar geometry. In the cartesian geometry with transmural pacing (protocol 1), the
potential obtained with the depth-averaged model is qualitatively very similar to the bidomain reference
potential. Moreover, the amplitude of the solution (ū, uT , uB) is identical to the amplitude of the solution
of the bidomain uRef taken at the same time instant. Indeed, for a transmural pacing, there is a
symmetry between the epicardium and endocardium potential and voltages. In that case, our forward
model represents accurately the potentials in the torso and on the heart.

Concerning the more realistic polar geometry (Figure 7), the behaviour of the solution of the depth-
averaged model compared to the bidomain reference strongly depends on the initial stimulation protocol.
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(a) ū, uT , uB solution of the
depth-averaged model. t = 6 ms.

(b) Potential u from the bido-
main model. t = 6 ms.

(c) ū, uT , uB solution of the
depth-averaged model. t = 14
ms.

(d) Potential u from the bido-
main model. t = 14 ms.

Figure 6: Solution of the depth-averaged model (left) compared to the bidomain reference (right) in a
cartesian geometry at two different times.
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(a) (ū, uT , uB) solution of
the depth-averaged model.

(b) Potential u from the
bidomain model.
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(c) ū of reference (orange)
and depth-averaged model
(blue) on ΓH .
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(d) uT of reference (orange)
and depth-averaged model
(blue) on the torso surface.

(e) (ū, uT , uB) solution of
the depth-averaged model.

(f) Potential u from the
bidomain model.
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ū bidomain

(g) ū of reference (orange)
and depth-averaged model
(blue) on ΓH .
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0.02
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uT bidomain

(h) uT of reference (orange)
and depth-averaged model
(blue) on the torso surface.

Figure 7: Solutions of the averaged and bidomain models on heart and torso layers in the case of pacing
protocol 4. The upper subfigures (a), (b), (c), (d) present the solutions at time t = 6 ms, and the bottom
subfigures (e), (f), (g), (h) show the solutions at times t = 13 ms. At t = 6 ms, the activation has not
reached the epicardium yet while at t = 13 ms, the activation has already reached the epicardium.

Qualitatively, when the activation has reached the epicardium (subfigures (7e), (7f), (7g), (7h), taken at
t = 13 ms), the shape of the potentials uT and ū are preserved. They are very similar to the bidomain
ones despite some very localized discrepancy. However, for an endocardial pacing (which would be the
case in a regular sinusal rythm), the activation wave does not reach immediatly the epicardium. Before it
attains the epicardium, the activation is very hard to observe on the body surface. The strong variations
of potential are confined inside the heart and do not propagate to the torso, thus generating only residual
signal on the torso surface. In that case, our model strongly differs in the torso from the bidomain solution,
producing body surface potential that have a larger amplitude than the true signal (see the subfigures
(7a), (7b), (7c), (7d) taken at t = 6 ms). In other words, the depth-averaged model creates artificial
transmission of information from the myocardial layer to the torso before the epicardial breakthrough.
Still, we observed that our model is sufficiently accurate after the epicardial breakthrough to attempt
using it for cardiac source recovery. However, as it is already the case with the original bidomain system,
we do not expect to identify precisely what happens inside the heart before the activation signal reaches
the epicardium.

3 Inverse problem
In this section, we formulate an optimal control problem to find a solution (ū, uB , uT ) of the depth-
averaged model (19) with the right-hand-side F as a control, which matches some torso surface potential
data. If such a control F can be found, then the average transmembrane voltage v̄ can be recovered up
to a constant on the layer of the heart ΓH .

3.1 Presentation of the optimal control problem
We call zT the body surface potential map (BSPM) data available, where for the sake of our analysis,
zT is a function from ΓT to R. We consider F = hσi,ℓ∂ssv̄ the electrical sources in the heart, and
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U [F ] = (ū, uT , uB) the extracellular potential generated by F in the depth-averaged model (19). We
define the functional

J(U [F ], F ) =
1

2

∫
ΓT

|uT − zT |2 +
ε

2
|F |2H1(ΓH).

The semi-norm |.|H1(ΓH) is defined by |g|H1(ΓH) = ∥∇g∥L2(ΓH). In this formulation, we search for the
optimal control F that minimizes the functional J . The source F is in H1(ΓH)/R (functions of H1(ΓH)
with 0-mean over ΓH) to satisfy the compatibility condition (20). The first term of J ensures that the
minimizing control matches the data zT . The second term is the first-order Tikhonov regularization
of the inverse problem, necessary for the well-posedness of the problem. A quadratic norm for the
regularization term allows to obtain linear conditions of optimality for the optimal control problem.
Moreover, we classically regularize on the derivative of the control to constrain its variations. This is why
we have chosen the H1 semi-norm.

Theorem 2 (Existence and uniqueness of an optimal control for J) There exists a unique con-
trol F that minimizes J in the constrained space of solutions of the depth-averaged forward model.

The proof is detailed in the following subsection. There is one technical point in the sense that the
constant of the potential U [F ] needs to be adjusted to match the data. In the proof, we formulate the
optimal control problem in terms of couple (U,F ), and search U in a constrained affine space, depending
on F . The constant of the potential is then naturally adjusted in the minimization process.

3.2 Proof of Theorem 2.
3.2.1 Spaces for the control F and potential U

We consider J as a function of (U,F ). The potential U , solution of (19) in H1(ΓH)×H1(ΩT )×H1(ΩB),
lives in the constrained affine space AF + R, where A is the continuous bijective operator associated
to the state equation (19) (variational formulation of the depth-averaged model, see well-posedness of
the forward problem). If we denote U0 = AF the unique solution of (19) in the space V = H1(ΓH) ×
H1(ΩT )/R × H1(ΩB), then U would write U = U0 + C, C ∈ R. Notice that the observation uT |ΓT

(the trace of uT on the torso surface) can be written uT |ΓT
= TF + C, with C a constant such that

U = AF + C, and T is a continuous operator T = ([Trace] ◦ A). To sum up, we minimize J over the
space E =

{
(U,F ) |U ∈ AF + R, F ∈ H1(ΓH)/R

}
.

3.2.2 Existence of a minimizer (Ū , F̄ )

First, let us recall some theorems from [3].

Theorem 3 Assume that the function φ: E → (−∞,+∞] is convex and strongly lower semi-continuous
(l.s.c) over the Banach space E, then it is l.s.c in the weak topology σ(E,E⋆).

Theorem 4 Let E,F be Banach spaces and T a linear operator from E to F . If T is continuous in the
strong topology, then T is continuous for the weak topology σ(E,E⋆) → σ(F, F ⋆), and conversely.

Step 1: Minimizing sequence The functional J is always positive. Thus its infimum m = inf
E
J(U,F )

is also positive or null. From the definition of the infimum, there exists a minimizing sequence (Un, Fn) =
((ūn, un,T , un,B), Fn) ∈ E such that

J (Un, Fn)
n→∞→ m.

Step 2: Exhibit weakly convergent subsequences Let Jn = J (Un, Fn) be a minimizing sequence.
Then for any point (Ũ , F̃ ) in the space E , there exists a rank from which J(Ũ , F̃ ) is an upper bound for
the minimizing sequence Jn. In particular, from a certain rank, J(0, 0) is an upper bound for Jn:

0 ≤ 1

2

∫
ΓT

|un,T − zT |2︸ ︷︷ ︸
≥0

+
ε

2
|Fn|2H1(ΓH) ≤ J(0, 0) = Cte. (23)

In particular

• the sequence (Fn) is bounded in H1(ΓH),
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• the sequence (un,T |ΓT
) is bounded in L2(ΓT ).

We deduce the existence of a subsequence, again noted (Fn), that weakly converges to F̄ in H1(ΓH).
The operator T being continuous from the Banach space H1(ΓH) to the Banach space H1/2(ΓT ), it is
weakly continuous (Theorem 4), and the subsequence TFn weakly converges to T F̄ . Now using that
Un = AFn + Cn, with (Cn) a sequence in R, un,T |ΓT

= AFn|ΓT
+ Cn, and AFn|ΓT

= TFn is bounded by
continuity of T , we deduce that (Cn) is bounded in R and thus there exists a subsequence, again noted
(Cn) that strongly converges to C̄ in R. Consequently, Un = AFn + Cn ⇀

n→∞
Ū = AF̄ + C̄.

Step 3: Use of lower semi continuity The function F 7−→ |F |2H1(ΓH) is a convex continuous function.
From Theorem 3, it is weakly lower semi continuous, so we can write the following inequality for the weak
limit F̄ :

ε1
2
|F̄ |2H1(ΓH) ≤ lim inf

n→∞

ε1
2
|Fn|2H1(ΓH).

Applying the same argument,

1

2

∫
ΓT

∣∣T F̄ + C̄ − zT
∣∣2 ≤ lim inf

n→∞

1

2

∫
ΓT

|unT − zT |2 .

Finally,
J(Ū , F̄ ) ≤ lim inf

n→∞
J(Un, Fn) = m,

so J(Ū , F̄ ) = m. We have exhibited a minimizer for J .

3.2.3 Uniqueness of the minimizer

We show that the Hessian of J is positive definite. Take (ϕU , ϕF ) in the space E introduced in section
3.2.1:

lim
h→0+

1

h
[J(U + hϕU , F + hϕF )− J(U,F )] =

∫
ΓT

(uT − zT )ϕuT
+ ε

∫
ΓH

∂sF∂sϕF . (24)

Thus
lim

h→0+

1

h
[⟨∇J(U + hϕU , F + hϕF ), (ϕU , ϕF )⟩ − ⟨∇J(U,F ), (ϕU , ϕF )⟩]

=

∫
ΓT

ϕ2
uT

+ ε

∫
ΓH

(∂sϕF )
2 ≥ 0.

(25)

We must prove that this quantity is 0 only if the couple (ϕU , ϕF ) = (0, 0). By definition, the H1 semi-
norm is a norm on the space H1(ΓH)/R. So the term

∫
ΓH

(∂sϕF )
2 is null only if ϕF = 0. Concerning∫

ΓT
ϕ2
uT

, suppose that ϕF = 0, then since ϕU = (ϕū, ϕuT
, ϕuB

) satisfies (19), ϕU is constant (= (C,C,C))
on all three domains. Its trace on ΓT is the same constant C, hence

∫
ΓT

ϕ2
uT

is 0 only if C = 0, that is
U = (0, 0, 0). The Hessian is thus positive definite, and J is strictly convex on the affine space E .

3.3 Optimality conditions
We define the dual variables λ̄, λT , λB in H1(ΓH), H1(ΩT ) and H1(ΩB), respectively. We define the
Lagrangian function L(ū, uT , uB , λ̄, λT , λB , F ):

L(ū, uT , uB , λ̄, λT , λB , F ) =
1

2

∫
ΓT

|uT − zT |2 +
ε

2

∫
ΓH

|∂sF |2

+ σℓh

∫
ΓH

∂sū∂sλ̄+
σe,p

(1− α)h

∫
ΓH

(ū− uT )(λ̄− λT )

+
σe,p

αh

∫
ΓH

(ū− uB)(λ̄− λB)

+ σT

∫
ΩT

∇uT · ∇λT + σBσB

∫
ΩB

∇uB · ∇λB −
∫
ΓH

Fλ̄.

(26)

The optimality condition system writes, for all λ̄, λT , λB

0 =

〈
∂L
∂ū

, ϕū

〉
= σℓh

∫
ΓH

∂sϕū∂sλ̄+
σe,p

(1− α)h

∫
ΓH

ϕū(λ̄− λT ) +
σe,p

αh

∫
ΓH

ϕū(λ̄− λB), (27)
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0 =

〈
∂L
∂uT

, ϕuT

〉
=

∫
ΓT

(uT − zT )ϕuT
− σe,p

(1− α)h

∫
ΓH

ϕuT
(λ̄− λT ) + σT

∫
ΩT

∇ϕuT
· ∇λT , (28)

0 =

〈
∂L
∂uB

, ϕuB

〉
= −σe,p

αh

∫
ΓH

ϕuB
(λ̄− λB) + σB

∫
ΩB

∇ϕuB
· ∇λB , (29)

0 =

〈
∂L
∂λ̄

, ϕλ̄

〉
= σℓh

∫
ΓH

∂sū∂sϕλ̄ +
σe,p

(1− α)h

∫
ΓH

(ū− uT )ϕλ̄ +
σe,p

αh

∫
ΓH

(ū− uB)ϕλ̄

−
∫
ΓH

Fϕλ̄,

(30)

0 =

〈
∂L
∂λT

, ϕλT

〉
= − σe,p

(1− α)h

∫
ΓH

(ū− uT )ϕλT
+ σT

∫
ΩT

∇uT · ∇ϕλT
, (31)

0 =

〈
∂L
∂λB

, ϕλB

〉
= −σe,p

αh

∫
ΓH

(ū− uB)ϕλB
+ σB

∫
ΩB

∇uB · ∇ϕλB
, (32)

0 =

〈
∂L
∂F

, ϕF

〉
= ε

∫
ΓH

F ′ϕ′
F −

∫
ΓH

ϕF λ̄. (33)

This is a linear system for the unknowns ū, uT , uB , λ̄, λT , λB which amounts to minimize the J functional
on the functional space E . Even if the system is large, it can be solved in one iteration as in [23]. The
resolution of the inverse problem is thus very fast. Once the finite element matrix of the system is
assembled, the LU factors of the matrix can be computed once and stored, and the solution of the inverse
problem can be computed on a discrete set of times without recomputing the whole system. For instance,
the activation maps reconstructed in section 4 were computed in less than 2 minutes on a standard 32
Go memory laptop with a Python code, without optimization. Note that we do not need to impose
constraints on F or λT , such as a 0-mean constraint, or adjusting the constant on the potential to fit
the data. Taking all elements in unconstrained H1 space, those conditions arise naturally with the right
test functions. For example, taking (ϕλ̄, ϕλT

, ϕλB
) = (1, 1, 1), and inserting into the equations (30), (31),

(32), we find
∫
ΓH

F = 0.

3.4 Recovery of the average transmembrane potential
On a closed surface ΓH , the control F is a second order derivative of the transmembrane voltage v̄:
F = σi,ℓ∂ssv̄ (see section 2.2.1). Thus, the average transmembrane voltage can be recovered up to a
constant by solving the Neumann problem on ΓH

σiℓh

∫
ΓH

∂sv̄∂sϕ = −
∫
ΓH

Fϕ,∀ϕ ∈ H1(ΓH). (34)

To ensure the invertibility of the system, we again add a small mass matrix on v̄:

σiℓh

∫
ΓH

∂sv̄∂sϕ+ ε1

∫
ΓH

v̄ϕ = −
∫
ΓH

Fϕ, (35)

with ε1 of order 10−14. Then, the constant is adjusted by bounding below v̄ by 0 on ΓH to fit the Mitchell-
Shaeffer model [22] during the activation process. It is of course not accurate when the transmembrane
voltage is constant (on the plateau phase for example), however, we cannot obtain more information with
a static resolution. A flat transmembrane signal produces a null extracardiac potential, thus an external
knowledge on the temporal phase of the activation of the heart is necessary to discriminate an activation
plateau from a rest phase.

4 Numerical results

4.1 Method
Numerical implementation As for the forward depth-averaged model (see section 2.3.1), we used P 1

Lagrange Finite Elements for solving the optimality condition system.

Regularization parameter for the Tikhonov regularization The regularization parameter was
calibrated empirically on a few examples. In all noise free results presented below, we used ε = 10−11.
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Data construction As detailed in section 2.3.1, data are generated by several bidomain - Mitchell-
Shaeffer model simulations. Only the activation of one heart beat was simulated (duration of approxi-
mately 50 ms). The potential uT on the torso surface simulated with the bidomain model was extracted
at several times to produce the data zT of the inverse problem. Since the bidomain simulations and the
optimal control problem do not share the same geometry (see section 2.3), the meshes for the bidomain
simulations and the inverse problem are different. Though, the torso surface (exterior boundary of the
domain) keeps the same geometry. Therefore, we project zT , originally given on the bidomain mesh, on
the inverse problem mesh through a cubic spline interpolation.

Note that neither the numerical discretization method (DDFV versus FEM), nor the geometry are
the same between the forward bidomain simulations and the inverse optimal control resolution. Thus we
completely avoid the inverse crime.

Quantities of interest We focus on the reconstruction of the activation times and study the ability of
our inverse model to recover accurate activation maps. Therefore, we compare qualitatively the potentials
ū and voltages v̄ reconstructed to the original bidomain potentials and voltages averaged in the heart. For
instance, we expect the reconstructed extracellular potential to match the locations of strong derivatives
with the reference. We also want the activated areas to be clearly identifiable on the reconstructed
transmembrane voltage, by comparison with the resting areas.

We computed reference activation maps at the endocardium nodes and at the epicardium nodes for
the four pacing protocols. The reference activation times were computed using the threshold method,
that can be described as follows: considering that the transmembrane voltage v is normalized between
0 and 1 in the Mitchell-Shaeffer model, it consists in selecting, for each node of the mesh, the first time
at which the transmembrane voltage v is above a threshold. That threshold is chosen here to be 0.6 to
avoid the possible parasitic oscillations in the inverse solution v̄ due to the L2 regularization. Indeed, the
activation maps are not significantly modified for thresholds taken between 0.4 and 0.6. We could also
have used the min

t

du
dt method (maxima in absolute value), also called the maximal deflexion method, that

sees the activation time as the moment of minimal temporal slope of the potential u at a node. In that
case, the derivative is computed with a centered Euler scheme. The two methods are equivalent for the
bidomain reference signals, as shown in Figure 8. For the reconstructed signals, both methods are used,
and studied. The corresponding activation maps are compared to the reference ones, qualitatively, and
also quantitatively through the Correlation Coefficient (CC) indicator and the L2 relative error (L2err).
The Correlation Coefficient is simply the Pearson’s correlation coefficient. Denoting by MH , ATRef, and
ATThres the mass matrix over the heart layer, the reference activation map on v̄, and the recovered
activation maps with the threshold method respectively, the L2 relative error writes

L2err =

√
(ATThres − ATRef)

T
MH (ATThres − ATRef)

ATT
RefMHATRef

.

The Pearson’s correlation coefficient writes

CC =

∑n
i=1(ATThres[i]− ATThres)(ATRef[i]− ATRef)√∑n

i=1(ATThres[i]− ATThres)2
√∑n

i=1(ATRef[i]− ATRef)2
.

The quantities ATThres / Ref are the average values of the samples: ATThres / Ref =
1
n

∑n
i=1 ATThres[i],

n being the number of samples (here the number of nodes on ΓH), and i the node index.

4.2 Reconstructions at fixed time
In Figures 9 and 10, we present the one dimensional reconstructed potential ū and voltage v̄ on the
heart layer ΓH at two different moments of the activation process, for the four pacing protocols (see
section 2.3.1). Figure 10 is taken after the epicardial breakthrough for all simulations. In that case, the
activated parts of the heart are recognizable on the transmembrane voltage v̄ reconstructed. Indeed, in
this situation, the averaged signal over the thickness is representative of the volumic signal. Although
parasitic oscillations are present on both reconstructed ū and v̄, those oscillations stay under the activa-
tion threshold. These oscillations are very typical of a L2 type regularization term in the formulation of
the optimization problem. On the contrary, before the epicardial breakthrough, as in Figure 9 for pacing
protocols 2, 3 and 4, the reconstructed signals are of mediocre quality. It is more difficult to identify the
activated parts of the heart. Indeed, in that case, the transmembrane voltage of reference significantly
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Figure 8: Activation maps of reference on the epicardium for the four pacing protocols, computed with
the threshold method in red, and with the min

t

du
dt method in blue. The two methods give equivalent

activation maps.

varies through the thickness of the heart (see the grey area between the endocardial and epicardial trans-
membrane voltages). Intrinsically, using averaged quantities masks part of the activation phenomenon,
especially when the transmembrane voltage v is at rest on the epicardium while on the plateau phase on
the endocardium. It is consistent to be unable to obtain good results in that case, especially in view of
the performances of our forward depth-averaged model and of the intrinsic physics of the problem.

4.3 Activation map recovery

In Figure 11, we show the reconstructed activation maps computed with the two methods described
in Section 4.1. To visualize the correlation between the true and recovered activation maps, we also
plotted the recovered activation maps as a function of the reference average activation times (threshold
method applied on v̄ from the bidomain simulation). In the four pacing protocols cases, the min

t

du
dt

method presents artificial lines of block, that are absent with the threshold method. Those lines of blocks
have already been identified as an issue in several articles [28], [5], and complex algorithms have been
developed to smoothen reconstructed activation maps in ECGi. Our reconstructions suggest that using
the transmembrane voltage associated with the threshold method to compute activation maps allows to
avoid those artefacts and recover smoother and more accurate maps.

In order to measure quantitatively the accuracy of the recovered activation maps with the threshold
method, we use the CC and L2err indicators. On Figure 11, some outliers values are visible at the
end of the activation process. We eliminate those values in order to assess the recovery of the activation
sequence before a certain time limit called (AT lim): specifically, we truncate the activation maps to
ignore the points of the heart which reference activation time is superior to AT lim above which the
reconstructed activation time is stuck at 0 on the Figure. Then, we compute the Correlation Coefficient
(CC) between the reference activation times on v̄ and the recovered activation times from the threshold
method. We also compute the L2 relative error (L2err) on the heart surface between those two activation
maps. These indicators are presented in Table 1. For the four stimulation protocols, the L2 relative error
of the recovered truncated maps is less than 12%, and the correlation coefficient with the reference map
is above 0.98. Overall, for the four protocols, our method is able to reconstruct activation maps that are
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Figure 9: Examples of recovered solutions ū (left) and v̄ (right) on the heart for the four pacing protocols
at time 6 ms. The angle θ is a coordinate for the heart points. The red line represents the reconstructed
solution, and the black line the bidomain reference. The dash-dotted and dashed lines represent the
transmembrane voltage v of reference on the epicardium and endocardium respectively. The grey area
underlines the variability of the transmembrane voltage in the depth of the heart. The regularization
parameter ε is empirically chosen at 10−11. Note that at the beginning of the activation phase, the
activation of the endocardium is not visible on the torso signal.
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ū bidomain
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Figure 10: Examples of recovered solutions ū (left) and v̄ (right) on the heart for the four pacing protocols
at time 13 ms. The angle θ is a coordinate for the heart points. The red line represents the reconstructed
solution, and the black line the bidomain reference. The dash-dotted and dashed lines represent the
transmembrane voltage v of reference on the epicardium and endocardium respectively. The grey area
underlines the variability of the transmembrane voltage in the depth of the heart. The regularization
parameter ε is empirically chosen at 10−11.
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Figure 11: Average activation times in the thickness for the four pacing protocols from top to bottom. On
the left figures, the black curves represent the reference activation maps on the endocardium (dashed) and
on the epicardium (dash-dotted). The blue dots indicate the activation times computed with the min

t

du
dt

method applied on the recovered potential ū, while the red dots are the activation times computed with
the threshold method on the recovered v̄. The figures on the right represent the reconstructed activation
times of both methods as a function of the reference average activation times in the thickness of the
myocardium wall.
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Pacing protocol 1 2 3 4
AT lim (ms) 29 30 41 26.5

CC 0.98 0.98 0.99 0.99
L2err 0.12 0.08 0.05 0.06

Table 1: Correlation coefficients and L2 relative errors obtained on the truncated recovered activation
maps for the four different protocols. We truncated the activation times values above AT lim.

bounded between by the reference values on the endocardium and the epicardium, and that have a high
correlation with the true activation maps. The protocol 3 leads to substantially better results than the
other protocols. Its activation sequence almost behaves as if there were only one stimulation point, thus
following a simpler pattern, easier to recover. We however notice than we cannot distinguish the two
initial activation points.

The threshold method also presents some drawbacks. The activation times (ATs) reconstructed seem
to jump sometimes from epicardium ATs to endocardium ATs. This is probably an effect of the averaging
process, as explained before. Again, the phenomena on the endocardium are very difficult to observe.
Moreover, at the very end of the activation sequence (after AT lim), our method is not able to identify
activation times. As a matter of fact, the average transmembrane potential v̄ is reconstructed up to a
constant, that we fix by imposing min

θ
v̄ = 0. Thus, when the plateau phase is reached for almost all

points of the heart (constant v̄ ≈ 1 for all θ), the global amplitude of the signal decreases. The minima
being still fixed at 0, the reconstructed transmembrane voltage simply appears to fall back to 0 on the
whole heart. Nevertheless, we believe that mixing information from the threshold method and from the
maximal deflection method would help to identify the end of the activation process and easily replace the
final activation times by activation times computed with the maximal deflection method.

4.4 Gaussian noise perturbation

The robustness of the inverse model is evaluated by adding a Gaussian noise to the simulated data. The
noise follows a normal law of 0-mean and standard deviation of 1 that is multiplied by some percentage
of the amplitude of the data zT . We make 50 trials of activation map recovery for all test cases, and plot
the median activation times recovered, as well as their standard deviation over the 50 trials. Preliminary
tests on the method for computing activation times and on the role of the regularization parameter were
carried out on protocol 3, for which we obtained the best noise-free activation map reconstructions.
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(a) Activation map recovered with the
threshold method.
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Figure 12: Comparison between the two activation map reconstruction methods, with a 4% Gaussian noise
on the data, and a regularization parameter ε = 10−9 on 50 trials. On the left, the threshold method was
used, while on the right, we used the min

t

du
dt method. The vertical lines represent the standard deviation,

and the dots represent the median activation time over the 50 trials. The black dash-dotted and dashed
lines represent the true activation maps on the endocardium and epicardium respectively.

Concerning the method for the activation map recovery, there is a clear advantage in using the
threshold method for noisy data. Indeed, by differentiating the reconstructed signal, the min

t

du
dt method
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(a) 4% noise on the data. Parameter ε =
10−11.
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Figure 13: Degradation of the recovered signal with noise, and stability through regularization for the
protocol 3. All activation maps are now computed with the threshold method. The red dots represent the
median activation time found by the threshold method, over the 50 trials. The vertical lines represent
the standard deviation over the 50 trials. The black dash-dotted and dashed lines represent the true
activation maps on the endocardium and epicardium respectively.
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Figure 14: Recovered activation maps with 10% noise on the 50 trials for the activation patterns 1, 2,
3 and 4. Parameter ε is fixed at 10−9. The red dots represent the median activation time found by the
threshold method, over the 50 trials. The red vertical lines represent the standard deviation over the 50
trials. The black dash-dotted and dashed lines represent the true activation maps on the endocardium
and epicardium respectively.

becomes extremely unstable in presence of noise. In comparison, with the same regularization parameter,
the threshold method allows to obtain more stable activation maps (see Figure 12).

As shown in Figures 13 and 14, the more noise in the data (4% for Figure 13 and 10% for subfigure
(14c)), the more the recovered signals and activation maps are degraded. As illustrated in Figure 13,
in order to ensure stability, the regularization parameter ε must be increased. In Figures 13 and 14,
the increase by two orders of magnitude in the regularization parameter (from 10−11 to 10−9) allows
to stabilize the activation maps recovered for the 50 trials. In Figure 14, activation maps for the four
patterns are reconstructed with a 10% noise on the torso data. The quality of the activation maps is
deteriorated in comparison with the absence of noise, and, for the pattern 3, with a 4% noise, however,
the activation maps remain correct.

4.5 Standard conductivity estimations
In clinical cases, the exact conductivities in the heart, torso, and blood are not known. The conductivity
tensors σi, σe, and σT/B are often supposed isotropic or proportional, especially when using surface
source models [9, 32]. However, the differences in the conductivity tensors in the models can significantly
change the solutions. Hence, to be applicable in practice, our inverse model must be able to reconstruct
accurate activation maps even with a priori isotropic conductivity estimations.

In this part, the conductivities chosen for the depth-averaged model are deliberately different from the
ones used in the bidomain simulations. In the bidomain simulation, the (scaled) conductivities were taken
as: σi,ℓ = 1.741, σi,p = 0.1934, σe,ℓ = 3.906, σi,p = 1.970 and σT = σB = 2. In the depth-averaged model,
all conductivities are chosen equal to 1, a simple arbitrary value located in-between the minimimal and
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dt

(d) Pacing protocol 2: correlations

−3 −2 −1 0 1 2 3
θ

10

20

30

40

50

T
im

e
(m

s)

Min dū
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Figure 15: Average activation maps reconstructed in the thickness with isotropic conductivity assumptions
for the four pacing protocols from top to bottom. The black dash-dotted and dashed curves represent the
reference activation map from the bidomain simulation computed on the endocardium and epicardium
with the threshold method. The red dots represent the average activation map in the thickness recovered
with the threshold method. The blue dot represents the map reconstructed with the min

t

du
dt method.
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maximal bidomain conductivities. Using the generated data from the four bidomain pacing protocols,
the activation maps are reconstructed with the isotropic depth-averaged model. Figure 15 presents the
reconstructed maps for that case.

Surprisingly, the recovered activation maps calculated with the threshold method in Figure 15 are very
faithful to the activation maps of the epicardium only. We also tested with all conductivities equal to 3,
and obtained maps that were bounded between by the true values of activation times on the epicardium
and endocardium, still with greater resemblance to the epicardial map. It seems that the less precise we
are on the conductivity coefficients, the closer we get to the epicardial activation map. Indeed, epicardial
signals are more visible on the torso surface than signals from within the myocardial volume. They
produce more important variations in the body surface signal.

5 Conclusion and discussion
The proposed model allows to enrich the classical resolution of the inverse problem of electrocardiography
on the epicardium only, while retaining its simplicity. It incorporates information on the myocardial vol-
ume and enables the reconstruction of the average transmembrane voltage over the myocardial thickness.

Our results on activation maps show the method’s ability to recover activation maps delimited by
activation time values on the epicardium and endocardium. We are able to shed light on the underlying
activation process in the myocardial volume. Combined with a fast resolution of the classical epicardial
model, this approach holds great promise for gaining further insight into transmural activity. Anyway, this
work constitutes a preliminary study, based on simplifying assumptions concerning a 2D heart geometry.
Future work should therefore focus on integrating the particularities of realistic 3D geometries, and of a
non-constant depth h.

We also highlight the need to reconstruct the transmembrane voltage v, to recover activation maps.
The combination with the threshold method for calculating activation times appears to produce activation
maps that are more reliable and less sensitive to noise than the maximum deflection method. In particular,
the method is less likely to produce artificial lines of block. We will continue to investigate activation
map reconstruction methods in future work.
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