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AbstractWe study the convergence of a Cartesian method for elliptic problems with
immersed interfaces. This method is based on additional unknowns located on the
interface, used to express the jump conditions across the interface and discretize the
elliptic operator in each subdomain separately. It is numerically second-order accu-
rate in L∞-norm. We prove the convergence of the method in two cases: the original
second-order method in one dimension, and a first-order version in two dimensions.
The proof of convergence takes advantage of a discrete maximum principle to ob-
tain estimates on the coefficients of the inverse matrix. More precisely, we obtain
estimates for the sums of the coefficients of several blocks of the inverse matrix. As-
sociated to the consistency error, which has different leading orders throughout the
domain, these estimates lead to the convergence results. Themethodology exposed in
the article allows to take into account the effects of different orders of approximation
errors across the domain and their effective influence on the total convergence order.

1 Introduction

In this paper we aim to study the convergence of a method for solving an elliptic
problem on a Cartesian grid. This elliptic problem is defined on a domain Ω con-
sisting in the union of two subdomains Ω1 and Ω2, separated by a complex interface
Σ (see Figure 1):

−∇.(k∇u) = f on Ω = Ω1 ∪Ω2, (1)
u2 − u1 = α on Σ, (2)

k2
∂u2
∂n
− k1

∂u1
∂n
= β on Σ, (3)
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assorted with Dirichlet boundary conditions on δΩ, defined as the boundary of Ω.
The notations u1, u2 and k1, k2 refer respectively to the restrictions of u and k to
the subdomains Ω1 and Ω2, k being a constant on each subdomain Ω1 and Ω2.
The domain Ω can have an arbitrary shape. In the whole paper, we assume that the
interface isC2 and that the solution u of problem (1)-(3) exists and is smooth enough
so that our truncation error analyses are valid. We assume, by convention, that the
coefficient k is larger inΩ2 than inΩ1 (k2 > k1), and that the vectorn is the outward
normal for the subdomain Ω2. Note that other configurations than the one illustrated
in this figure are possible, for instance, Ω1 separated in several subdomains, and are
all covered by our analysis.

This elliptic problemwith discontinuities across an interface appears in numerous
physical or biological models. Among the well-known applications are heat transfer,
electrostatics, incompressible flows with discontinuous densities and viscosities [4],
but similar elliptic problems arise for instance in tumour growth modelling, where
one has to solve a pressure equation [8], or in the modelling of electric potential in
biological cells: see for instance [9] or [23] and [24] where the mentioned numerical
method was applied.
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Fig. 1 Geometry considered: two subdomains Ω1 and Ω2 separated by a complex interface Σ.

The method that we study was developed in [12]. It is based on a finite-difference
discretization and a dimension by dimension approach. In order to solve accurately
the problem defined by equations (1) - (3) near the interface, additional unknowns
are defined at the intersections of the interface with the grid, see Figure 2. These
interface unknowns are used in the discretization of the elliptic operator near the
interface. In order to solve the interface unknowns, the flux jump conditions are
discretized and added to the linear system to solve.

This approach has the following advantages: firstly, the use of unknowns avoids the
need to devise specific formulas containing jump terms, corrective terms, or needing
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the inversion of a linear system, for discretising the operator near the interface.
Secondly, it is flexible, in the sense that it can easily be adapted to an elliptic
problem whose conditions at the interface are different from the one presented in
this article. Finally, for a number of applied problems, as incompressible mutlifluids
or electropermeabilization of biological cells for example), it may be useful to know
the values of certain unknowns directly at the interface, which is possible without
any additional calculations using the method presented here.

In the following we will prove the convergence of the method in two cases:
the original second-order method in one dimension, and a first-order version in
two dimensions. This first-order version is based on the same ideas as the original
method, but the discretization of the normal derivatives across the interface has only
a first-order truncation error instead of a second-order for the original method. This
variant has recently been used to discretize fluxes in [14] for an electrical impedance
tomography problem.

The convergence proof is based on a discrete maximum principle, used to pro-
vide estimates of the coefficients of the inverse of the discretization matrix. To this
purpose we have to prove the monotonicity of the discretization matrix. This mono-
tonicity property is not straightforward for the second-order discretization, since the
discretization matrix is not diagonally dominant, due to the discretization of the flux
jump conditions across the interface.

Then we obtain accurate estimates of the coefficients of the inverse matrix, block
by block, in order to account for the different types of truncation errors. Combined
to the truncation error expressed block by block, these estimates provide first- or
second-order bounds on the numerical error.

In section 2 we describe the numerical schemes, in section 3 and 4 we present the
proof for the first-order version in two dimensions and the second-order version in
one-dimension. In section 5 we compare our approach to the literature and in section
6 we present some numerical tests corroborating our analysis.

2 Description of the numerical schemes

2.1 Interface representation and classification of grid points

In order to describe accurately the geometric configuration in the vicinity of the
interface we use the level set method introduced by Osher and Sethian [33]. We refer
the interested reader to [34], [35] and [32] for reviews of this method. We recall here
some properties that we will use in the following.

• The zero isoline of the level set function, defined here by the signed distance
function φ:

φ(x) =


distΣ(x) outside of the interface,
0 on the interface,

−distΣ(x) inside of the interface,
(4)
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implicitly represents the interface Σ immersed in the computational domain.
• As recalled in [13], the level-set, being a distance function, is 1-Lipshitz and

almost everywhere differentiable. Moreover, if φ is differentiable at a point x,
then it satisfies the so-called Eikonal equation at x:

| |∇φ(x)| | = 1.

• The smoothness of the level-set is in fact strongly related to the smoothness of
the interface: as proved in [19], p 355, if the interface is C2, then there exists a
real r0 > 0 such that the level-set is C2 for all x, y such that |φ(x, y)| < r0.

• The outward normal vector of the isoline of φ passing through x, denoted n(x),
can be expressed, where φ is differentiable, as

n(x) =
∇φ(x)
|∇φ(x)|

. (5)

In this paper, the level-set is defined so that n is the outside normal for the
subdomain Ω2.

The problem (1) - (3) is discretized on a uniform Cartesian grid coveringΩ1∪Ω2,
see Figure 2. The grid spacing is denoted h. The points on the cartesian grid are named
either with letters such as P or Q, or with indices such as Mi, j = (xi, yj) = (i h, j h)
if one needs to have informations about the location of the point. We also denote if
more convenient xP and yP the coordinates of a point P. We denote by uhij or uhM the
approximation of u at the point M = (xi, yj). The set of grid points located inside
the domain Ω is denoted Ωh .

We say that a grid point is irregular if the sign of φ changes between this point
and at least one of its neighbors, see Figure 2. On the contrary, grid points that are
not irregular are called regular grid points. The set of irregular grid nodes is denoted
Ω∗

h
. The subset Ωδ

h
is defined as the set of regular grid points where the stencil for

the discrete elliptic operator (described in the following) crosses the isolines φ = δ
or φ = −δ, with δ such that 0 < δ < r0. Notably φ is C2 on Ωδ

h
with bounded

derivatives.
We define the interface point Ii+1/2, j = (xi+1/2, j, yj) as the intersection of the

interface and the segment [Mi jMi+1j], if it exists. Similarly, the interface point
Ii, j+1/2 = (xi, yi, j+1/2) is defined as the intersection of the interface and the segment
[Mi jMi j+1]. The set of interface points is denoted Σh , see Figure 2 for an illustra-
tion. At each interface point we create two additional unknowns, called interface
unknowns, and denoted by u1,h

i+1/2, j and u2,h
i+1/2, j , or u1,h

i, j+1/2 and u2,h
i, j+1/2. The interface

unknowns carry the values of the numerical solution on each side of the interface.
We also denote δΩh the set of points defined as the intersection between the grid

and δΩ. They are used to impose Dirichlet boundary conditions.
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Fig. 2 Left: regular nodes described by circles ◦, irregular nodes (belonging to Ω∗
h
) described by

bullets •, right: nodes belonging to Σh .

2.2 Second-order discretization in one dimension

We recall here the discretization presented in [12] applied in one dimension.

• Discrete elliptic operator on a grid point Mi

We use the standard three point stencil: Mi and its nearest neighbors in each
direction, either grid or interface points. We denote uE (resp. uW ) the value of
the numerical solution on the nearest point in the east (resp. west) direction, and
xE (resp. xw) its coordinate. The discretization at point Mi reads

−

(
∇.(k∇u)

)h
i
= −ki

2
xE − xW

(uE − ui
xE − xi

−
ui − uW
xi − xW

)
. (6)

The truncation error of this discretization is second-order accurate on regular
points, and first-order otherwise.

• Discrete jump conditions across the interface
On Figure 3, we present a prototypical situation around the interface: the interface
point, whose coordinate is xint = xk+1/2, is located between the grid points
corresponding to coordinates xk and xk+1 and we denote dh = xk+1 − xk+1/2.
We assume for instance that the subdomain Ω2 is located on the left side of the
interface, and Ω1 on the right side. The normal to the interface is oriented from
the left to the right.
The left and right normal derivatives at the interface are computed with second-
order formulas using three non-equidistant points:
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(∂nu1)hk+1/2 =
1 + 2d

d(d + 1)h
(uhk+1 − u1,h

k+1/2) −
d

(1 + d)h
(uhk+2 − uhk+1),

(∂nu2)hk+1/2 =
3 − 2d

(1 − d)(2 − d)h
(u2,h

k+1/2 − uhk ) −
1 − d
(2 − d)h

(uhk − uhk−1).

We express the jump conditions at point xk+1/2 as

u2,h
k+1/2 − u1,h

k+1/2 = α(xk+1/2), (7)

k2(∂nu2)hk+1/2 − k1(∂nu1)hk+1/2 = β(xk+1/2). (8)

Fig. 3 Geometrical configuration near the interface in one dimension.

2.3 First-order discretization in two dimensions

We present here the variant of the method of [12] with the jump on the fluxes
discretized with a first-order accuracy.

• Discrete elliptic operator
We use a standard five point stencil with the grid point Mi, j and its nearest
neighbors, interface or grid points, in each direction. More precisely, we denote
uh
S
the value of the solution on the nearest point in the south direction, with

coordinates (xS, yS). Similarly, we define uhN , uhW and uhE and the associated
coordinates (xN, yN ), (xW , yW ) and (xE, yE ). The discretization reads

−

(
∇.(k∇u)

)h
i, j
= −

(
∇.(k∇u)

)h
(xi, yj),

= −ki, j
(uhN − uhij

xN − xi
−

uhij − uh
S

xi − xS

) 2
xN − xS

−ki, j
(uhE − uhij
yE − yj

−
uhij − uhW
yj − yW

) 2
yE − yW

. (9)

The truncation error of this discretization is second-order accurate on regular grid
points, and first-order on irregular grid points.

• Discrete jump conditions across the interface
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We discretize the jump conditions (2) and (3) at each interface point Ii+1/2, j as:

u2,h
i+1/2, j − u1,h

i+1/2, j = α(Ii+1/2, j), (10)

k2(∂nu2)hi+1/2, j − k1(∂nu1)hi+1/2, j = β(Ii+1/2, j), (11)

and similarly for each interface point Ii, j+1/2. The discretization of the normal
derivatives depends on the local geometry of the interface. On Figure 4 one
can observe the four possible cases that are met if h is small enough. The first
intersection between the normal to the interface and the grid is located on a
segment: either [Mi, j−1,Mi, j], or [Mi, j−1, Mi+1, j−1], or [Mi, j , Mi, j+1], or [Mi, j+1,
Mi+1, j+1].
The discrete normal derivative is computed as the normal derivative of the linear
interpolant of the numerical solution on the triangle composed of the interface
point Ii+1/2, j and the aforementioned segment. If we denote K this triangle,
(x1, y1), (x2, y2) and (x3, y3) its vertices, and u1, u2 and u3 the associated values,
the basis functions on the vertices for the linear interpolation write

λj(x, y) = αj x + βj y + γj, j = 1, 2, 3,

with

αj =
yk − yi

(xj − xk)(yj − yi) − (xj − xi)(yi − yk)
,

βj =
xi − xk

(xj − xk)(yj − yi) − (xj − xi)(yi − yk)
,

γj =
xk yi − xiyk

(xj − xk)(yj − yi) − (xj − xi)(yi − yk)
,

(nx, ny) being an approximation of the normal at the interface point. With these
notations, the approximation of the normal derivative writes for instance for the
interface point Ii+1/2, j

(∂nu)hi+1/2, j = (u1 α1 + u2 α2 + u3 α3)nx + (u1 β1 + u2 β2 + u3 β3)ny .

This discretization is only first-order accurate because it is based on a linear
interpolation.

2.4 Elimination of the interface values on the Ω2 side

We replace the variables u2,h
i+1/2, j and u2,h

i, j+1/2 by u1,h
i+1/2, j + α(Ii+1/2, j) and u1,h

i, j+1/2 +

α(Ii, j+1/2) in the equations (8) or (11), and (6) or (9), in order to eliminate the jump
conditions (10) or (7) from the linear system. Because the jump conditions (7) or (10)
are expressed exactly, this does not change the truncation errors. In the following we
denote Ah the matrix of the linear system resulting from this discretization. The local
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Fig. 4 All possible stencils for the first-order flux discretization on the left side of the interface,
with points involved in the discretization signaled by black circles.

error array eh and the consistency error array τh obey the same linear relationship as
the numerical solution and the source terms:

Aheh = τh.

Due to the discretization that we have chosen, the truncation error amplitude is:

• for the first-order version in two-dimensions: O(h2) on regular grid points, O(h)
on irregular grid points, and O(h) on interface points,

• for the second-order version in one-dimension:O(h2) on regular grid points,O(h)
on irregular grid points, and O(h2) on interface points.

For the sake of simplicitywe assume that the boundary conditions on δΩ areDirichlet
boundary conditions imposed exactly. Consequently, the local error e is zero on δΩh .
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3 Convergence proof in two dimensions for the first-order
version of the method

First we prove the monotonicity of the discretization matrix, then we use it to apply
a discrete maximum principle to the matrix, and obtain estimates on the coefficients
of the inverse matrix, block by block.

3.1 Monotonicity of the discretization matrix

Here we aim to prove that Ah is monotone, that is, that all the coefficients of the
inverse matrix of Ah are non-negative. To prove this result, we use the following
lemma:

Lemma 1 With the convention used for the normal to the interface, illustrated on
Figure 5, if the minimum of v is located on an interface point, then at this interface
point the discrete normal derivative in Ω1 is positive and the discretized normal
derivative in Ω2 is negative.

Proof. The approximation of the normal derivative is constant, because it is com-
puted from a linear interpolation on a triangle. If the minimum of v is located on the
considered interface point, then the left normal derivative at this interface point is
negative and the right normal derivative at this interface point is positive. Moreover,
if the minimum of v is located on an interface point, and if the approximated normal
derivative at this point is zero, then the three points values involved in the stencil are
equal. ut

Theorem 1 Let v be an array of size N + Nint , corresponding to N grid points and
Nint interface unknowns, such that all coefficients of Ahv are non-negative, which
we denote Ahv ≥ 0, Ah being the discretization matrix corresponding of the method
in two-dimensions described in subsection 2.3.

Then, all coefficients of v are non-negative.

Before presenting the proof, let us remark that this property also means that Ah

is invertible. Indeed, let us assume that an array v is such that Ahv = 0. It means that
both Ahv and Ah(−v) are non-negative. Consequently, we have v ≥ 0 and −v ≥ 0,
thus v = 0.

Proof. Let v be an array of size N + Nint , corresponding to N grid points and Nint

interface unknowns, such that all coefficients of Ahv are non-negative, which we
denote Ahv ≥ 0.

We consider the minimum of v in the whole domain, interface points included.
This value can either be located on a grid point in one of the subdomains Ω1 or Ω2,
or on an interface point.
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Fig. 5 Geometrical configuration near the interface in two dimensions.

• If the minimum is located on one border of the computational domain
We assume for instance that the minimum of v is v1, j , located on the grid point
M1, j , such that M2, j , M1, j+1 and M1, j−1 also belong to the computational domain.
Therefore, the boundary is located on the left side of M1, j . The other cases would
be treated the same way. The elliptic operator inequality on this grid point yields:

4v1, j − v2, j − v1, j+1 − v1, j−1

h2 ≥ 0,

then we have 4v1, j ≥ v2, j + v1, j+1 + v1, j−1 ≥ 3v1, j and thus v1, j ≥ 0. Therefore all
values of v are non-negative.

• If the minimum is reached on a grid point in one subdomain sharing at least one point with δΩ
In this case we denote (i0, j0) the indices of the smallest component of v. We
assume the grid point is a regular grid point (otherwise the formula would have
slightly different weights, but the reasoning would be the same). Using the elliptic
operator inequality on this point we can write:

4vi0, j0 − vi0+1, j0 − vi0−1, j0 − vi0, j0+1 − vi0, j0−1 ≥ 0,

we deduce that vi0+1, j0 = vi0−1, j0 = vi0, j0+1 = vi0, j0−1 = vi0, j0 . Repeating this
reasoning on the neighbours of (i0, j0), then on the neigbours of the neighbours
etc, we deduce that all values in the subdomain, including the boundary values,
are equal to vi0, j0 . We use now the reasoning of the last paragraph to conclude
that all values of v are non-negative.

• If the minimum is reached on a grid point in one subdomain which does not share any point with δΩ
We use the notations and geometrical configuration of Figure 5.We assume, with-
out loss of generality, that the subdomain is Ω1 and we denote (i0, j0) the indices
of the minimum of v. With the same reasoning as in the previous paragraph, we
can prove that all values in the subdomain, including the interface values, are
equal to the minimum value vi0, j0 .
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Let us consider one of these interface values, located for instance on point Ii+1/2, j .
As noticed previously, the fact that all values are equal in the subdomain implies
that the normal derivative at the interface point is zero. Due to the fact that
Ahv ≥ 0, we can write on this interface point:

0 = k1(∂nv
1)hi+1/2, j ≤ k2(∂nv

2)hi+1/2, j .

On the other side, because the minimum value is reached on this interface point,
we also have

(∂nv
2)hi+1/2, j ≤ 0.

Consequently, (∂nv1)h
i+1/2, j = (∂nv

2)h
i+1/2, j = 0, and the values of the grid points

involved in the stencil for (∂nv2)h
i+1/2, j are equal to the value of the interface point.

It means that there are two grid points in the subdomain Ω2 where the minimum
value is reached.
In this paper we have considered so far that there are only two subdomains.
Therefore, we know that the subdomain Ω2 has a non-void intersection with δΩ,
and we use the reasoning of the previous paragraph to conclude. In the case where
more subdomains were considered, we would distinguish whether the subdomain
Ω2 has a non-void intersection with δΩ or not. If not the case, then wewould apply
again the reasoning of this paragraph, switching from subdomains to subdomains,
until finding a subdomain whose intersection with δΩ is non empty.

• If the minimum is located on one interface point
Without loss of generality, we assume that the minimum is located on Ii+1/2, j . On
this interface point we have the two relationships

(∂nv
2)hi+1/2, j ≤ 0,

(∂nv
1)hi+1/2, j ≥ 0.

Furthermore, we know that

k2(∂nv
2)hi+1/2, j − k1(∂nv

1)hi+1/2, j ≥ 0.

We infer from the previous inequalities that (∂nv2)h
i+1/2, j = (∂nv

1)h
i+1/2, j = 0.

Therefore there are at least two grid points in each subdomain where the mini-
mum value is reached. We can then follow the reasoning of one of the two last
paragraphs.

We have proven that if Ahv is non-negative, then v is also non-negative. ut
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3.2 Discrete Green functions

In the following, the letters P and Q represent either discretization points (on the
grid or on the interface) or their indices in the global numbering of the matrix. For
instance, we denote u(P) the coefficient of the row of u with the same index than
the point P. Similarly, AhU(P) represents the coefficient of the P-th row of the array
AhU, and Ah(P,Q) is the coefficient of the P-th row and Q-th column of the matrix
Ah . We also define respectively by Ah(:,Q) and Ah(P, :) the Q-th column and the
P-th row of the matrix Ah .

For eachQ ∈ Ωh∪Σh , define the discreteGreen’s functionGh(:,Q) =
(
Gh(P,Q)

)
P∈Ωh∪Σh∪δΩh

as the solution of the discrete problem: AhGh(:,Q)(P) =
{

0, P , Q
1, P = Q P ∈ Ωh ∪ Σh,

Gh(P,Q) = 0, P ∈ δΩh .
(12)

The matrix Ah being monotone, all values of Gh(:,Q) are positive. For homogeneous
Dirichlet boundary conditions we can write the solution of the numerical problem
as a sum of the source terms multiplied by the values of the discrete Green function:

uh(P) =
∑

Q∈Ωh∪Σh

Gh(P,Q) (Ahuh)(Q), ∀P ∈ Ωh ∪ Σh .

The local error eh(P) can similarly be expressed as a sum of the truncation error
terms multiplied by the values of the discrete Green function:

eh(P) =
∑

Q∈Ωh∪Σh

Gh(P,Q) (τh)(Q), ∀P ∈ Ωh ∪ Σh .

Now we present the result of Ciarlet in [11], based on a discrete maximum principle,
slightly modified to be adapted to our discretization matrix.

Theorem 2 Let S be a subset of points, W a discrete function with W ≡ 0 on δΩh , i
an integer and M > 0 a real value such that:{

(AhW)(P) ≥ 0 ∀P ∈ Ωh ∪ Σh,
(AhW)(P) ≥ M−i ∀P ∈ S.

Then ∑
Q∈S

Gh(P,Q) ≤ M iW(P), ∀P ∈ Ωh ∪ Σh .

Proof. Using the definition of the discrete Green function, we can write(
Ah

∑
Q∈S

Gh(:,Q)
)
(P) =

{
1 if P < S,
0 if P ∈ S.
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Therefore,

Ah

(
W − M−i

∑
Q∈S

Gh(:,Q)
)
(P) ≥ 0, ∀P ∈ Ωh ∪ Σh .

As all coefficients of the inverse of Ah are non-negative, it leads to

W(P) − M−i
∑
Q∈S

Gh(P,Q) ≥ 0, ∀P ∈ Ωh ∪ Σh,

and finally we obtain an estimate of
∑
Q∈S

Gh(:,Q) in terms of the coefficients of W :

∑
Q∈S

Gh(P,Q) ≤ M iW(P), ∀P ∈ Ωh ∪ Σh .

ut

This result can be generalized to several subsets, with both positive and negative
lower bounds, as was proved in [14]. This allows to obtain coupled estimates between
different subsets, based on discrete functions satisfying weaker assumptions.

Theorem 3 Let S and S̃ be two subsets of points, W a discrete function with W ≡ 0
on δΩh , i and j integers, and M > 0, M̃ > 0 real values such that:

(AhW)(P) ≥ 0, ∀P ∈ Ωh ∪ Σh \ S̃,
(AhW)(P) ≥ M−i, ∀P ∈ S,
(AhW)(P) ≥ −M̃−j, ∀P ∈ S̃.

Then ∑
Q∈S

Gh(P,Q) ≤ M iW(P) + M i M̃−j
∑
Q∈S̃

Gh(P,Q), ∀P ∈ Ωh ∪ Σh .

Proof. Using the definition of the discrete Green functions, we can write

AhW(P) ≥ Ah

(
M−i

∑
Q∈S

Gh(:,Q) − M̃−j
∑
Q∈S̃

Gh(:,Q)
)
(P), ∀P ∈ Ωh ∪ Σh .

As all coefficients of A−1
h

are non-negative, it leads to

W(P) − M−i
∑
Q∈S

Gh(P,Q) + M̃−j
∑
Q∈S̃

Gh(P,Q) ≥ 0, ∀P ∈ Ωh ∪ Σh,

and finally we obtain the following bound:∑
Q∈S

Gh(P,Q) ≤ M iW(P) + M i M̃−j
∑
Q∈S̃

Gh(P,Q), ∀P ∈ Ωh ∪ Σh .
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ut

3.3 Convergence proof

Here we aim to obtain estimates for
∑
Q∈Σh

Gh(:,Q),
∑

Q∈Ωh

Gh(:,Q) and
∑

Q∈Ω∗
h

Gh(:,Q),

corresponding respectively to blocks of interface points, grid points and irregular
grid points. These estimates are used to compute the convergence rate of the method.

3.3.1 Estimates for blocks of grid points and interface points

We consider the exact solution ū of system (1)-(3), with f = 1, α = 0 , β = 1 and
u = 0 on δΩ. We assume that Ω and Γ are smooth enough so that ū exists and is
smooth enough for our analysis. By applying a maximum principle we know that ū
is positive on Ω.

We define the array W̄ as the discretisation of ū on the grid and interface points,
with W̄ ≡ 0 on δΩh . The discretization of the elliptic operator and the fluxes is
consistent at least with first-order accuracy, thus for h small enough, we can write
that

−

(
∇.(k∇W̄)

)h
i, j
≥

1
2
, ∀Mi, j ∈ Ωh,

k2(∂nW̄2)hi+1/2, j − k1(∂nW̄1)hi+1/2, j ≥
1
2
, ∀Ii+1/2, j ∈ Σh,

k2(∂nW̄2)hi, j+1/2 − k1(∂nW̄1)hi, j+1/2 ≥
1
2
, ∀Ii, j+1/2 ∈ Σh .

This can be rewritten as:

(AhW̄)(P) ≥
1
2
, ∀P ∈ Ωh,

(AhW̄)(P) ≥
1
2
, ∀P ∈ Σh,

and using Theorem (2), it leads to:∑
Q∈Ωh

Gh(:,Q) +
∑
Q∈Σh

Gh(:,Q) ≤ 2W̄ . (13)

Therefore we obtain:
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Q∈Σh

Gh(:,Q) ≤ O(1), (14)∑
Q∈Ωh

Gh(:,Q) ≤ O(1). (15)

3.3.2 Estimates for blocks of grid points in Ω∗
h

• Let P = Mi0, j0 be a grid point belonging to Ωδ
h
. We consider the function

F̃P(x, y) = ln(
C

rP(x, y)
),

with rP(x, y) =
√
(x − xi0 )2 + (y − yj0 )

2 + h2, and C such that F̃P(x, y) > 0 for
all (x, y) ∈ Ω.
Without loss of generality, we assume in the following that xi0 = yj0 = 0. We can
prove that for every regular grid point Mi, j

−

(
∇.(k∇F̃P)

)h
i, j
≥ 0, (16)

and in particular, for the point P itself,

−

(
∇.(k∇F̃P)

)h
i0, j0
≥

C1

h2 , (17)

with C1 a strictly positive constant.

Proof. On a regular grid point we can write:

−

(
∇.(k∇F̃P)

)h
i, j
=

k
h2 ln

( ri−1, j ri+1, j ri, j−1 ri, j+1

r4
i, j

)
=

k
2h2 ln

( r2
i−1, j r2

i+1, j r2
i, j−1 r2

i, j+1

r8
i, j

)
,

=
k

2h2 ln
( [
(xi + h)2 + y2

j + h2
] [
(xi − h)2 + y2

j + h2
] [

x2
i + (yj + h)2 + h2

] [
x2
i + (yj − h)2 + h2

]
(x2

i + y2
j + h2)4

)
.

Moreover,[
(xi + h)2 + y2

j + h2
] [
(xi − h)2 + y2

j + h2
]
= (x2

i + y2
j + h2)2 + 3h4 − 2h2x2

i + 2h2y2
j ,[

x2
i + (yj + h)2 + h2

] [
x2
i + (yj − h)2 + h2

]
= (x2

i + y2
j + h2)2 + 3h4 − 2h2y2

j + 2h2x2
i .

Therefore
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r2
i−1, j r2

i+1, j r2
i, j−1 r2

i, j+1 = [(x
2
i + y2

j + h2)2 + 3h4]2 − 4h4(x2
i − y2

j )
2.

We develop the term and remark that[
(x2

i + y2
j + h2)2 + 3h4

]2
− 4h4(x2

i − y2
j )

2 ≥ (x2
i + y2

j + h2)4,

which gives us (16). The relationship (17) is directly obtained by using xi = yj = 0
in the first formula of the proof. ut

The considered point P belongs to Ωδ
h
, thus the interface is at a distance bounded

independently of h from P, and the function F̃P is C2 with derivatives bounded
independently of h on irregular grid points and interface points. Thus one can
prove with Taylor expansions that there exist strictly positive constants C2 and C3
such that

−

(
∇.(k∇F̃P)

)h
i, j
≥ −C2, ∀ Mi, j ∈ Ω

∗
h, (18)

k2(∂nF̃2
P)

h
i+1/2, j − k1(∂nF̃1

P)
h
i+1/2, j ≥ −C3, ∀ Ii+1/2, j ∈ Σh, (19)

k2(∂nF̃2
P)

h
i, j+1/2 − k1(∂nF̃1

P)
h
i, j+1/2 ≥ −C3, ∀ Ii, j+1/2 ∈ Σh . (20)

To sum up the previous lines, if we denote W̃P the array of the values of F̃P

discretized on the grid and interface points, with W̃P ≡ 0 on δΩh , there exist
three strictly positive constants, C1, C2 and C3, such that

(AhW̃P)(Q) ≥ 0, ∀Q ∈ Ωh \Ω
∗
h

(AhW̃P)(P) ≥
C1

h2 ,

(AhW̃P)(Q) ≥ −C2 ∀Q ∈ Ω∗h,

(AhW̃P)(Q) ≥ −C3 ∀Q ∈ Σh .

Therefore, we obtain for each point P belonging to Ωδ
h

Gh(:, P) ≤
h2

C1
W̃P(:) + h2 C3

C1

∑
Q∈Σh

Gh(:,Q) + h2 C2
C1

∑
Q∈Ω∗

h

Gh(:,Q). (21)

We want to sum this relationship for all points P belonging toΩδ
h
. To this purpose

we need to obtain an estimate of the sum of W̃P for all P belonging to Ωδ
h
.

Lets us consider any point Q ∈ Ωh . Because the isolines φ = ±δ have dimension
1, there exists an integer M > 0 independent of h, which is an upper bound of
the number of points P ∈ Ωδ

h
such that ih ≤ rP(Q) ≤ (i + 1)h. If we denote

NΩ = d
diam(Ω)

h
e, we thus can write:

∀ 1 ≤ i ≤ NΩ, card
(
P, P ∈ Ωδh, ih ≤ rP(Q) ≤ (i + 1)h

)
≤ M,
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Consequently, for all Q ∈ Ωh ,∑
P∈Ωδ

h

W̃P(Q) =
∑
P∈Ωδ

h

ln
( C
rP(Q)

)
≤ M

NΩ∑
i=1

ln
( C
ih

)
≤

M
h

NΩ∑
i=1

∫ ih

(i−1)h
ln

(C
x

)
dx

=
M
h

∫ NΩh

0
ln

(C
x

)
dx︸               ︷︷               ︸

=0(1)

= O(
1
h
).

Using this result, if we sum the inequality (21) on all points in Ωδ
h
and use the

estimate (14) for Σh , we obtain∑
P∈Ωδ

h

Gh(:, P) ≤ O(h) +O(h)
∑

Q∈Ω∗
h

Gh(:,Q). (22)

• We define the function f̌ by :

f̌ (x, y) =


B − 1 if |φ(x, y)| ≤ h/2,
B − eA( |φ(x,y) |−h/2) if h/2 ≤ |φ(x, y)| ≤ δ,

B − eA(δ−h/2) if δ ≤ |φ(x, y)|,

with φ the signed distance to the interface, negative in Ω2 and positive in Ω1.
This function is Lipschitz-continuous on the whole domain. It is also twice
differentiable with bounded derivatives, excepted on the isolines of the level-set
function φ = ±δ,±h/2. Thus the discrete elliptic operator will be bounded for all
grid points, excepted for the grid points in Ωδ

h
and grid points near the interface,

including Ω∗
h
, because the stencil for these points crosses these isolines.

The function f̌ satisfies for all (x, y) such that h/2 < |φ(x, y)| < δ:

−

(
∇.(k∇ f̌ )

)
(x, y) = k

[
A2

(
(∂xφ)

2 + (∂yφ)
2︸              ︷︷              ︸

= 1

)
± A∇.(∇φ)(x, y)

]
eA( |φ(x,y) |−h/2),

because φ is the signed distance function. The sign ± in this formula depends on
the subdomain to which (x, y) belongs. We choose A and B such that:{

k A2 ± A∇.(k∇φ)(x, y) ≥ 1, ∀(x, y) such that |φ(x, y)| ≤ δ,
f̌ (x, y) ≥ 0, (x, y) ∈ Ω.

For all regular grid points Mi, j belonging to Ωh \ Ω
δ
h
, with |φ(xi, yj)| < δ, we

thus have:
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−

(
∇.(k∇ f̌ )

)h
i, j
≥ 0. (23)

On the other side, for all regular grid points Mi, j belonging to Ωh \ Ω
δ
h
, with

|φ(xi, yj)| > δ, because the function f̌ is constant, we have

−

(
∇.(k∇ f̌ )

)h
i, j
= 0. (24)

The function φ is Lipschitz continuous on grid points in Ωδ
h
, so there exists a

strictly positive constant C4 such that

−

(
∇.(k∇ f̌ )

)h
i, j
≥ −

C4
h
, ∀ Mi, j ∈ Ω

δ
h . (25)

Let us consider a grid point Mi, j whose stencil for the elliptic operator crosses
one of the isolines |φ| = h/2. If |φ(Mi, j)| ≤ h/2, then f̌ (Mi, j) = B − 1. Thus the
values of the other points involved in the stencil are smaller than f̌ (Mi, j), meaning

that −
(
∇.(k∇ f̌ )

)h
i, j
≥ 0. If |φ(Mi, j)| > h/2, then there is at least one point in the

stencil satisfying |φ| < h/2 and the value of f̌ on such a point is smaller than it
would be if f̌ was not truncated at the value B − 1. Consequently, we have also in

this case −
(
∇.(k∇ f̌ )

)h
i, j
≥ 0.

The discontinuity in the first derivative of f̌ on isolines |φ| = h/2 is defined
such that the discrete elliptic operator applied to f̌ on an irregular point will be
computed with at least two first-order derivatives whose value differs by a O(1)
amplitude. Consequently, the discrete elliptic operator applied to f̌ on an irregular
point will scale like

1
h
.

As a consequence of the previous lines, there exists a strictly positive constant C5
such that

−

(
∇.(k∇ f̌ )

)h
i, j
≥

C5
h
, ∀ Mi, j ∈ Ω

∗
h . (26)

Finally, the discrete normal derivative of f̌ computed with the formula involving
points in Ω2 (resp. Ω1) is positive (resp. negative), therefore

k2(∂n f̌ 2)hi+1/2, j − k1(∂n f̌ 1)hi+1/2, j ≥ 0, ∀ Ii+1/2, j ∈ Σh, (27)

k2(∂n f̌ 2)hi, j+1/2 − k1(∂n f̌ 1)hi, j+1/2 ≥ 0, ∀ Ii, j+1/2 ∈ Σh . (28)

Therefore, if we denote W̌ the array of the values of f̌ discretized on the grid and
interface points, with W̌ ≡ 0 on δΩh , there exist strictly positive constants C4 and
C5 such that
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(AhW̃P)(Q) ≥ 0, ∀Q ∈ Ωh \Ω
δ
h,

(AhW̃P)(Q) ≥ −
C4
h
, ∀Q ∈ Ωδh,

(AhW̃P)(Q) ≥
C5
h
, ∀Q ∈ Ω∗h,

(AhW̃P)(Q) ≥ 0, ∀Q ∈ Σh,

and we conclude that∑
Q∈Ω∗

h

Gh(:,Q) ≤
C4
C5

∑
Q∈Ωδ

h

Gh(:,Q) +
h

C5
W̌(:). (29)

Combining (22) and (29) we obtain∑
Q∈Ω∗

h

Gh(:,Q) ≤
C4
C5

(
O(h) +O(h)

∑
Q∈Ω∗

h

Gh(:,Q)
)
+

h
C5

W̌(:).

Therefore, for h small enough, we obtain:∑
Q∈Ω∗

h

Gh(:,Q) ≤ O(h). (30)

3.3.3 Convergence result

Finally, we obtain an estimate of the local error eh(P) on every point P in Ωh ∪ Σh ,
with ū the exact solution:

|eh(P)| = |ū(P) − uh(P)|

=

��� ∑
Q∈Ωh∪Σh

Gh(P,Q)τ(Q)
���

≤

��� ∑
Q∈Ω∗

h

Gh(P,Q)τ(Q)
��� + ��� ∑

Q∈Ωh\Ω
∗
h

Gh(P,Q)τ(Q)
��� + ��� ∑

Q∈Σh

Gh(P,Q)τ(Q)
���

≤ O(h)
��� ∑
Q∈Ω∗

h

Gh(P,Q)
��� +O(h2)

��� ∑
Q∈Ωh\Ω

∗
h

Gh(P,Q)
��� +O(h)

��� ∑
Q∈Σh

Gh(P,Q)
���

≤ O(h)O(h) +O(h2)O(1) +O(h)O(1) = O(h)

which proves that the numerical solution converges with first-order accuracy to the
exact solution in L∞-norm.

This computation allows to isolate the contribution of each different approxima-
tion errors. In particular, we can see that it is not necessary to have a first-order
truncation error on the irregular points, but that an O(1) truncation error would lead
to the same order of convergence. We can also see that the convergence is limited to
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first-order accuracy because of the first-order approximation of fluxes. If a second-
order approximation of fluxes was used, we would obtain a global second-order
convergence, provided that the resulting approximation matrix is monotone.

4 Convergence proof for the one-dimensional case

4.1 Monotonicity of the discretization matrix

Here we aim to prove that Ah is monotone in spite of the fact that the matrix Ah is
not diagonally-dominant in the second-order version, due to the discretization terms
near the interface.

Theorem 4 Let v be an array of size N + Nint corresponding to N grid points
and Nint interface unknowns such that Ahv ≥ 0, Ah being the discretization matrix
corresponding of the method in one-dimension described in subsection 2.2. Then,
all coefficients of v are non-negative.

Proof. Let v be an array of size N + Nint corresponding to N grid points and Nint

interface unknowns such that Ahv ≥ 0. Let us assume that the minimum of v is
located on an interface point xint = xk+1/2.

We will prove that, with the notations and orientation of the normal defined
on Figure 3, the left normal derivative at this interface point is negative and the
right normal derivative at this interface point is positive. Once we have proven this
property, the proof of monotonicity of the matrix is exactly the same as in two
dimensions, so we will not re-write it.

The left normal derivative at xint is discretized by

(∂nv
2)hk+1/2 =

3 − 2d
(1 − d)(2 − d)h

(vk+1/2 − vk) −
1 − d
(2 − d)h

(vk − vk−1).

By hypothesis Ahv ≥ 0 hence

−

( vk+1/2 − vk

(1 − d)h
−
vk − vk−1

h

)
≥ 0,

therefore

(∂nv
2)hk+1/2 ≤

2 − d
(1 − d)(2 − d)h

(vk+1/2 − vk) ≤ 0.

Moreover, if one can prove that the normal derivative is zero, then, with the last
inequality, we can deduce that vk = vk+1/2. Similarly, the right normal derivative at
xk+1/2 is discretized by

(∂nv
1)hk+1/2 =

1 + 2d
d(d + 1)h

(vk+1 − vk+1/2) −
d

(1 + d)h
(vk+2 − vk+1).
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By hypothesis Ahv ≥ 0 hence

−

( vk+2 − vk+1
h

−
vk+1 − vk+1/2

dh

)
≥ 0,

therefore

(∂nv
1)hk+1/2 ≥

1 + d
d(d + 1)h

(vk+1 − vk+1/2) ≥ 0.

Again, if the normal derivative is zero, then vk+1 = vk+1/2. ut

4.2 Second-order convergence

With exactly the same reasoning than in subsection 3.3 we can prove the estimates
(15), (14 ) and (22). We use them to obtain an estimate of the local error on every
point P in Ωh ∪ Σh:

|eh(P)| = |ū(P) − uh(P)|

=

��� ∑
Q∈Ωh∪Σh

Gh(P,Q)τ(Q)
���

≤

��� ∑
Q∈Ω∗

h

Gh(P,Q)τ(Q)| +
��� ∑
Q∈Ωh\Ω

∗
h

Gh(P,Q)τ(Q)
��� + ��� ∑

Q∈Σh

Gh(P,Q)τ(Q)
���

≤ O(h)
��� ∑
Q∈Ω∗

h

Gh(P,Q)
��� +O(h2)

��� ∑
Q∈Ωh\Ω

∗
h

Gh(P,Q)
��� +O(h2)

��� ∑
Q∈Σh

Gh(P,Q)
���

≤ O(h)O(h) +O(h2)O(1) +O(h2)O(1) = O(h2)

which proves that the numerical solution converges with second-order accuracy to
the exact solution in L∞-norm.

5 Discussion

Numerous numerical methods have been developed for solving the problem (1) - (3),
leading to a second-order accuracy in maximum norm, among them:

• the pioneering work ofMayo in 1984 [31], where an integral equation was derived
to solve elliptic interface problems with piecewise coefficients. A second-order
and fourth-order Cartesian grid-based boundary integral method for an interface
problem of the Laplace equation on closely packed cells was also proposed
recently in [37].



22 Lisl Weynans

• the very well known Immersed Interface Method (IIM) of LeVeque and Li (1994)
[25], and its developments, among them: the fast IIM algorithm of Li [28] for el-
liptic problems with piecewise constant coefficients, the Explicit Jump Immersed
Interface Method (EJIIM) by Wiegmann and Bube [36], the Decomposed Im-
mersed Interface Method (DIIM) by Bethelsen [5], and the MIIM (maximum
principle preserving) by Li and Ito [29].

• the Matched Interface and Boundary (MIB) method [40], [39], [16], introduced
by Zhou et al. : the solution on each side of the interface is extended on ficti-
tious points on the other side. These fictitious values are computed by iteratively
enforcing the lowest order interface jump conditions. This method can provide
finite-difference schemes of arbitrary high order.

• the Coupling Interface Method, proposed by Chern and Shu [10], where the
discretizations on each subdomain are coupled through a dimension by dimension
approach using the jump conditions.

• Recently, Guittet et al. proposed in [20] to add degrees of freedom close to the
interface and use a Voronoi partition centered at each of these points to discretize
the equations in a finite volume approach. Doing so, they obtain a symmetric
positive definite linear system and a second-order convergence of the solution.

• In the context of finite element methods, which is quite different from the method-
ology used here, numerous developments have also been done on cartesian grids,
for instance [21].

Other classes of Cartesian methods also exist, only first order accurate for interface
problems in the case of interface problems, but simpler to implement: Gibou et al.
([17], [18]). Let us also mention a new approach to solve a Dirichlet problem by a
finite difference analog of the boundary integral equations, presented in [3]. In this
paper, the double layer potential is thought as the solution of an interface problem
similar to the one considered in this paper. A few works have also been devoted to
higher order discretizations, for instance [27] where an alternative approach based
on non-matching grids is developed, with a fourth order compact finite difference
scheme at border grid points that connect two meshes.

Concerning the discretization requirements needed to get a second-order spatial
convergence, it has been noted since the introduction of Cartesian grid methods that
an O(h) truncation error at the points near the interface is enough to get an O(h2)
convergence in maximum norm if the discretization is second-order on the regular
grid points. However, in the literature, only few works have been devoted to the study
of the second-order convergence of Cartesian grid methods for interface problems.

For one-dimensional methods, Huang and Li performed in [22] a convergence
analysis of the IIM, using non-negative comparison functions, and in [36]Wiegmann
and Bube presented a proof of convergence for one-dimensional problems with
piecewise constant coefficients, using a detailed analysis and identification of the
coefficients of the matrices involved. In [23], a convergence proof was established
in one-dimension for a variant of the method studied in this paper, applied in the
context of electropermeabilization models. But this proof was based on a row by row
analysis of the discretization matrix, in order to obtain estimates of the coefficients of
the inverse matrix. This technique would not be tractable in two dimensions, due to
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its complexity. Recently, in [38], a second-order convergence proof was established
by Zheng and Sweidan for a boundary-value variant of the Ghost-Fluid method, both
for the solution and its derivative.

For two-dimensional methods, Beale and Layton [2] proved in two-dimensions
the second-order convergence for piecewise constant diffusion coefficients, using the
fact that a grid function located near the interface can be written as the divergence of
a function smaller in norm. In [26], Li et al. proved the second-order convergence,
for the solution and its gradient, in the case of an augmented method, where the jump
in the normal derivative of the solution is considered as an additional unknown. The
interface problem was rewritten as a new PDE consisting in a leading Laplacian
operator plus lower derivatives terms near the interface. With this reformulation it
was possible to use the result of [2] to prove the convergence. Li and Ito proved in
[29] the second-order convergence of their MIIM, using the maximum principle. The
proof uses a technical condition related to the location of the interface with respect to
the grid point that is not always satisfied. For a slightly different kind of problem, in
[1] it was proven that the numerical solution of a convection diffusion equation with
an interface could allow an O(h) truncation error near the interface and still have
a solution with uniform O(h2) accuracy, and first differences of uniform accuracy
almost O(h2). Recently a second-order convergence in L∞-norm was proved in [15]
for a 3D method based on an extension of the 2D finite element-finite difference
method for general three dimensional anisotropic elliptic interface problems.

In this paper, the proof is also based on a discrete maximum principle, but differs
significantly from the proof in [29] because the discretization is not the same, notably
due to the presence of interface unknowns, which makes the monotonicity of the
matrix a crucial step in the proof, and lead to a different application of the discrete
maximum principle. This result can be considered as a step toward the convergence
proof of the second-order method presented in [12]. In future works, we aim to adapt
the ideas presented here to the original method itself. The crucial point being to
prove that a discrete maximum principle can be applied to the discretization matrix,
two alternatives could be explored:

• One could prove that the discretization matrix for the original second-order
method is monotone. Because the discretization matrix is not diagonally domi-
nant, one would probably need to combine adequatly some elliptic inequalities for
the nodes near the interface into the expression of the discrete normal derivative.
It may also be necessary to modify the stencil of the flux, but still maintaining its
second-order accuracy.

• One could also use the technique presented in [7], where non-monotone finite-
difference methods are proven to satisfy a generalized local maximum principle,
still leading to a convergence result.

Finally, we want to emphasize that the technique that we have used to obtain
the bounds on the coefficients of the inverse matrix could also be used to prove
the convergence of numerical methods for other numerical methods for elliptic
problems, for instancewithout singular source terms butwith discontinuous diffusion
coefficients. Indeed, to our knowledge, classical estimates of the discrete Green
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functions were obtained mainly for smooth diffusion coefficients k, like for instance
in [6].

6 Numerical study

In this section we provide numerical results only for the first-order method in two di-
mensions, as the second-order method has already been validated in two-dimensions
in [12]. This numerical study is not meant to assess performances of the method but
simply to corroborate the analysis that we have performed.

In the following we consider a square domain Ω consisting in the union of two
subdomains Ω1 and Ω2 separated by an interface Σ. We impose exact Dirichlet
boundary conditions on the outer boundary of Ω.

6.1 Numerical study of the discrete Green functions

Here we study numerically the amplitude in L∞-norm, of the different sums of
discrete Green functions estimated in subsections 3.3.1 and 3.3.2. We consider an
elliptical interface Σ defined as:

(
x

18/27
)2 + (

y

10/27
)2 = 1.

The amplitude in L∞-norm of the sums of the different groups of discrete Green
function is presented in Table 1. We observe the same behaviour as the estimates
(15), (14) and (30), namely anO(1) behaviour for

∑
Q∈Σh

Gh(P,Q) and
∑

Q∈Ωh

Gh(P,Q),

and an O(h) behaviour for
∑

Q∈Ω∗
h

Gh(P,Q).

N Σh Ωh Ω∗
h

50 1.803 ×10−1 2.985 ×10−1 3.374 ×10−2

100 1.817 ×10−1 2.965 ×10−1 1.5642 ×10−2

200 1.818 ×10−1 2.957 ×10−1 8.371 ×10−3

400 1.820 ×10−1 2.952 ×10−1 4.164 ×10−3

Table 1 Numerical amplitude in L∞-norm of the different groups of discrete Green functions.
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6.2 Convergence study: problem 1

It is a test case appearing in [40] (MIB method, case 3 of the tests on irregular
interfaces) and [10] (CIM, example 4). We consider an elliptical interface Σ defined
as:

(
x

18/27
)2 + (

y

10/27
)2 = 1.

The exact solution is:

u(x, y) =

{
ex cos(y), inside Σ,

5e−x
2− y2

2 otherwise.

We set the diffusion coefficient k = 1 outside the interface, and k = 10 inside the
interface. We compute the convergence order p by comparing the numerical errors
e(N1) and e(N2) respectively computed with N1 and N2 number of grid points in
each direction, with the formula:

p =
ln( e(N1)

e(N2)
)

ln( N2
N1
)
.

We observe a first-order convergence, as presented in Table 2.

N L∞ error order
20 1.0521 ×10−1 -
40 5.3019 ×10−2 0.99
80 2.5699 ×10−2 1.02
160 1.3015 ×10−2 1.00
320 6.5679 ×10−3 1.00

Table 2 Numericals results for Problem 1.

Moreover, we want to give a numerical evidence of the influence of the truncation
error for the discretization of the elliptic operator on irregular points. To this purpose
we add to the linear system used for the above test an additional source term uniformly
equal to one to all lines of the linear system corresponding to the discretization of
the elliptic operators for points in Ω∗

h
. Then we check that the resulting order of

convergence is unchanged. The resulting errors and numerical convergence order
are displayed in Table 3. The amplitude of the L∞ is higher, as expected, but we still
observe a first-order convergence.
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N L∞ error order
20 3.2979 ×10−1 -
40 1.9303 ×10−1 0.77
80 8.5741 ×10−2 0.97
160 4.3055 ×10−2 0.98
320 2.2028 ×10−2 0.98

Table 3 Numericals results for Problem 1 with a perturbation inO(1) of source term for irregular
points.

6.3 Convergence study: problem 2

It is a test case studied in [30]. We consider a spherical interface Σ defined by
r2 = 1/4 with r =

√
x2 + y2. The exact solution is:

u(x, y) =

{
ex cos(y) inside Σ,
0 otherwise.

The numerical results and orders of convergence are presented in Table 4.We observe
again a first-order convergence.

N L∞ error order
20 4.9234 ×10−3 -
40 2.2717 ×10−3 1.12
80 1.0763 ×10−3 1.10
160 5.5813 ×10−4 1.05
320 2.4518 ×10−4 1.08

Table 4 Numericals results for Problem 2.
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