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Abstract

We investigate renormalized curvature flow (RCF) and stochastic renormalized cur-
vature flow (SRCF) for convex sets in the plane. RCF is the gradient descent flow
for the logarithm of σ/λ2 where σ is the perimeter and λ is the volume. SRCF is
RCF perturbed by a Brownian noise and has the remarkable property that it can be
intertwined with the Brownian motion, yielding a generalization of Pitman “2M −X”
theorem. We prove that along RCF, the entropy Et for curvature as well as ht := σt/λt

are non-increasing. We deduce infinite lifetime and convergence to a disk after nor-
malization. For SRCF the situation is more complicated. The process (ht)t is always
a supermartingale. For (Et)t to be a supermartingale, we need that the starting set
is invariant by the isometry group Gn generated by the reflection with respect to
the vertical line and the rotation of angle 2π/n with n ≥ 3. But for proving infinite
lifetime, we need invariance of the starting set by Gn with n ≥ 7. We provide the first
SRCF with infinite lifetime which cannot be reduced to a finite dimensional flow. Gage
inequality plays a major role in our study of the regularity of flows, as well as a careful
investigation of morphological skeletons. We characterize symmetric convex sets with
star shaped skeletons in terms of properties of their Gauss map. Finally, we establish
a new isoperimetric estimate for these sets, of order 1/n4 where n is the number of
branches of the skeleton.
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The stochastic renormalized curvature flow

1 Introduction

The evolution of simple closed surfaces in Euclidean spaces by mean curvature flow
has been investigated for a long time, originally motivated by Physics. It is a kind of
nonlinear geometrical heat equation. Here we are interested in the two-dimensional
case, known as the curve shortening flow, since it can be described as the gradient
descent flow for the perimeter. We will call it the curvature flow (CF), since we have to
perturbe it by deterministic and stochastic terms breaking the shortening interpretation.
In 1986, Gage and Hamilton [6] proved that starting from any convex smooth simple
closed curve, the curvature flow converges in finite time to one point, and the form of the
curve becomes circular. In 1987, Grayson [8] generalized this result to non necessarily
convex starting curve. It is a remarkable fact that no self-intersection occurs during the
evolution of the flow.

1.1 Motivations for renormalized and stochastic curvature flows and main re-
sults

The renormalized curvature flow (RCF) can roughly be defined as the solution to
the evolution equation for curves by curvature, to which we add a constant normal
field to prevent implosion. More precisely we will prove in Lemma 2.5 that RCF is the
gradient descent flow for the logarithm of σ(∂D)/λ(D)2 where the considered curve is
the boundary ∂D of a bounded domain D, λ(D) is the volume of the domain and σ(∂D)

is the perimeter of the curve. For this flow, self-intersection can occur when the starting
curve is not convex. But when the starting curve is convex, we will prove in Theorem 2.4
that the lifetime of the flow (∂Dt)t≥0 is infinite and the curve converges to a circle. Two
quantities will be investigated for the convergence: the ratio ht B σ(∂Dt)/λ(Dt) and the

entropy Entt B

∫
∂Dt

ρt log ρt, ρt being the curvature at each point of ∂Dt. We will prove

that these two quantities are non-increasing along the flow (Lemmas 2.8 and 2.17).
One of the main goals of this paper is the investigation of a stochastic renormal-

ized curvature flow (SRCF) in R2, where a one-dimensional normal Brownian noise
is added to the evolution of the RCF. The intensity of the noise is chosen so that the
generator of the flow is intertwined with that of the Brownian motion, via a Markov
kernel, see [2] and [1], leading to nice connections with Bessel-3 processes. When the
intertwining is realized through a coupling of the domain-valued process (Dt)t with a
Brownian motion (Xt)t such that at any time t ≥ 0, Xt is uniformly distributed inside
Dt conditionally to (Ds)0≤s≤t, the construction is a generalization of the famous Pitman
“2M −X” theorem. An important object in the construction of the coupling (Xt, Dt)t is
the inner skeleton St of Dt, which is the singularity set of the distance to the boundary,
inside Dt: the evolution equation for (∂Dt)t has a component of the drift which is pro-
portional to the local time of Xt at St, cf. [1]. A remarkable fact about the skeleton is
that although (∂Dt)t has a Brownian noise, (St)t has finite variation. As we will see in
the present paper, the inner skeleton process (St)t also plays a role in the lifetime of
(Dt)t. We will prove that starting with a convex subset D0 of R2, explosion occurs only
when ∂Dt meets St (Theorem 3.9). We will also prove that similarly to the deterministic
situation, the process ht is a supermartingale (Lemma 4.3). For the entropy being a
supermartingale, we will need that D0 is invariant by the linear group Gn generated
by the rotation of angle 2π/n with n ≥ 3, and the symmetry with respect to an axis (we
will choose the vertical one, see Proposition 4.8). Gn-invariance for any fixed n ≥ 2 will
be proved to be preserved by the flow. Finally we will prove that Gn-invariance of D0

with some n ≥ 7 implies infinite lifetime for the stochastic renormalized curvature flow
(Theorem 4.15).
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The stochastic renormalized curvature flow

In Section 5 we investigate some class of convex sets in R2, which are symmetric with
respect to Gn and have star-shaped skeletons. We prove (Proposition 5.5) that they are
preserved by all our flows. The last section is devoted to the proof of a new isoperimetric
inequality for these classes of convex sets (Proposition 6.1). A bound of order 1/n4 is
obtained.

1.2 Parametrization of convex curves and notations

We are mainly interested in curves satisfying the following property.

Definition 1.1. A simple closed curve is said to be strictly convex when its geodesic
curvatures are positive.

Note that the inside domain of such a curve is strictly convex in the usual sense i.e. it
is strictly contained in one side of any tangent line, except for the contact point, but the
converse is not necessarily true, as the curvature may vanish at isolated points.

It is possible to parametrize a simple strictly convex closed curve inR2 using the angle
θ between the tangent vector T B (cos(θ), sin(θ)) and the oriented x axis. The coordinate
θ will make the equations of our flows simple to analyze, in particular since operators
∂θ and ∂t will commute, contrary to derivatives with respect to curvilign abscissa ∂s
and ∂t, as shown in (3.2). We will essentially use the one-to-one correspondence in R2

between simple strictly convex closed curves (up to translation) and positive functions ρ
that satisfy ∫ 2π

0

cos(θ)

ρ(θ)
dθ =

∫ 2π

0

sin(θ)

ρ(θ)
dθ = 0 (1.1)

as in Lemma 4.1.1 of Gage and Hamilton [6]. The function ρ turns out to be the curvature
of the curve, see also Section 5.

We will derive the evolution equation for the curvature under stochastic evolutions of
curves, such as stochastic curvature flow (SCF) (3.10) and SRCF (3.1). The positivity of
the curvature as well as Equation (1.1) are preserved along these equations. It leads
to an alternative definition of the stochastic evolution of a convex curve in terms of the
solution of some stochastic partial differential equation, see in particular Theorem 3.9.

To fix some notations used throughout the paper, let us recall some notions associated
to a simple C2 closed curve C : T 3 u 7→ C(u) ∈ R2, where T B R/(2πZ). In this paper,
all curves will be closed and immersed.

The bounded domain whose boundary is C is denoted by D. The quantities λ(D)

and σ(C) respectively stand for the volume of D and the perimeter of C = ∂D. We
designate by h(D) the isoperimetric ratio σ(∂D)/λ(D), not to be confounded with the
planar isoperimetric ratio σ(∂D)2/λ(D). For any x ∈ C, νC(x) is the outer unit normal
vector of the curve C at the point x and ρC(x) is the corresponding curvature.

When the domain D(t) and its boundary Ct B C(t, ·) depend on time t ≥ 0, we will
sometimes drop the parameter D(t) or Ct from the notations and even write shortcuts
such as h(t) instead of h(D(t)).

1.3 Alternative approaches

According to the previous subsection, the shape of a strictly convex curve is given
by its curvature function, for instance defined on T. Thus an evolution of curves, either
deterministic or stochastic, can be described by the temporal evolution of its curvature
function, which either takes the form of a partial differential equation or a stochastic
partial differential equation. See for instance (2.7) or (3.7) for such evolution equations.
We could then resort to the huge literature on the subject. For instance Lions, Souganidis
and their co-authors have a long series of articles on non-linear first or second order
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The stochastic renormalized curvature flow

stochastic partial differential equations. But the general equation (1.1) of their latter
paper [7] does not cover our evolution, due to the fact that they only consider coefficients
using the derivatives up to order two of the evolving function, but not the function itself.
Furthermore, [7] does not consider non-local terms, such as h(t) in Equations (3.1) and
(3.7) below.

Another point of view from partial differential equations on curvature type flows
consists in interpreting a planar curve C as the level set of a function u defined on R2,
say C = {(x, y) ∈ R2 : u(x, y) = 0}. When the function u is evolving with time, we
get a corresponding evolution of the curve through Ct B {(x, y) ∈ R2 : ut(x, y) = 0}.
Curvature flows, usual, renormalized or stochastic, can be represented in this way, with
u satisfying a partial differential equation or a stochastic partial differential equation.
Indeed, the equations are then homogeneous in space and satisfy the assumptions of
Section 2.1 of [7], where T2 should be replaced by R2. We get a solution (Ct)t defined
for all times, but it is not clear if it remains non-empty, connected or even a curve.
Furthermore their main asymptotic result in this setting, Theorem 2.1, does not provide
any clue about the stronger asymptotic behaviors we are looking for (spherical shapes),
nor about the regularity of the curves or their skeletons.

For these reasons, we preferred to use geometric and stochastic methods.

2 The renormalized curvature flow (RCF)

Let us introduce the renormalized evolution we are interested in.

Definition 2.1. Let C0 : T 3 u 7→ C0(u) ∈ R2 be a continuous simple and closed planar
curve and C : [0, Tc)×T→ R2 be a continuous family of simple closed curves indexed
by [0, Tc), with Tc > 0. We say that C starts from C0 and evolves under the renormalized
curvature flow (RCF), when it satisfies the following equation{

∂tC(t, u) = [−ρ(C(t, u)) + 2h(D(t))]νCt(C(t, u)), ∀ (t, u) ∈ (0, Tc)×T

C(0, u) = C0(u), ∀ u ∈ T
(2.1)

In the sequel, stronger assumptions than continuity will be made on the initial curve
C0 and we will often refer to:

Hypothesis 2.2. The initial curve C0 : T 3 u 7→ C0(u) ∈ R2 is a simple C2+α closed and
strictly convex planar curve, with α > 0.

When more regularity is required, it will be explicitly stated.

Remark 2.3. Since the symbol of Equation (2.1) is the same as that of the curvature
flow, short time existence and uniqueness of the solution to (2.1) hold for simple initial
closed C∞ curve, see for example [6] or [5]. Existence and uniqueness still hold, up to
the lifetime, if the regularity is relaxed to C2+α with α > 0, regularity which is preserved
by evolution through (2.1), explaining the above assumption on C0, that will enable us to
refer to the solution in the sequel.

We need the simplicity of the curve to avoid ambiguity for h (mainly for the interior
volume, see Figure 2a at the end of the paper) and to make sure the outer unit normal
vector is well-defined.

An alternative proof for existence, using quasi-linear equations, can be found in
Chapter 4 of [2], Theorem 40 with Bt = 0 for any t ≥ 0.

2.1 The main result of this section

Our main purpose is to investigate the evolution of the curvature function through the
RCF. In particular geometrical inequalities concerning planar convex closed curves will
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play an important role, as they will provide a priori estimates on the solutions: the Gage
inequality (2.4), involving the non local term h, and the usual isoperimetric inequality.
The principal result of this section is the following:

Theorem 2.4. Under Hypothesis 2.2, the solution (Ct)t of equation (2.1) is defined for
all t ∈ [0,∞), it remains strictly convex and simple for all times and is asymptotically
circular, the isoperimetric ratio is decreasing (except for circular starting curves). After
renormalization and translation, we have the convergence with respect to the Hausdorff
metric

1√
6t

[Ct − cint(t)]
dH→ C(0, 1),

to the circle of center 0 and radius 1, where for all t, cint(t) is the center of an inscribed
circle of Ct.

The rest of Section 2 is devoted to the proof of Theorem 2.4.

2.2 Gradient descent flow formulation, and evolution of geometric quantities

To a solution (Ct)t∈[0,Tc) of (2.1), associate

∀ t ∈ [0, Tc), ∀ u ∈ T, v(t, u) B |∂uC(t, u)|

and s the arc-length parametrization, ∂s B
1
v∂u (equivalently ds = vdu), started at

C(t, s)|s=0 = C(t, u)u=0. To prevent the dependence on t of the domain of definition of s,
we define s on R with σ(Ct) as period. Let T B ∂sC(t, s) be the tangent vector of the
curve C(t.) at the point C(t, s). Let ν(t, s) be the unit vector obtained by a rotation of
T (t, s) by an angle of −π/2. We will always assume that ν is the outer normal of the
curve, up to a change of direction of the parametrization.

To reinterpret the RCF as a gradient descent flow, let us see the tangent space above
a simple closed curve C as the set of R2-valued vector fields defined on C, and consider
the scalar product of two such vector fields X and X ′ given by

〈X,X ′〉C B
1

σ(C)

∫
C

〈X,X ′〉C(s) ds

These definitions provide us with a kind of infinite-dimensional Riemannian structure.

Lemma 2.5. Equation (2.1) is the gradient descent flow of the functional

Ψ : D 7→ ln
σ(∂D)

λ(D)2

relatively to the above structure.

Proof. Let C : [0, T )×T→ R2 be a family of simple closed curves, such that ∂tC(t, u) =

X(t, u) for some smooth X : [0, T )× T → R2. Classical variational computations show
that at any time t ∈ [0, T ),

d

dt
λ(t) =

∫
Ct

〈Xt, ν〉ds

and
d

dt
σ(t) =

∫
Ct

〈Xt, ν〉ρds,

where we recall, in addition to the shortcuts mentioned at the end of Section 1.2, that Ct
is the curve at time t and we denoted similarly Xt B X(t, ·) the vector field on Ct, seen
as a vector above Ct
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It follows that for any given t ∈ [0, T ), we have

d

dt

σ(t)

λ(t)2
=

1

λ(t)2

(∫
Ct

〈Xt, ν〉ρds−
2σ(t)

λ(t)

∫
Ct

〈Xt, ν〉ds
)

=
1

λ(t)2

∫
Ct

〈
Xt,

(
ρ− 2σ(t)

λ(t)

)
ν

〉
ds

=
σ(t)

λ(t)2

(∫
Ct

〈
Xt,

(
ρ− 2σ(t)

λ(t)

)
ν

〉
ds

σ(t)

)
.

namely
d

dt
Ψ(Ct) =

〈
Xt,

(
ρ− 2σ(t)

λ(t)

)
ν

〉
Ct

.

Denote Rt the maximum of the r.h.s. above all Xt satisfying 〈Xt, Xt〉Ct = 1 and let

X̃t be a corresponding maximizing vector field. The gradient vector field at Ct for the
functional Ψ is given by RtX̃t.

Due to the Cauchy-Schwartz inequality, we get

X̃t =
1√

1
σ(t)

∫
Ct

(
ρCt(Ct(s))− 2σ(t)λ(t)

)2
ds

(
ρ− 2σ(t)

λ(t)

)
ν

Rt =

√
1

σ(t)

∫
Ct

(
ρCt(Ct(s))− 2

σ(t)

λ(t)

)2

ds

and it follows that the gradient vector field at Ct for the functional Ψ is
(
ρ− 2σ(t)

λ(t)

)
ν,

i.e. the opposite of the vector field appearing in (2.1), as required by the gradient
descent.

Let us start the investigation of the evolution induced by the RCF of some geometric
objects:

Proposition 2.6. Under the RCF, we have
∂tv = −ρ(ρ− 2h)v

∂t∂s = ∂s∂t + ρ(ρ− 2h)∂s
∂tT = −(∂sρ)ν

∂tν = (∂sρ)T.

(2.2)

Proof. We differentiate equation (2.1) in u, and we get:

∂t∂uC = ∂u∂tC = −(∂uρ)ν + (−ρ+ 2h)∂uν.

We deduce:
2v∂tv = ∂tv

2 = ∂t〈∂uC, ∂uC〉 = 2〈∂t∂uC, ∂uC〉
= 2〈−(∂uρ)ν + (−ρ+ 2h)∂uν, ∂uC〉
= 2(−ρ+ 2h)〈∂uν, ∂uC〉 = 2v2ρ(−ρ+ 2h).

So we get the first part by identification. Also by the first computation

∂t∂s = ∂t

(
1

v
∂u

)
=
ρ(ρ− 2h)v

v2
∂u +

1

v
∂t∂u

= ρ(ρ− 2h)∂s + ∂s∂t,

and
∂tT = ∂t∂sC = ∂s∂tC + ρ(ρ− 2h)∂sC

= −(∂sρ)ν + (−ρ+ 2h)∂sν + ρ(ρ− 2h)∂sC = −(∂sρ)ν
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since ∂t〈ν, ν〉 = 0, ∂tν is tangential. Also ∂t〈T, ν〉 = 0, so we get the last point from the
previous one.

We deduce the evolution induced by the RCF of the curvature:

Proposition 2.7. Under the RCF, we have

∂tρ = ∂2sρ+ ρ2(ρ− 2h). (2.3)

Proof. It is a direct consequence of the previous proposition,

∂tρ = ∂t〈T, ∂sν〉 = 〈T, ∂t∂sν〉 = 〈T, ∂s∂tν + ρ(ρ− 2h)∂sν〉
= 〈T, ∂s(∂s(ρ)T ) + ρ2(ρ− 2h)T 〉
= ∂2sρ+ ρ2(ρ− 2h).

2.3 A priori estimate of geometric quantities

We get the following evolution of geometrics quantities:

Lemma 2.8. Assume the curves of the solution (Ct)t∈[0,Tc) to (2.1) remain simple for all
t ∈ [0, Tc). Then we have for all t ∈ [0, Tc),

1. d
dtσ(Ct) = −

∫
ρ2ds+ 4πσ(Ct)

λ(Dt)
;

2. d
dtλ(Dt) = −2π + 2σ(Ct)

2

λ(Dt)
;

3. d
dth(D(t)) = d

dt
σ(Ct)
λ(Dt)

≤ −12π2

σ(Ct)λ(Dt)
≤ 0.

Proof. Using Gauss-Bonnet Theorem, i.e. for simple closed curve
∫ σ(Ct)
0

ρds = 2π, and
(2.3) we have:

d

dt
σ(Ct) =

d

dt

∫ 2π

0

v(t, u)du =

∫ 2π

0

−ρ(ρ− 2h)vdu =

∫ σ(Ct)

0

−ρ(ρ− 2h)ds

= −
∫
ρ2ds+

4πσ(Ct)

λ(Dt)
.

For the second point, we have

d

dt
λ(Dt) =

∫
Ct

〈
d

dt
C(t, s), ν

〉
ds =

∫
Ct

−(ρ− 2h)ds = −2π +
2σ(Ct)

2

λ(Dt)
.

Let us write σt = σ(Ct), λt = λ(Dt) and denote by a dot the derivation with respect
to t,

d

dt

σt
λt

=
1

λt
(σ̇t −

σtλ̇t
λt

) =
1

λt

(
−
∫
ρ2ds+

4πσt
λt
− σt
λt

(−2π +
2σ2

t

λt
)

)
≤ 1

λt

(
−4π2

σt
+

4πσt
λt
− σt
λt

(−2π +
2σ2

t

λt
)

)
=
−4π2λ2t + 6πσ2

t λt − 2σ4
t

λ3tσt

=
−2(σ2

t − 2πλt)(σ
2
t − πλt)

σtλ3t

≤ −12π2

λtσt
≤ 0,

where we have used Cauchy-Schwartz inequality and Gauss-Bonnet Theorem in the
second line, and the isoperimetric inequality in the last line.
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Lemma 2.9. Assume the curves of the solution (Ct)t∈[0,Tc) to (2.1) remain convex for all
t ∈ [0, Tc). Then the isoperimetric ratio is non-increasing, i.e. for all t ∈ [0, Tc),

d

dt

σ2
t

4πλt
≤ 0.

Proof.

d

dt

σ2
t

4πλt
=

σt
4πλt

(
2σ̇t −

σtλ̇t
λt

)

=
σt

4πλt

(
−2

∫
ρ2ds+

8πσt
λt
− σt
λt

(−2π +
2σ2

t

λt
)

)
=

σt
4πλt

(
−2

∫
ρ2ds+

10πσt
λt

− 2σ3
t

λ2t

)
≤ σt

4πλt

(
−2

∫
ρ2ds+

2πσt
λt

)
where we have use isoperimetric inequality in the last line. Let us now recall the convex
Gage inequality which is proven in [3], and tells us that for convex C2 plane curves:

πσt
λt
≤
∫
ρ2ds. (2.4)

Using this inequality in the above computation we get:

d

dt

σ2
t

4πλt
≤ σt

4πλt

(
−2πσt

λt
+

2πσt
λt

)
= 0

Lemma 2.10. Assume the curves of the solution (Ct)t∈[0,Tc) to (2.1) remain simple. Then
the deficit of isoperimetry is non-increasing, i.e.:

d

dt
(σ2
t − 4πλt) ≤ 0.

If moreover the family of curves Ct remain convex for all t ∈ [0, Tc) then for all t ∈ [0, Tc)

we have:

1. d
dt (σ

2
t − 4πλt) ≤ −2πλt (σ2

t − 4πλt),

2. 0 ≤ (σ2
t − 4πλt) ≤ (σ2

0 − 4πλ0)
(

(−2π+ 2σ20
λ0

)t+λ0

λ0

) −2π

−2π+
2σ20
λ0 .

Proof. By direct computation, and after using Lemma 2.8 and similar computation, we
have:

d

dt
(σ2
t − 4πλt) = 2σtσ̇t − 4πλ̇t = 2σt

(
−
∫
ρ2ds+

4πσt
λt

)
− 4π

(
−2π +

2σ2
t

λt

)
≤ 2σt

(
−4π2

σt
+

4πσt
λt

)
− 4π

(
−2π +

2σ2
t

λt

)
≤ 0.

If moreover the family of curves Ct remain convex, in the second line of the above
computation, we can improve the inequality using (2.4) instead of Gauss-Bonnet Theorem,
and we get for all t ∈ [0, Tc):

d

dt

(
σ2
t − 4πλt

)
≤ 2σt

(
−πσt
λt

+
4πσt
λt

)
− 4π

(
−2π +

2σ2
t

λt

)
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The stochastic renormalized curvature flow

≤ −2π

λt

(
σ2
t − 4πλt

)
.

Using Lemmas 2.9, 2.8 and isoperimetric inequality we deduce that

6π ≤ −2π +
2σ2

t

λt
≤ λ̇t ≤ −2π +

2σ2
t

λt
≤ −2π +

2σ2
0

λ0
,

so for all t ∈ [0, Tc)

6πt+ λ0 ≤ λt ≤
(
−2π +

2σ2
0

λ0

)
t+ λ0.

Hence we get:
d

dt
(σ2
t − 4πλt) ≤

−2π(
−2π +

2σ2
0

λ0

)
t+ λ0

(
σ2
t − 4πλt

)
.

After integration we obtain for all t ∈ [0, Tc):

0 ≤ (σ2
t − 4πλt) ≤ (σ2

0 − 4πλ0)

 (−2π +
2σ2

0

λ0
)t+ λ0

λ0


−2π

−2π+
2σ20
λ0

.

We deduce the asymptotical shape of the curve Ct as t goes to infinity.

Corollary 2.11. Assume the solution (Ct)t∈[0,+∞) to (2.1) is defined for all times and
that its curves remain convex. Then we have

lim
t→∞

σ2
t

λt
= 4π.

After renormalization, the curve 1√
6t

[Ct − cint(t)] converges to the circle of center 0

and radius 1 for the Hausdorff metric, where cint(t) is the center of an inscribed circle
of Ct.

Proof. Using Lemma 2.8 and the isoperimetric inequality, we have λ̇t ≥ 6π, so

λt ≥ 6πt+ λ0.

Using the above Lemma 2.10 we get

0 ≤ σ2
t − 4πλt
λt

≤
(σ2

0 − 4πλ0)
(

(−2π+ 2σ20
λ0

)t+λ0

λ0

) −2π

−2π+
2σ20
λ0

6πt+ λ0
,

and the right hand side goes to 0 as t goes to infinity. For the second point, use again
Lemma 2.8 and the computation above, to deduce that

λ̇t ∼
t∼∞

6π,

so
λt ∼

t∼∞
6πt.

It follows that limt→∞ σ2
t − 4πλt = 0. Recall Bonnesen inequality:

π2(rout(t)− rint(t))2 ≤
(
σ2
t − 4πλt

)
(2.5)

where rout(t), rint(t) are respectively the outer and the inner radius of the curve Ct. Let
cint(t) be the center of an inscribed circle of Ct, and cout(t) be a center of a circumscribed
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The stochastic renormalized curvature flow

circle of Ct. Then since B(cint(t), rint(t)) ⊂ D(t) ⊂ B(cout(t), rout(t)) we have by Lemma
2.10, and isoperimetric inequality that there exist two positive constants C > 0 and
γ ∈

]
0, 16
]

such that,

|cint(t)− cout(t)| ≤ rout(t)− rint(t) ≤ Ct−γ

and

rint(t) ≤
√
λt
π
≤ rout(t).

For two compact sets A,B ⊂ R2 and ε ≥ 0 we define

Aε B {x ∈ R2, d(x,A) ≤ ε}

and the Hausdorff distance between A and B by

dH(A,B) B inf{r > 0, A ⊂ Br and B ⊂ Ar}.

Since B(cout(t), rout(t)) ⊂ B(cint(t), rint(t))2(rout(t)−rint(t)) we easily derive that

dH(B(cint(t), rint(t)), B(cout(t), rout(t))) ≤ 2(rout(t)− rint(t)) ≤ 2Ct−γ

and
dH(D(t), B(cint(t), rint(t))) ≤ 2(rout(t)− rint(t)) ≤ 2Ct−γ .

So by Lemma 2.10,

dH

(
D(t)− cint(t)√

6t
, B(0, 1)

)
=

1√
6t
dH(D(t), B(cint(t),

√
6t))

≤ 1√
6t

(
dH(D(t), B(cint(t), rint(t))) + dH(B(cint(t), rint(t)), B(cint(t),

√
6t))

)
≤ 1√

6t

(
2Ct−γ + |rint(t)−

√
6t|
)
→
t→∞

0

Similarly we have that 1√
6t

[Ct − cint(t)] converge to the circle of radius 1 and center 0

for the Hausdorff metric.

2.4 Preserving the convexity and lower bound on the curvature

We consider here the flow (2.1) when the initial curve is strictly convex and simple.
Our purpose is twofold. First to show that strict convexity and simplicity is preserved
over its entire lifetime. Second to prove that the lifetime is infinite, by using intensively
some ideas developed in [6].

Let us come back to the angular parametrization recalled in Section 1.2. Usually,
the angle θ depends on u and t. Following [5] and [6], after adding to the flow (2.1) a
tangential perturbation, the shape of the curve remains the same, and it is possible to
find a tangential intensity so that the parameter θ does not depend on the time. This
change of coordinate will make the equation simpler to investigate, since the operators
∂θ and ∂t will commute, contrary to ∂s and ∂t as shown in (3.2).

Let us quickly recall how to find the appropriate tangential intensity. Consider the
evolution

∂tC(t, u) = (−ρt(C(t, u)) + 2h(D(t, .))))ν + a(u, t)T. (2.6)

whose curves Ct have the same shape as those of (2.1), only the parametrizations with
respect to u change. We are looking for a function a making θ and t independent.
Since the mean curvature flow has the regularizing property, see for instance Remark
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1.5.3. of [11], the solutions of Equations (2.1) and (2.6) are smooth for positive time.
Differentiating (2.6) with respect to u and using ∂uT = −vρν together with ∂uν = vρT

we get

∂tT =

(
−∂uρ

v
− a(u, t)ρ

)
ν

and
∂tv = −vρ2 + 2hvρ+ ∂ua.

To make θ, i.e. T , independent of t we take a = −∂uρvρ .
Differentiating ∂tT with respect to u, we get that ∂t(vρ) = 0. Since ∂θT = −ν, the

chain rule implies ∂u
∂θ

∂T
∂u = −ν, hence ∂u

∂θ = 1
vρ , and we deduce that

∂

∂θ
=

1

vρ

∂

∂u
,

and so dθ = ρvdu.
Since ∂t(vρ) = 0 we have:

∂tρ = − (∂tv)ρ

v
= ρ3 − 2hρ2 +

ρ

v
∂u

(
∂uρ

vρ

)
= ρ3 − 2hρ2 +

ρ

v
∂u(∂θρ)

= ρ2∂θ(∂θρ) + ρ2(ρ− 2h).

We record the result in the next lemma.

Lemma 2.12. When the curvature remains positive, Equation (2.6) for the RCF yields
the curvature evolution equation

∂tρ = ρ2∂2θρ+ ρ2(ρ− 2h). (2.7)

Lemma 2.13. Under Hypothesis 2.2, the solution to (2.6) remains strictly convex and
simple up to its lifetime. Moreover, we have

ρ(θ, t) ≥ ρinf(0)e−h
2
0t

where ρinf(0) is the minimal curvature of C0.

Proof. Let Q(θ, t) = ρ(θ, t)eµt for a constant µ that will be chosen later, then Q will satisfy
the following equation:

∂tQ = ρ2
∂2

∂2θ
Q+Q(ρ2 − 2hρ+ µ). (2.8)

The reaction term in the above equation is quadratic in ρ, and the discriminant is 4(h2−µ).
Note that the quantity h in this equation is the same as in (2.1), since the geometric
quantities are the same for this equation and (2.6). Also by Lemma 2.8, assuming for the
time being that the curve remains simple, h is non-increasing, and

4(h2 − µ) ≤ 4(h20 − µ).

So choosing µ > h20 such that this discriminant is negative, the coefficient of Q re-
mains positive. We will apply the maximum principle for this equation. Let Qinf(t) :=

inf{Q(θ, t), 0 ≤ θ ≤ 2π}. The proof is by contradiction, suppose that there exist
0 < η < Qinf(0) and t > 0 such that Qinf(t) = η, let t0 be the first time such that
Qinf(t0) = η. This minimum is achieved at some point θ0, and at this point:

∂tQ(θ0, t0) ≤ 0, ∂2

∂2θQ(θ0, t0) ≥ 0, and Q(θ0, t0) = η. This is in contradiction with Equation
(2.8). Hence for all 0 < t, Qinf(t) ≥ Qinf(0) and

ρinf(t) ≥ ρinf(0)e−µt,
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The stochastic renormalized curvature flow

where ρinf(t) = inf{ρ(θ, t), 0 ≤ θ ≤ 2π} so ρ(θ, t) ≥ ρinf(0)e−µt for all µ > h20. Hence if C0

is strictly convex then Ct remains strictly convex at any time t up to which it is defined.
Above, while resorting to Lemma 2.8, we assumed that the curves solution to (2.6)

remain simple. Let us show it is true, through the same argument by contradiction.
Let Ts be the first time the curve stops to be simple. If Ts occurs strictly before the
maximal lifetime of (2.6), i.e. 0 < Ts ≤ t∗ < Tc, the same computation as above shows
the curvature ρ is positive until Ts, and ρ and all its derivatives are bounded in [0, t∗]. So
there exist a limiting curve as t goes to Ts, that is smooth and has positive curvature, due
to Arzelà-Ascoli theorem. Taking into account Lemma 4.1.1 and Theorem 4.1.4 in [6], we
know that positive curvature and (1.1) characterizes simple close strictly convex curves.
So the limiting curve is simple and strictly convex, contradicting the non-simplicity at
time Ts.

Corollary 2.14. Still under Hypothesis 2.2, the bound of Lemma 2.13 can be improved
into

ρ(θ, t) ≥ 1

1
ρinf (0)

+
σ2
0

6π2λ0

√
24π2t+ 4πλ0

.

Proof. Using Lemma 2.13, we have that ρ > 0 so we can define W B e−
1
ρ+

∫ t
0
2hs ds. We

compute

∂tW = (∂te
− 1
ρ )e

∫ t
0
2hs ds + 2hW

=

(
∂tρ

ρ2
+ 2h

)
W

= (∂2θρ+ ρ)W.

We will apply the maximum principle for this equation. Define

Winf(t) B inf{W (θ, t), 0 ≤ θ ≤ 2π}.

The proof is by contradiction, suppose that there exists 0 < η < Winf(0) and t > 0 such
that Winf(t) = η. Let t0 > 0 be the first time such that Winf(t0) = η. This minimum is
achieved at some point θ0, and at this point (since W is a non-decreasing function in ρ):
∂tW (θ0, t0) ≤ 0, ∂2

∂2θW (θ0, t0) ≥ 0, and W (θ0, t0) = η, so ∂2

∂2θρ(θ0, t0) ≥ 0. This is in
contradiction with the equation satisfied by W . Hence for all 0 < t, Winf(t) ≥Winf(0), so

e−
1
ρ+

∫ t
0
2hs ds ≥ e−

1
ρinf (0) .

By Lemma 2.9, we have

h(t) B
σt
λt
≤

σ2
0

λ0

σt
.

By isoperimetric inequality we have
√

4πλt ≤ σt hence by Lemma 2.8 we have√
4π(6πt+ λ0) ≤ σt and

h(t) ≤
σ2
0

λ0√
4π(6πt+ λ0)

.

This yield ∫ t

0

2h(s) ds ≤ σ2
0

6π2λ0
[
√

24π2t+ 4πλ0 −
√

4πλ0],

and

ρ(t) ≥ 1

1
ρinf (0)

+
σ2
0

6π2λ0

√
24π2t+ 4πλ0

.
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2.5 Upper bound on the curvature and long time existence of the flow for
strictly convex simple initial curves

We will now show that under Hypothesis 2.2, the solution of (2.1) can be defined
for all times, by first establishing a uniform bound (depending on time horizon) of the
maximum of curvature. Similarly to [6] we define the pseudo-median of the curvature:

ρ∗(t) = sup{β, ρ(θ, t) > β on some interval of length π}.

Lemma 2.15 ([6]). If a planar convex closed curve encloses an area λ and has length σ
then ρ∗ ≤ σ

λ .

Following the above lemma we have:

Corollary 2.16. Under Hypothesis 2.2, consider a solution to Equation (2.1) defined on
[0, T ). Then for all t ∈ [0, T ), we have

ρ∗(t) ≤ h ≤ h0.

Proof. We use Lemma 2.13 to get the convexity until T , Lemma 2.8 for h non-increasing,
and Lemma 2.15 to conclude.

Lemma 2.17 (Entropic estimate). Under Hypothesis 2.2, consider a solution to Equation
(2.1) defined on [0, T ). Then

Ent(t) B

∫ 2π

0

log(ρ(θ, t)) dθ (2.9)

is non-increasing on [0, T ).
Moreover we have the following estimates for t ∈ [0, T ):

2π
[
log ρinf(0)− h20t

]
≤ Ent(t) ≤ Ent(0) +

πρ2inf(0)

2h20

[
e−2h

2
0t − 1

]
and there exists five explicit constants c0, c1, c̃0, c̃1, c̃2, only depending on the geometry of
the initial curve, such that

−2π log
(
c̃0 +

√
c̃1t+ c̃2

)
≤ Ent(t) ≤ Ent(0)− 2π

c1
log

(
c1t+ c0
c0

)
.

Proof. The proof is an adaptation of the proof in [6]. We will just point the differences.
After an integration by part we have:

d

dt

∫ 2π

0

log(ρ(θ, t)) dθ =

∫ 2π

0

−
(
∂

∂θ
ρ

)2

+ ρ(ρ− 2h) dθ.

Let write the open set U = {θ, ρ(θ, t) > ρ∗(t)} as an union of disjoint interval Ii, by
definition of the median the length of all Ii is smaller than π, and∫

Ii

−
(
∂

∂θ
ρ

)2

+ ρ(ρ− 2h) dθ =

∫
Ii

−
(
∂

∂θ
(ρ− ρ∗)

)2

+ ρ2 dθ − 2h

∫
Ii

ρ dθ

≤
∫
Ii

−(ρ− ρ∗)2 + ρ2 dθ − 2h

∫
Ii

ρ dθ

=

∫
Ii

2ρρ∗ − (ρ∗)2 dθ − 2h

∫
Ii

ρ dθ

≤ (2ρ∗ − 2h)

∫
Ii

ρdθ − (ρ∗)2
∫
Ii

dθ,
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where in the second line we used Wirtinger [6] inequality (recall that on the boundary of
Ii, ρ = ρ∗).

On the complement of U we have:∫
Uc
−
(
∂

∂θ
ρ

)2

+ ρ(ρ− 2h) dθ ≤ (ρ∗ − 2h)

∫
Uc
ρdθ

≤ (2ρ∗ − 2h)

∫
Uc
ρdθ − ρ∗

∫
Uc
ρdθ.

Hence using Lemma 2.15, and ρ∗(t) ≥ ρinf(t) we get

d

dt

∫ 2π

0

log(ρ(θ, t)) dθ ≤ (2ρ∗ − 2h)

∫ 2π

0

ρdθ − ρ∗
∫
Uc
ρdθ − (ρ∗)2

∫
U

dθ

≤ −2πρ2inf(t).

So the first part of the lemma is proved. Lemma 2.13 yields after integration:∫ 2π

0

log(ρ(θ, t)) dθ ≤
∫ 2π

0

log(ρ(θ, 0)) dθ +
πρ2inf(0)

h20

[
e−2h

2
0t − 1

]
,

and Corollary 2.14 yields the second estimate.
For the lower bound use the bounds of Lemma 2.13 and 2.14.

Proposition 2.18. Under Hypothesis 2.2, consider a solution to Equation (2.1) defined
on [0, T ). Then there exists a constant c0 that depends only on the initial curve such that:∫ 2π

0

(
∂

∂θ
ρ

)2

dθ ≤
∫ 2π

0

ρ2 dθ − 4ht

∫ 2π

0

ρ dθ + c0.

Proof. By Lemma 2.13 we know that the curvature ρ remains positive during the exis-
tence of the flow, so we can compute:

d

dt

∫ 2π

0

(
ρ2 −

(
∂

∂θ
ρ

)2

− 4hρ

)
dθ

= 2

∫ 2π

0

dρ

dt

(
ρ+ (∂2θρ)− 2h

)
dθ − 4

dh

dt

∫ 2π

0

ρ dθ

= 2

∫ 2π

0

(
∂tρ

ρ

)2

dθ − 4
dh

dt

∫ 2π

0

ρ dθ

≥ −4
dh

dt

∫ 2π

0

ρ dθ

≥ 48π2

λσ

∫ 2π

0

ρdθ > 0,

where we have used an integration by part on the second line, the equation of the
curvature at the third line, and Lemma 2.8 at the last line.

Integrating the last inequality we get for all t ∈ [0, T ),∫ 2π

0

(
ρ2 −

(
∂

∂θ
ρ

)2

− 4hρ

)
|t

dθ ≥

(∫ 2π

0

(
ρ2 −

(
∂

∂θ
ρ

)2

− 4hρ

)
dθ

)
|0

= −c0

We obtained the last inequality using (2.4) and the upper bound of the volume during
the flow (Lemma 2.8).
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Proposition 2.19. Under Hypothesis 2.2, consider a solution to Equation (2.1) defined
on [0, T ). If T <∞,

M = sup{ρ(θ, t), (θ, t) ∈ T× [0, T )}

is bounded.

Proof. For t < T let
Mt = sup {ρ(θ, s), (θ, s) ∈ T× [0, t]} .

There exists (θ1, t1) ∈ T× [0, t] such that Mt = ρ(θ1, t1). Then for all θ2 ∈ T we have:

|ρ(θ1, t1)− ρ(θ2, t1)| =

∣∣∣∣∣
∫ θ1

θ2

∂

∂θ
ρ dθ

∣∣∣∣∣
≤

√∫ 2π

0

(
∂

∂θ
ρ)2 dθ

√
|θ1 − θ2|

≤
√

2πM2
t + c0

√
|θ1 − θ2|

≤Mt

√
2π +

|c0|
M2
t

√
|θ1 − θ2|,

where we have used Proposition 2.18 at the third line, and |θ1 − θ2| is the usual distance
in T. We also have,

Mt ≥ ρsup(0).

So
ρ(θ1, t1)− ρ(θ2, t1) ≤ c1Mt

√
|θ1 − θ2|,

where c1 B
√

2π + |c0|
ρ2sup(0)

.

It follows that for all θ2:

ρ(θ2, t1) ≥Mt − c1Mt

√
|θ1 − θ2|

and ∫ 2π

0

log(ρ(θ, t1)) dθ

=

∫
|θ1−θ|≤( 1

2c1
)2

log(ρ(θ, t1)) dθ +

∫
|θ1−θ|≥( 1

2c1
)2

log(ρ(θ, t1)) dθ

≥ log

(
Mt

2

)
1

2c21
+

(
2π − 1

2c21

)
log
(
ρinf(0)e−h

2
0T
)

Use Lemma 2.17 we obtain for all t ∈ [0, T )

log(Mt) ≤ c2(T )

where

c2(T ) = 2c21

(∫ 2π

0

log(ρ(θ, 0)) dθ −
(

2π − 1

2c21

)
(log

(
ρinf(0))− h20T

))
is a function that only depends on the final time and the initial curve. So M =

sup{ρ(θ, t), (θ, t) ∈ T× [0, T )} is bounded for T <∞.
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Proposition 2.20. Under Hypothesis 2.2, consider a solution to Equation (2.1) defined
on [0, T ). If T <∞, for all n ∈ N, we have

M (n) = sup

{
∂nρ

∂nθ
(θ, t), (θ, t) ∈ T× [0, T )

}
is bounded.

Proof. Following [6] section 4.4, we will first prove that ∂ρ
∂θ is bounded along the flow. By

direct computation, ∂ρ∂θ satisfies:

∂

∂t

∂ρ

∂θ
= ρ2∂2θ

(
∂ρ

∂θ

)
+ 2ρ

(
∂ρ

∂θ
∂θ

(
∂ρ

∂θ

))
+
[
3ρ2 − 4hρ

] ∂ρ
∂θ

By Lemma 2.8 and Proposition 2.19, [3ρ2 − 4hρ] is bounded so by the maximum principle
∂ρ
∂θ is bounded for all t ∈ [0, T ). (this is easier than in the proof of 2.19).

Since the equation for ∂2ρ
∂2θ contains a quadratic term it seems not clear to directly

use the maximum principle. To control it we will proceed as follows.
With the same computation as in [6] Lemma 4.4.2 we see that modulo a additional

term that comes from the non local term h, which is bounded, we show that

∫ (
∂2ρ

∂2θ

)4

dθ

is bounded on finite intervals of time (i.e. when T <∞). Let us prove this property. To
present the difference with the computation in [6], we integrate by part. We get:

∂

∂t

∫ 2π

0

(
∂2ρ

∂2θ

)4

dθ = 4

∫ 2π

0

∂2θ
(
ρ2∂2θρ+ ρ2(ρ− 2h)

) (
∂2θρ
)3
dθ

= −12

∫ 2π

0

(
ρ2∂3θρ+ 2ρ∂θρ∂

2
θρ+ (3ρ2 − 4hρ)∂θρ

)
(∂3θρ)(∂2θρ)2 dθ.

To simplify notations let us use ρ′ B ∂θρ, in the above computation:

∂

∂t

∫ 2π

0

(ρ′′)4 dθ = −12

∫ 2π

0

(
ρ2(ρ′′)2(ρ′′′)2 + 2ρρ′(ρ′′)3ρ′′′

+ 3ρ2ρ′(ρ′′)2ρ′′′ − 4hρρ′(ρ′′)2ρ′′′
)
dθ.

We use the inequality ab ≤ 1
4εa

2 + εb2 to bound the three last terms by the first one and
some additional terms, after choosing ε to control the sign of the first term. We obtain
that there exist c1, c2, c3 such that:

∂

∂t

∫ 2π

0

(ρ′′)
4
dθ ≤ c1

∫ 2π

0

(ρ′)2(ρ′′)4 dθ + c2

∫ 2π

0

(ρ)2(ρ′)2(ρ′′)4 dθ

+ c3

∫ 2π

0

(ρ′)2(ρ′′)2 dθ

where the constant c3 depends on h(0) which is the maximum of h by Lemma 2.8. Since
ρ is bounded by Proposition 2.19 and ρ′ is bounded we deduce from the above inequality
and Cauchy-Schwarz inequality that

∫ 2π

0
(ρ′′)

4
dθ remains bounded on [0, T ).

By the same kind of computation, we will show that
∫ (

∂3ρ
∂3θ

)2
dθ remains bounded for

t ∈ [0, T ) (when T <∞). After a integration by part, we have:

d

dt

∫
(ρ′′′)2 dθ = 2

∫
(ρ′′′)

(
ρ2ρ′′ + ρ2(ρ− 2h)

)′′′
dθ
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= −2

∫
(ρ′′′′)

(
ρ2ρ′′ + ρ2(ρ− 2h)

)′′
dθ

= −2

∫
(ρ′′′′)

(
ρ2ρ′′′′ + 2ρρ′ρ′′′ + 2ρ(ρ′′)2 + 2(ρ′)2ρ′′ + 3ρ2ρ′′

+ 6ρ(ρ′)2 − 4h(ρ′)2 − 4hρ(ρ′′)
)
dθ.

Using again the inequality ab ≤ 1
4εa

2 + εβ2 for a well choosed ε to bound the seven last
terms by the first one and some additional terms, we get that there exist c1, c2, c3, . . . , c6, c7
(that all depend on ε, and c6, c7 depend also on h0, the upper bound of h by Lemma 2.8)
such that:

d

dt

∫
(ρ′′′)2 dθ

≤ c1
∫

(ρρ′′′)2 dθ + c2

∫
(ρ′′)4 dθ + c3

∫ (
(ρ′)2ρ′′

ρ

)2

dθ

+ c4

∫
(ρρ′′)2 dθ + c5

∫
(ρ′)4 dθ + c6

∫ (
(ρ′)2

ρ

)2

+ c7

∫
(ρ′′)2 dθ.

Since on finite intervals of time, ρ is bounded by Lemma 2.19 and by the computation
above ρ′ and

∫
(ρ′′)4 dθ are bounded, and the lower bound ρ ≥ ρinf(0)e−h

2
0t (Lemma 2.13),

using Cauchy-Swartz inequality we get for other constants (that depend on the time
horizon T ):

d

dt

∫
(ρ′′′)2 dθ ≤ c0

∫
(ρ′′′)2 dθ + c2.

Hence
∫ (

∂3ρ
∂3θ

)2
dθ remains bounded for t ∈ [0, T ), and so ∂2ρ

∂2θ is bounded, using

fundamental calculus theorem, or Sobolev inequality in S1.
For all n ≥ 3 the equation for ∂nρ

∂nθ =C ρ(n) writes

d

dt
ρ(n) = ρ2ρ(n+2) + 2nρρ′ρ(n+1)+

[
2ρρ′′ + 3ρ2 − 4hρ

+ (n)(n− 1)(ρ′ + ρρ′′)
]
ρ(n) + P

(
h, ρ, ρ′, . . . , ρ(n−1)

)
where P

(
h, ρ, ρ′, . . . , ρ(n−1)

)
is a polynomial in

(
h, ρ, ρ′, . . . , ρ(n−1)

)
. Since ρ, ρ′, ρ′′ are

bounded by the computation above and h is bounded by Lemma 2.8, we can apply the
maximum principle to get an exponential bound for ρ′′′, so ρ′′′ is bounded (when T is
finite). Using the above equation for ρ(n), we get by induction and maximum principle
that for all n, ρ(n) is uniformly bounded on [0, T ) when T <∞.

2.6 Proof of Theorem 2.4

We prove the long time existence of the flow. Assume that the starting curve C0 is
simple and strictly convex, and the flow exists for all t ∈ [0, T ). Then by Lemma 2.13
we know that the solution of (2.6) remains convex and simple during the flow. Since
the solution of (2.6) has similar shape as the solution of (2.1) (just the parametrisation
changes) we know that the solution of (2.1) remains convex and simple, so the quantity
h remains defined for all t ∈ [0, T ). Using Lemma 2.8 we get that the quantity h remains
bounded as soon as the flow exists. By Propositions 2.19 and 2.20 we know that ρ and
all spacial derivatives of ρ are bounded in [0, T ), if T < ∞, hence the same for time
derivative of ρ. So by Arzelà-Ascoli Theorem, ρ converges to a C∞ function ρ(T, .) as
t→ T . Using equation (2.1) there exists a limiting curve CT and this limiting curve is
associated to ρ(T, .) (in the sense of Lemma 4.1.1 in [6]), so CT is strictly convex and
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simple. By the small time existence if T <∞, we can extend the time interval on which
the solution is defined using the solution that starts at CT . This proves that the solution
of (2.1) starting with at a simple strictly convex curve exists for all time. By Lemma 2.9,
the isoperimetric ratio is non-increasing. It is in fact decreasing until the curve becomes
a circle (take strict inequality in the isoperimetric inequality in the proof of Lemma 2.9),
but if it would becomes a circle in finite time we could reverse the flow and get that the
starting curve is a circle. So the isoperimetric ratio is decreasing unless if the starting
curve is circular. Using Lemma 2.10 we get that the deficit of isoperimetry converges to
0 polynomially, and Corollary 2.11 shows that the family of curves becomes more and
more circular, and the isoperimetric ratio decreases to 4π. Also this corollary yields, with
Bonnesen inequality, the convergence after normalization to a circle, i.e. 1√

6t
[Ct − cint(t)]

converges to circle of center 0 and radius 1 for Hausdorff metric, where cint(t) is an
center of a inscribed circle of Ct.

Remark 2.21. When the starting curve C0 is convex and not simple, recall Figure 2a at
the end of the paper, the flow is not well defined. And when the starting curve is simple
but non-convex, the existence in long time can be problematic, see Figure 2b.

3 The stochastic renormalized curvature flow (SRCF) in R2

3.1 Equations of geometric quantities along the stochastic flow of curves in R2

Let us introduce a noisy extension of the RCF. We need a standard Brownian motion
(Bt)t≥0 defined on a filtered probability space. All subsequent stopping times are with
respect to the underlying filtration. Except when they are parametrized by the arc-length
s, all the closed curves are assumed to be continuous and parametrized by a parameter
belonging to T.

Definition 3.1. Let C : [0, τ) 3 t 7→ Ct be a continuous family of simple closed curves
indexed by [0, τ), where τ is a positive stopping time. We say that C evolves under the
renormalized stochastic curvature flow (SRCF), if it satisfies the following equation for
any t ∈ [0, τ),

dtC(t, u) =
(

[−ρt(C(t, u)) + 2ht]dt+
√

2dBt

)
νt(C(t, u)) (3.1)

(where ht, νt and ρt are our usual shortcuts, cf. Section 1.2).

When convenient without any possible confusion, the index t ≥ 0 will be omitted.
An important goal of this paper is to show that the above equation admits a solution in
the whole temporal interval R+ under some assumptions. Until it is proven, when we
consider a time t ≥ 0, it will be implicitly assumed that t is smaller than the stopping
time τ , that will be called a lifetime for (3.1). The curve C0 will be referred to as the
initial curve.

Remark 3.2. For the short time existence and uniqueness up to τ of the solution to
(3.1), we refer to Theorem 40 in [2], where the authors used Doss-Sussman method, the
theory of quasi-linear equations, as well as the inverse function theorem.

Concerning the regularity, for any 0 < α < 1, the solution of (3.1) is Cα/2,∞ if the
starting curve C0 is smooth. In fact it is enough to consider that the starting curve C0

are Cα+n, for n ≥ 2 and 0 < α < 1, to get the Cα/2,α+n regularity of the solution of (3.1)
(cf. Chapter 8 of Lunardi [10] and Chapter 4 in [2]). So, to justify the existence of all the
derivatives one may need, it is sufficient to take C0 regular enough, but we will not insist
on the regularity of C0 in the rest of the paper.

To a solution (Ct)t∈[0,τ) of (3.1), as in the deterministic situation, associate

∀ t ∈ [0, τ), ∀ u ∈ T, v(t, u) B |∂uC(t, u)|
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and the arc-length parametrization ∂s B
1
v∂u (equivalently ds = vdu).

For any t ∈ [0, τ) and u ∈ T, Tt(u) will stand for the unit tangent vector of the curve
Ct at u (i.e. in R2 we have R(T ) = ν, where R is the rotation of angle −π2 ).

The evolution of these objects is dictated by the following result, for C0 regular
enough, say C4+α for the last equation.

Lemma 3.3. Let (Ct)t≥0 be a solution of (3.1). The following equations hold in the
(t, s)-domain of validity:

dtvt = vtρt
(
(−ρt + 2ht)dt+

√
2dBt

)[
dt, ∂s

]
= ρt

(
(3ρt − 2ht)dt−

√
2dBt

)
∂s −

√
2ρtdBt∂sdt

dtTt = − 1
vt

(∂uρt)νtdt

dtρt(s) = (∂2sρt)dt+ ρ2t ((3ρt − 2ht)dt−
√

2dBt)

(3.2)

Proof. Since C(t, u) satisfies

dtC(t, u) = (−ρt(C(t, u)) + 2h(D(t)))νC(t,u)dt+
√

2νC(t,u)dBt

we have, after differentiation, cf. remark 3.2, and shortening the notation:

dt∂uC = (−∂uρt)νtdt+
(

(−ρt + 2ht)dt+
√

2dBt

)
∂uνt,

Also we have
∂uνt = v∂sνt = vρtTt,

so that
dt∂uC = (−∂uρt)νtdt+ vtρt

(
(−ρt + 2ht)dt+

√
2dBt

)
Tt.

Hence we have the following equation:

dt(vt)
2 = dt|∂uC(t, u)|2

= 2〈dt∂uC(t, u), ∂uC(t, u)〉+ 〈dt∂uC(t, u), dt∂uC(t, u)〉

= 2v2t ρt

(
(−ρt + 2ht)dt+

√
2dBt

)
+ 2v2t ρ

2
tdt

= 2v2t ρt

(
(2ht)dt+

√
2dBt

)
.

Also
dv2t = 2vtdvt + dvtdvt,

where the semi-martingale bracket notation 〈dvt, dvt〉 has been simplified into dvtdvt.
Hence

2vtdvt + dvtdvt = 2v2t ρt

(
2htdt+

√
2dBt

)
,

so the Doob-Meyer decomposition of vt is dvt =
√

2vtρtdBt + dAt where At is a process
with finite variation. After identification we find:

dAt = vtρt(−ρt + 2h)dt

and so
dtvt = vtρt

(
(−ρt + 2h)dt+

√
2dBt

)
.

For the second equation let us observe that for a vector-valued process Xt:

dt∂sXt = dt

(
1

vt
∂uXt

)
= dt

(
1

vt

)
∂uXt +

1

vt
∂udtXt + dt

(
1

vt

)
dt(∂uXt)

=
ρt
vt

(
(3ρt − 2h)dt−

√
2dBt

)
∂uXt + ∂sdtXt −

√
2
ρt
vt
dBt∂udtXt

= ρt

(
(3ρt − 2h)dt−

√
2dBt

)
∂sXt + ∂sdtXt −

√
2ρtdBt∂sdtXt.
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In other words, we have:[
dt, ∂s

]
= ρt

(
(3ρt − 2h)dt−

√
2dBt

)
∂s −

√
2ρtdBt∂sdt

For the third point, let us compute:

dtTt = dt

(
1

vt
∂uCt

)
= dt(

1

vt
)∂uCt +

1

vt
dt∂uCt + dt(

1

vt
)dt∂uCt

= −ρt
vt

(
(−3ρt + 2h)dt+

√
2dBt

)
vtTt

+
1

vt

(
(−∂uρt)νtdt+ vtρt

(
(−ρt + 2ht)dt+

√
2dBt

)
Tt

)
− 2ρ2tTtdt

= − 1

vt
(∂uρt)νtdt

that is dt∂sC(t, s) = −(∂sρt)νtdt. This equation is equivalent to

dtνt = dtR(Tt) = (∂sρt)Ttdt.

So the processes Tt and νt have finite variation.

For the last point, the curvature ρt satisfies:

dtρt = −dt〈∂sTt, νt〉
= −〈dt∂sTt, νt〉 − 〈∂sTt, dtνt〉
= −〈dt∂sTt, νt〉.

In the last line we used that ∂sTt is in the normal direction. Let us compute, using the
commutation formula in the first term in the above bracket and the fact that ∂sCt has
finite variation:

dt∂sTt = dt (∂s∂sCt)

= ρt

(
(3ρt − 2h)dt−

√
2dBt

)
∂s∂sCt + ∂sdt∂sCt −

√
2ρtdBt∂sdt∂sCt

= ρt

(
(3ρt − 2h)dt−

√
2dBt

)
∂s∂sCt + ∂sdt∂sCt

= ρt

(
(3ρt − 2h)dt−

√
2dBt

)
∂s∂sCt + ∂s (−(∂sρt)νtdt)

= −ρ2t
(

(3ρt − 2h)dt−
√

2dBt

)
νt +

(
−(∂2sρt)νt − ρt(∂sρt)Tt

)
dt.

Hence

dtρt = −〈−ρ2t
(

(3ρt − 2h)dt−
√

2dBt

)
νt +

(
−(∂2sρt)νt − ρt(∂sρt)Tt

)
dt, νt〉

= ∂2sρtdt+ ρ2t

(
(3ρt − 2h)dt−

√
2dBt

)
. (3.3)

Remark 3.4. We want to stress that (3.3) is a SPDE with mobile barrier, since the
parameter s lives in the time dependent interval [0, σt].

Remark 3.5. After integration, we recover the equation satisfied by σt and λt obtained
by a diffusion generator technique (respectively in Proposition 57 and Equation (106) in
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[2]) in the case of a simple curve:

dtσt = dt

∫ 2π

0

vt(u) du

=

∫ 2π

0

vtρt

(
(−ρt + 2h)dt+

√
2dBt

)
du

=

(
−
∫
ρ2tds+ 2ht

∫
ρtds

)
dt+

(∫
ρt ds

)√
2dBt

= −
(∫

ρ2tds

)
dt+ 4πhtdt+ 2

√
2πdBt,

Using, on one hand Stokes theorem, namely
∫
D

div(b) dλ =
∫
∂D
〈ν, b〉 ds, here in

dimension 2 and with b the identity vector field, and on the other hand the computation
done in the proof of Lemma 3.3, we get:

dtλt

= dt
1

2

∫ 2π

0

〈C(t, u),R(∂uC(t, u))〉 du

=
1

2

(∫ 2π

0

vt

(
(−ρt + 2h)dt+

√
2dBt

)
du+

∫ 2π

0

〈C(t, u), (∂uρt(u))Tdt〉 du

+

∫ 2π

0

vtρt

(
(−ρt + 2h)dt+

√
2dBt

)
〈C(t, u), ν〉 du+ 2

∫ 2π

0

vtρtdt du

)
.

For the second term in the right hand side we integrate by part and we use ∂uT =

−vtρtνt to get:∫ 2π

0

〈C(t, u), (∂uρt(u))Tdt〉 du = −
∫ 2π

0

vtρtdt du− ρ2t vt〈C(t, u), νt dt〉 du.

And then

dtλt =
1

2

(∫ 2π

0

vt(2hdt+
√

2dBt) du

+

∫ 2π

0

vtρt(2hdt+
√

2dBt)〈C(t, u), ν〉 du
)
.

In the last term of the right hand side we can integrate by part again to get∫ 2π

0

vtρt〈C(t, u), ν〉 du = −
∫ 2π

0

〈C(t, u), ∂uT 〉 du

=

∫ 2π

0

(−∂u〈C(t, u), T 〉+ vt) du =

∫ 2π

0

vt du.

Hence:

dtλt =

∫ 2π

0

vt(2hdt+
√

2dBt) du

=
2σ2

t

λt
dt+

√
2σtdBt.

Let us extend the observation made in the second paragraph of Section 2.4 to the
present stochastic setting. Consider the following tangential finite-variation perturbation
of equation (3.1): for any t ∈ [0, τ) and u ∈ T,

dtC(t, u) =
(
−ρt(u) + 2h(Dt))dt+

√
2dBt

)
νt(u) + (at(u)dt)Tt(u) (3.4)
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for quantities at(u) that will determined later in (3.5).
Again the curves have the same shape as those of (3.1), only the u-parametrisation

changes, reason why we used the same notation C(t, u). In particular the lifetime τ of
(3.4) coincides with that of (3.1). With computations similar to those of the proof of
Lemma 3.3, we get:

Lemma 3.6. Letting (Ct)t∈[0,τ) be a solution of (3.4), we have:

(i)
dt∂uCt = ((−∂uρt − ρtvtat)dt) νt

+
(
vtρt[(−ρt + 2h)dt+

√
2dBt] + ∂uatdt

)
Tt.

(ii) dvt = vtρt[(−ρt + 2h)dt+
√

2dBt] + ∂uatdt.

(iii) dtTt = − 1
v (∂uρt + ρtvtat)dtνt.

Proof. For the first point, we differentiate term by term and we use that:

∂uνt = vtρtTt

and so
∂uTt = −vtρtνt.

For the second point:

dt(vt)
2 = dt|∂uC(t, u)|2 = 2〈dt∂uC(t, u), ∂uC(t, u)〉+ 〈dt∂uC(t, u), dt∂uC(t, u)〉

= 2vt

(
vtρt

(
(−ρt + 2ht)dt+

√
2dBt

)
+ ∂uatdt

)
+ 2v2t ρ

2
tdt.

Then we write dv2t = 2vtdvt + dvtdvt, and we identify the martingale part and the finite
variation part of vt to get the conclusion.

For the last point we compute:

dtTt = dt

(
1

vt
∂uCt

)
= dt

(
1

vt

)
∂uCt +

1

vt
dt∂uCt + dt

(
1

vt

)
dt∂uCt

=

(
−ρt
vt

(
(−3ρt + 2h)dt+

√
2dBt

)
− ∂uat

v2t
dt

)
vtTt

+
1

vt

(
(−∂uρt − ρtvtat)νtdt+

(
vtρt((−ρt + 2ht)dt+

√
2dBt) + ∂uatdt

)
Tt

)
− 2ρ2tTtdt

= − 1

vt
(∂uρt + ρtvtat)dtνt.

In the above lemma, if the curvature is positive and if we take

at =
−∂uρt
vtρt

(3.5)

we get that Tt and νt become constant in time hence the angle θ becomes constant in
time, as desired. The following lemma describes the evolution of the curvature in this
system of coordinates. Let us first reinforce Assumption 2.2:

Hypothesis 3.7. The initial curve C0 : T 3 u 7→ C0(u) ∈ R2 is simple, closed, strictly
convex and C4+α, for some α > 0.

Lemma 3.8. Assuming Hypothesis 3.7, the solution to

dtρt(θ) = ρ2t (θ)(∂
2
θρt(θ))dt+ ρ2t (θ)

(
(3ρt(θ)− 2h)dt−

√
2dBt

)
,

is well-defined for all 0 ≤ t < τ0 ∧ τ , where τ0 = inf{t ≥ 0 : ∃u ∈ [0, 1], ρt(u) = 0} and τ is
the lifetime of (3.4). Due to Hypothesis 3.7, all the quantities h, ρ, ∂θρ, ∂2θρ are bounded
until τ .
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Proof. By the above choice of α we have:

0 = ∂udtTt = dt(∂uTt)

= dt(−ρtvtνt).

Since νt is constant in time we get:

dt(vtρt) = 0,

and so
0 = dt(vtρt) = dt(vt)ρt + vtdtρt + dvtdρt.

We get that ρt satisfies the following stochastic differential equation:

vtdρt = −ρtdt(vt)− dvtdρt

= −ρt
(
vtρt[(−ρt + 2h)dt+

√
2dBt] + ∂uatdt

)
− dvtdρt.

After identification, the martingale part of dρt is −
√

2ρ2tdBt, hence by this choice of α

dρt = −ρ2t
(

(−ρt + 2h)dt+
√

2dBt

)
− ρt
vt
∂uatdt+ 2ρ3tdt

= −ρ2t
(

(−3ρt + 2h)dt+
√

2dBt

)
− ρt
vt
∂uatdt

= −ρt
vt
∂u

(
−∂uρt
vtρt

)
dt− ρ2t

(
(−3ρt + 2h)dt+

√
2dBt

)
.

Recall that T = (cos(θ), sin(θ)) and so ∂θT = −ν. So by the chain rule we have:

−ν =
∂T

∂θ
=
∂u

∂θ

∂T

∂u
=
∂u

∂θ
(−vρ)ν.

Hence
∂u

∂θ
=

1

vρ
and ∂θ =

1

vρ
∂u. (3.6)

The previous evolution equation of ρt becomes

dρt =
ρt
vt
∂u∂θρtdt− ρ2t

(
(−3ρt + 2h)dt+

√
2dBt

)
= ρ2t∂

2
θρtdt+ ρ2t

(
(3ρt − 2h)dt−

√
2dBt

)
.

Theorem 3.9. Assume Hypothesis 3.7, in particular ρ0 > 0.
Let ρt(θ) be a solution of the following elliptic partial stochastic differential equation:{

dtρt(θ) = ρ2t (θ)(∂
2
θρt)dt+ ρ2t (θ)

(
(3ρt(θ)− 2h)dt−

√
2dBt

)
ρ0(θ) = ρ0(θ),

(3.7)

with lifetime τ2, namely the solution has to be regular up to order 2 for at least all times
smaller than τ2.

Then τ0 ∧ τ = τ2, and for all t < τ2, we have ρt(θ) > 0 for all θ ∈ T. Moreover the
solution to (3.7) is unique and it provides the solution of (3.1) through:

C(t, θ) B C̃(t, θ) +

∫ t

0

(−∂θρu(0), ρu(0)− 2hu) du− (0,
√

2Bt)

where

C̃(t, θ) =

(∫ θ

0

cos(θ1)

ρt(θ1)
dθ1,

∫ θ

0

sin(θ1)

ρt(θ1)
dθ1

)
.
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The stochastic renormalized curvature flow

Proof. By lemma 3.8, (3.7) admits a solution and τ0 ∧ τ ≤ τ2. Note that the quantity ht
could be expressed in terms of σt and λt and these quantities also depend on the integral
of ρ as seen in Remark 3.11 below and so h is bounded until τ2.

From (3.7), we get for all t < τ2,

ρt(θ) = ρ0(θ) exp

(∫ t

0

−
√

2ρs(θ)dBs +
(
ρs(θ)∂

2
θρs(θ) + 2ρs(θ)(ρs(θ)− hs)

)
ds

)
which is positive, yielding τ2 ≤ τ0.

Recall Lemma 4.1.1 in [6], or see the beginning of Section 5, that says a 2π periodic
positive function ρ represents the curvature of a simple closed strictly convex plane
curve if and only if (1.1) is satisfied.

Here this equation is satisfied by ρ0(θ). So we have to check that this relation is
preserved over time for ρt(θ) solution of (3.7). We will only verify this fact for the first
coordinate, the computation will be the same for the second one. Using Itô calculus we
get for 0 ≤ t < τ2:

dt
1

ρt
= − 1

ρ2t
dρt +

1

ρ3t
dρtdρt

= −(∂2θρt(θ))dt−
(

(3ρt(θ)− 2h)dt−
√

2dBt

)
+ 2ρtdt

= −(∂2θρt(θ))dt−
(

(ρt(θ)− 2h)dt−
√

2dBt

)
. (3.8)

And so after integration by part we get for 0 ≤ t < τ2:

dt

∫ 2π

0

cos(θ)

ρt(θ)
dθ =

∫ 2π

0

dt
cos(θ)

ρt(θ)
dθ

=

∫ 2π

0

cos(θ)
(
−(∂2θρt(θ))dt−

(
(ρt(θ)− 2h)dt−

√
2dBt

))
dθ

= −
(∫ 2π

0

cos(θ)
(
∂2θρt(θ) + ρt(θ)

)
dθ

)
dt

= 0.

We get that, for all 0 ≤ t < τ2, ρt is the curvature of a simple closed strictly convex plane
curve. Let us write the curve as:

C̃(t, θ) =

(∫ θ

0

cos(θ1)

ρt(θ1)
dθ1,

∫ θ

0

sin(θ1)

ρt(θ1)
dθ1

)
.

We only have to check that (C(t, θ))θ solves Equation (3.1) up to some tangential
component.

We have:

dtC(t, θ) = dt

(∫ θ

0

cos(θ1)

ρt(θ1)
dθ1,

∫ θ

0

sin(θ1)

ρt(θ1)
dθ1

)
+ (−∂θρt(0)dt, (ρt(0)− 2ht)dt−

√
2dBt)

=

(∫ θ

0

cos(θ1)
(
−(∂2θ1ρt(θ1))dt−

(
(ρt(θ1)− 2h)dt−

√
2dBt

))
dθ1∫ θ

0

sin(θ1)
(
−(∂2θ1ρt(θ1))dt−

(
(ρt(θ1)− 2h)dt−

√
2dBt

))
dθ1

)
+ (−∂θρt(0)dt, (ρt(0)− 2ht)dt−

√
2dBt).
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The stochastic renormalized curvature flow

After two integrations by parts, we have for the first term in the right hand side:∫ θ

0

cos(θ)
(
−(∂2θ1ρt(θ1))dt−

(
(ρt(θ1)− 2h)dt−

√
2dBt

))
dθ1

= −
{

[cos(θ1)∂θ1ρt]
θ
0dt+ [sin(θ1)ρt]

θ
0dt+ [sin(θ)]

(
−2hdt−

√
2dBt

)}
= − cos(θ)∂θρt(θ)dt+ ∂θρt(0)dt− sin(θ)

(
(ρt − 2h)dt−

√
2dBt

)
.

For the second term, we have:∫ θ

0

sin(θ)
(
−(∂2θ1ρt(θ1))dt−

(
(ρt(θ1)− 2h)dt−

√
2dBt

))
dθ1

= −
{

[sin(θ1)∂θ1ρt]
θ
0dt− [cos(θ1)ρt]

θ
0dt− [cos(θ)]θ0

(
−2hdt−

√
2dBt

)}
= − sin(θ)∂θρt(θ)dt+ cos(θ)

(
(ρt − 2h)dt−

√
2dBt

)
−
(

(ρt(0)− 2h)dt−
√

2dBt

)
.

Hence:

dtC(t, θ) = ((−ρt + 2h)dt+
√

2dBt)ν − (∂θρtdt)T.

This is (3.4) and so up a parametrization, this is a solution to (3.1). Since a solution
to (3.7) produces a solution to (3.1), by uniqueness of solution to (3.1), we get the
uniqueness of the solution to (3.7), and τ2 ≤ τ . So we proved that τ2 = τ ∧ τ0.

We will show that Equation (3.1) preserves the positivity of the curvature.

Lemma 3.10. Assume Hypothesis 3.7 and consider the solution to (3.1). We have ρt > 0

for all t < τ , where τ is any lifetime of (3.1), moreover τ = τ2.

Proof. Suppose that τ0 < τ , so ht, ρt(θ), ∂θρt(θ), ∂2θρt(θ) are bounded for all t ≤ τ0, and

ρτ0(θ) = ρ0(θ) exp

(∫ τ0

0

−
√

2ρs(θ)dBs +
(
ρs(θ)∂

2
θρs(θ) + 2ρs(θ)(ρs(θ)− hs)

)
ds

)
,

and we get a contradiction. By Theorem 3.9, we get τ = τ2.

Remark 3.11. Let us compute the equation satisfied by h when we know the equation
of ρ. Resorting to (3.8) and recalling from (3.6) that 1/(vρ) = ∂u/∂θ = 1, we get by
Stokes Theorem:

dσt = d

∫ 2π

0

|∂θC(t, θ)| dθ

= d

∫ 2π

0

1

ρt(θ)
dθ

=

∫ 2π

0

(
−∂2θρt(θ)dt− ((ρt(θ)− 2h)dt−

√
2dBt)

)
dθ

=

(
−
∫ 2π

0

ρt(θ) dθ

)
dt+ 4πhtdt+ 2

√
2πdBt

=

(
−
∫ σt

0

ρ2t (s)ds

)
dt+ 4πhtdt+ 2

√
2πdBt.
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The stochastic renormalized curvature flow

By a similar computation as above, we also have:

dλt = d
1

2

∫ 2π

0

〈C(t, θ), νt(θ)〉
dθ

ρt(θ)

=
1

2

{∫ 2π

0

(
〈dC(t, θ), νt(θ)〉

1

ρt(θ)
+ 〈C(t, θ), νt(θ)〉d(

1

ρt(θ)
)+

+ 〈dC(t, θ), νt(θ)〉d(
1

ρt(θ)
)

)
dθ

}
=

1

2

{∫ 2π

0

((
(−ρt(θ) + 2h)dt+

√
2dBt

) 1

ρt(θ)

+ 〈C(t, θ), νt(θ)〉
(
−∂2θρt(θ)dt− ((ρt(θ)− 2h)dt−

√
2dBt)

)
+ 2dt

)
dθ

}

After integrating by part two times and using ∂θν = T , we get:∫ 2π

0

−〈C(t, θ), νt(θ)〉∂2θρt(θ) dθ =

∫ 2π

0

∂θ(〈C(t, θ), νt(θ)〉)∂θρt(θ) dθ

=

∫ 2π

0

∂θρt(θ)〈C(t, θ), Tt(θ)〉 dθ

= −
∫ 2π

0

ρt(θ)

(
1

ρt(θ)
− 〈C(t, θ), νt(θ)〉

)
dθ.

Taking into account that ∂θT = −ν, we have∫ 2π

0

〈C(t, θ), νt(θ)〉 dθ = −
∫ 2π

0

〈C(t, θ), ∂θTt(θ)〉 dθ

= −
∫ 2π

0

∂θ(〈C(t, θ), Tt(θ)〉)−
1

ρt(θ)
dθ =

∫ 2π

0

1

ρt(θ)
dθ.

Putting the two computations above in the evolution equation of λt we get:

dλt =
1

2

{∫ 2π

0

((
2hdt+

√
2dBt

) 1

ρt(θ)

− 〈C(t, θ), νt(θ)〉
(
−2hdt−

√
2dBt)

))
dθ

}
=

∫ 2π

0

1

ρt(θ)
dθ
(

2hdt+
√

2dBt

)
= dλt =

2σ2
t

λt
dt+

√
2σtdBt.

So we have to interpret (3.7) as a system where we have:
dσt =

(
−
∫ 2π

0
ρt(θ) dθ

)
dt+ 4π σtλt dt+ 2

√
2πdBt

dλt =
2σ2
t

λt
dt+

√
2σtdBt

ht = σt
λt

(3.9)

Using the above theorem and Lemma 3.8, we get the following corollary:

Corollary 3.12. Assume Hypothesis 3.7. There is a one to one correspondence between
the solutions of (3.1), (3.7) and (3.4).

Proof. Use Theorem 3.9, Lemma 3.8 and 3.10.
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The stochastic renormalized curvature flow

Consider the following stochastic curvature flow,{
dtC(t, u) = (−ρt(C(t, u)))νC(t,u)dt+

√
2νC(t,u)dBt

C(0, u) = C0(u)
(3.10)

Corollary 3.13. Assume Hypothesis 3.7 and consider the solution to (3.10). We have
ρt > 0 for all t < τ , where τ is any lifetime of (3.10).

Proof. With similar computation as in the above lemma, and since ρ0 > 0, we have:{
dtρt(θ) = ρ2t (θ)(∂

2
θρt(θ))dt+ ρ2t (θ)

(
(3ρt(θ))dt−

√
2dBt

)
,

ρ0 = ρ0
(3.11)

and the proof is similar to the proof of Lemma 3.8, Theorem 3.9 and Lemma 3.10.

Corollary 3.14. Assume Hypothesis 3.7, there is a one to one correspondence between
the solutions of (3.10) and (3.11).

Proof. The proof is similar to that of Theorem 3.9, just remove all the ht.

4 Long time existence

4.1 Evolution of geometric quantities along the stochastic flow (3.1)

Proposition 4.1. Assume Hypothesis 3.7. Let (Ct)t∈[0,τ) be the solution of (3.1). For any
t ∈ [0, τ), denote λt the volume of Dt and σt the perimeter of Ct. We have the following
equations for t ∈ [0, τ) (with our usual notational shortcuts):

i) dt(σ2
t − 4πλt) ≤ −2π

(
σ2
t−4πλt
λt

)
dt,

ii) d
1

ρt(θ)
= −∂2θρt(θ)dt− (ρt(θ)− 2h)dt+

√
2dBt,

iii) d

∫ 2π

0

1

ρ2t
dθ = −2

∫ 2π

0

(∂θ log(ρt))
2
dθdt+ 2dλt,

iv)

d

∫ 2π

0

log(ρt(θ)) dθ =−
∫ 2π

0

(∂θρt)
2 dθdt+ 2

∫ 2π

0

(
ρt(θ)−

h

2

)2

dθdt

− πh2dt−
√

2

∫ 2π

0

ρt(θ) dθdBt.

Proof. For equation i): using equation (3.9) and Itô formula we have

d(σ2
t − 4πλt) = 2σtdσt + dσtdσt − 4πdλt

= 2σt

(
−
∫ 2π

0

ρt(θ) dθdt+ 4π
σt
λt
dt+ 2

√
2πdBt

)
+ 8π2dt

− 8πσ2
t

λt
dt− 4π

√
2σtdBt

= 2σt

(
−
∫ 2π

0

ρt(θ) dθ

)
dt+ 8π2dt

≤
(
−2π

σ2
t

λt
+ 8π2

)
dt

= −2π

(
σ2
t − 4πλt
λt

)
dt

≤ 0
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The stochastic renormalized curvature flow

where we use the preservation of the convexity along the flow (Lemma 3.10) and Gage
inequality for convex curve [3]:

πh(D) = π
σ(C)

λ(D)
≤
∫
C

ρ2(s)ds =

∫ 2π

0

ρ(θ)dθ. (4.1)

Also in the last inequality we use the isoperimetric estimate. So the isoperimetric
deficit σ2

t − 4πλt is non-increasing along the flow. One of the geometric meaning of the
isoperimetric deficit is the following Bonnesen inequality [4]:

π2(rout − rint)2 ≤ σ2(∂D)− 4πλ(D)

where rint, rout are respectively the inradius and the circumradius of D.
For equation ii): it is done in the proof of Theorem 3.9.
For equation iii): using Itô formula in the point (ii) we get

dt
1

ρ2t
=

2

ρt

(
−(∂2θρt(θ))dt− ((ρt(θ)− 2h)dt+

√
2dBt

)
+ 2dt

= − 2

ρt
∂2θρt(θ)dt+

4

ρt
hdt+

2
√

2

ρt
dBt.

Integrating the above equality we get (since
∫ 2π

0
1
ρ dθ = σt)

d

∫ 2π

0

1

ρ2t
dθ = −2

∫ 2π

0

(
(∂θρt)

ρt

)2

dθdt+ 4
σ2
t

λt
dt+ 2

√
2σtdBt

= −2

∫ 2π

0

(∂θ log(ρt))
2
dθdt+ 2dλt.

For equation iv) we use (3.7) and Itô formula:

d log(ρt(θ)) =
1

ρt(θ)
dρt(θ)−

1

2ρ2t (θ)
dρt(θ)dρt(θ)

= ρt(θ)(∂
2
θρt)dt+ ρt(θ)

(
(3ρt(θ)− 2h)dt−

√
2dBt

)
− ρ2t (θ)dt

= ρt(θ)(∂
2
θρt)dt+ 2ρt(θ)(ρt(θ)− h)dt−

√
2ρt(θ)dBt.

Integrating the above equation, we get:

d

∫ 2π

0

log(ρt(θ)) dθ =−
∫ 2π

0

(∂θρt)
2 dθdt+ 2

∫ 2π

0

ρt(θ)(ρt(θ)− h) dθdt

−
√

2

∫ 2π

0

ρt(θ) dθdBt.

=−
∫ 2π

0

(∂θρt)
2 dθdt+ 2

∫ 2π

0

(
ρt(θ)−

h

2

)2

dθdt

− πh2dt−
√

2

∫ 2π

0

ρt(θ) dθdBt.

Remark 4.2. Note that

∫ 2π

0

1

ρ2t
dθ − 2λt ≥

1

2π
σ2
t − 2λt ≥ 0 where the last bound is the

isoperimetric inequality. Hence

0 ≤
∫ 2π

0

1

ρ2t
dθ − 2λt = −2

∫ t

0

∫ 2π

0

(∂θ log(ρs))
2
dθds+A0
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where A0 =
∫ 2π

0
1
ρ20
dθ−2λ0 ≥ 0. So if moreover C0 is a curve in the set Sn of n-symmetric

convex curves with star shaped skeleton for some n ≥ 2 (see Section 5 for the definition)
using Proposition 5.5, Ct ∈ Sn and θ 7→ ρt(θ) is non-decreasing and the above equation
gives:

0 < 2λt ≤
1

ρt(0)
σt ≤

2π

ρ2t (0)

so 0 < ρt(0) ≤
√

π
λt

and 0 < ρt(0) ≤ ht
2 . On the other hand we have

0 <

∫ 2π

0

1

ρ2t
dθ ≤ A0 + 2λt,

and if C0 ∈ Sn then

0 <
2π

ρ2t (π/2)
≤ σt
ρt(π/2)

≤ A0 + 2λt

so
√

2π
A0+2λt

≤ ρt(π/2) and note also by the Gage inequality (4.1) we have ht
2 ≤ ρt(π/2).

Lemma 4.3. (ht)t∈[0,τ) is a positive super martingale, so it is almost surely bounded on
[0, τ).

Proof. Using equation (3.9) and Itô formula we have

dht = d

(
σt
λt

)
=

1

λt
dσt + σtd

(
1

λt

)
+ dσtd

(
1

λt

)
=

1

λt

((
−
∫ 2π

0

ρt(θ) dθ

)
dt+ 4π

σt
λt
dt+ 2

√
2πdBt

)
−
√

2σ2
t

λ2t
dBt −

4πσt
λ2t

dt

= − 1

λt

(∫ 2π

0

ρt(θ) dθ

)
dt+

√
2

(
2πλt − σ2

t

λ2t

)
dBt

≤ −πht
λt

dt+
√

2

(
2πλt − σ2

t

λ2t

)
dBt

In the sequel we will encounter random constants, they will be denoted under the
form c(ω), where ω stands for the randomness associated to the underlying Brownian
motion. This is a generic notation and the exact value of c(ω) may change from line to
line.

Proposition 4.4. Assume Hypothesis 3.7. Let (Ct)t∈[0,τ) be the solution of (3.1), where
τ is any lifetime of (3.1). Then there exists a positive random variable c(ω) < ∞ such
that for all t < τ(ω), ht(ω) ≤ c(ω) and

1
1

inf ρ0
+
√

2 sup[0,t]Bs + 2c(ω)t
≤ inf

θ
ρt(θ).

Proof. Let Jt = 1
ρt(θ)

−
√

2Bt − 2
∫ t
0
h(s) ds− 1

inf ρ0
. By Lemma 3.10 this quantity is well

defined, and by Proposition 4.1 we have

dJt(θ) = −∂2θρt(θ)dt− ρt(θ)dt

=

(
ρ2t (θ)∂

2
θ

(
1

ρt(θ)

)
− 2

(∂θρt(θ))
2

ρt(θ)
− ρt(θ)

)
dt

≤

(
1

Jt(θ) +
√

2Bt + 2
∫ t
0
h(s) ds+ 1

inf ρ0

)2

∂2θJtdt.
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The stochastic renormalized curvature flow

Using the maximum principle, we will show that Jt ≤ 0 for all t ∈ [0, τ). Suppose that
there exists t0 ∈ [0, τ) and θ0 such that b B Jt0(θ0) > 0. Let Wt B e−tJt, then Wt0(θ0) =

e−t0b > 0 and supθWt0 ≥ e−t0b > 0. Consider the time t∗ = inf{t ∈ [0, t0], s.t. supθWt =

Wt0(θ0)}, and let θ∗ such that Wt∗(θ∗) = supθWt∗ . We have t∗ > 0 and

∂tWt ≤

(
1

etWt(θ) +
√

2Bt + 2
∫ t
0
h(s) ds+ 1

inf ρ0

)2

∂2θWt −Wt.

Note that since 0 ≤ ∂tWt(θ∗)|t∗ , ∂
2
θWt∗(θ)|θ∗ ≤ 0 and Wt∗(θ∗) = e−t0b > 0 we get a

contradiction. Hence for all t ∈ [0, τ) we have

1

ρt(θ)
≤ 1

inf ρ0
+
√

2Bt + 2

∫ t

0

h(s) ds.

Since ht is a positive super martingale by Lemma 4.3, it is almost surely bounded in
[0, τ), so there exists a positive random variable c(ω) <∞ such that ht(ω) ≤ c(ω) and

1
1

inf ρ0
+
√

2 sup[0,t]Bs + 2c(ω)t
≤ inf

θ
ρt(θ).

4.2 When there is a sufficient number of symmetries

The goal of this section is to find a necessary condition on the strictly convex domain
to guarantee the existence of the solution of (3.1) for all times. We will see that the
entropy will be a supermartingale if the initial domain has enough symmetries. From
Lemma 3.8, we deduce the evolution of the entropy (defined in (2.9), it also coincides
with the relative entropy of the curvature density with respect to the arc length Lebesgue
measure, up to normalizations in terms of the length of the curve):

dEntt = d

∫ 2π

0

log(ρt(θ)) dθ

= −
∫ 2π

0

(∂θρt)
2 dθdt+ 2

∫ 2π

0

ρt(θ)(ρt(θ)− h) dθdt

−
√

2

∫ 2π

0

ρt(θ) dθdBt.

Proposition 4.5. If the boundary of the domain is strictly convex (recall Definition 1.1)
then we have the following estimate

2ρinf ≤ h ≤ 2ρsup

Proof. Let p be the support function, namely p(s) = 〈x(s), ν(s)〉. Green Theorem asserts
λ(D) = 1

2

∫
γ
p(s)ds and we have σ(∂D) =

∫
γ
p(s)ρ(s)ds. Indeed, we compute∫

γ

p(s)ρ(s)ds =

∫
γ

〈x(s), ρ(s)ν(s)〉ds

= −
∫
γ

〈x(s), x(s)′′〉ds

and it remains to integrate by part to recognize σ(∂D).
Remark also that we can suppose that the origin is contained in the domain (else

translate and all the quantities are invariant under translation). By convexity of the
domain we have that p(θ) > 0. Recalling that dθ = ρds, we have σ(∂D) =

∫
γ
p(θ)dθ, so

that

λ(D) =
1

2

∫
T

p(θ)

ρ(θ)
dθ ≤ 1

2ρinf
σ(∂D).

Hence 2ρinf ≤ h(D). The other inequality is a direct consequence of Gage inequality.
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Proposition 4.6. For any C1 function f : [0, L]→ R satisfying f(0) = f(L) = 0, we have∫ L

0

f2dθ ≤
(
L

π

)2 ∫ L

0

f ′2dθ.

Proof. This is the Wirtinger inequality which can be proved by Fourier series.

Definition 4.7. We will say that a domain D has n axes of symmetries, if up to a
translation there exists a linear straight line ∆ such that D is symmetric with respect to
∆, Rπ/n(∆), . . . , R(n−1)π/n(∆), where Rθ is a rotation of angle θ.

Proposition 4.8. Under Hypothesis 3.7 and the assumption that D0 has n axes of
symmetries, with n ≥ 3, the entropy is a super-martingale.

Proof. Using Proposition 4.5 and the symmetries there exists θk ∈ [kπn ,
(k+1)π
n ) for k ∈

J0, 2n− 1K such that ρ(θk) = h
2 . Note that we can further impose that |θk − θk−1| ≤ 2π

n for
k ∈ J0, 2nK (with θ2n = θ0 + 2π).

So using Proposition 4.6, we get∫ θk+1

θk

(
ρ(θ)− h

2

)2

dθ ≤ 4

n2

∫ θk+1

θk

ρ′(θ)2dθ.

Hence

−
∫
T

ρ′(θ)2dθ ≤ −n
2

4

∫
T

(
ρ(θ)− h

2

)2

dθ,

and, if n ≥ 3 we have

dEntt ≤−
n2

4

∫
T

(
ρ(θ)− h

2

)2

dθ + 2

∫ 2π

0

(
ρt(θ)−

h

2

)2

dθdt− πh2dt

−
√

2

∫ 2π

0

ρt(θ) dθdBt

≤− πh2dt−
√

2

∫ 2π

0

ρt(θ) dθdBt.

Remark 4.9. The Green-Osher’s inequality, see Theorem 0.2 of [9], shows

Entt =

∫
T

ln(ρt)dθ ≥ π ln

(
π

λt

)
.

Since 1
λt

is a positive martingale, the r.h.s. is a super-martingale (at least on its domain
of definition). Of course, this is not sufficient to insure that (Entt)t itself is a super-
martingale.

In the sequel we will use comparison of processes up to a continuous martingale
term: when (Xt)t∈[0,τ) and (Yt)t∈[0,τ) are two predictable processes with respect to the
same underlying filtration and are defined on the same time-interval [0, τ) (where τ is a
stopping time), we write

∀ t ∈ [0, τ) Xt

(m)

≤ Yt

to mean there exists a continuous martingale (Mt)t∈[0,τ) such that

∀ t ∈ [0, τ) Xt ≤ Yt +Mt

In the next four results, τ will stand the maximal time up to which the equation of
Lemma 3.8 admits a solution.
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Proposition 4.10. Under Hypothesis 3.7, we have:

d

∫
(∂θρt)

2dθ
(m)

≤

((
13

3

)2

+ 16

)∫
ρ4 dθdt

Proof. From Lemma 3.8, we deduce that on [0, τ), via integrations by parts,

d

∫
(∂ρ)2

= 2

∫
∂ρ d∂ρ+

∫
d∂ρ d∂ρ

= 2

∫
∂ρ ∂dρ+

∫
∂dρ ∂dρ

= −2

∫
∂2ρ dρ+ 2

∫
(∂ρ2)2dt

= 2

∫
ρ2∂2ρ[(2h− 3ρ− ∂2ρ)dt+

√
2dBt] + 8

(∫
(ρ2∂ρ)∂ρ

)
dt

= 2

(∫
ρ2∂2ρ(2h− 3ρ− ∂2ρ)

)
dt− 8

3

(∫
ρ3∂2ρ

)
dt+ 2

√
2

(∫
ρ2∂2ρ

)
dBt

(m)
= 2

(∫
ρ2
[
−(∂2ρ)2 +

(
2h− 13

3
ρ

)
∂2ρ

])
dt

= 2

(∫
ρ2

[(
h− 13

6
ρ

)2

−
(
∂2ρ+

13

6
ρ− h

)2
])

dt

≤ 2

(∫
ρ2
(
h− 13

6
ρ

)2
)
dt

≤ 4

(∫ (
13

6

)2

ρ4 + h2ρ2

)
dt

where ∂ stands for the differentiation with respect to the underlying parameter θ (which
commutes with respect to the “stochastic differentiation with respect to time” d).

Taking into account Gage’s inequality, we get

h2
∫
ρ2 ≤ 1

π2

(∫
ρ

)2 ∫
ρ2

≤ 4

∫
ρ4

and finally the desired bound.

This observation leads us to investigate the evolution of
∫
ρ4 itself:

Proposition 4.11. Under Hypothesis 3.7 and the assumption that D0 has n axes of
symmetries, with n ≥ 7, we have

d

∫
(ρt)

4dθ
(m)

≤ c(ω) dt

where c(ω) is a finite random constant (independent of time), as mentioned before
Proposition 4.4.

Proof. We compute

d

∫
ρ4 = 4

∫
ρ3dρ+ 6

∫
ρ2dρ dρ
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(m)
= 4

(∫
6ρ6 + ρ5∂2ρ− 2hρ5

)
dt

= 4

(∫
6ρ6 − 5ρ4(∂ρ)2 − 2hρ5

)
dt

= 4

(∫
6ρ6 − 5

9

(
∂ρ3
)2 − 2hρ5

)
dt

To deal with the middle term, let us resort to Wirtinger inequality, assuming n ≥ 7

axes of symmetry for D0. Since the evolution equation is invariant by these symmetries,
for any time t ∈ [0, τ), we still have that Dt has n axes of symmetry. We deduce that∫ (

∂ρ3
)2

=

∫ (
∂(ρ3 − ρ3inf)

)2
≥ 49

4

∫ (
ρ3 − ρ3inf

)2
so that, taking into account Proposition 4.5,

d

∫
ρ4

(m)

≤ 4

(∫
−29

36
ρ6 +

245

18
ρ3ρ3inf −

245

36
ρ6inf − 2ρ5h

)
dt

≤ 2

(∫
−29

18
ρ6 +

245

9
ρ3ρ3inf −

389

18
ρ6inf

)
dt

≤ c(ω) dt

To get the desired result, recall that ρinf ≤ h/2 and that h is a positive supermartingale
and is thus a.s. bounded on its domain of definition.

Proposition 4.12. Under Hypothesis 3.7 and the assumption that has n axes of sym-
metries with n ≥ 7, there exists a finite random variable c(ω) such that on the event
τ <∞:

∀t ∈ [0, τ),

∫
(∂θρt)

2dθ ≤ c(ω) (4.2)

Proof. Let us show that there exists a finite random variable c1(ω) such that on the event
τ <∞:

∀t ∈ [0, τ),

∫
(ρt)

4dθ ≤ c1(ω) (4.3)

According to the previous proposition, there exist a finite random constant c(ω) ≥ 0 and
a continuous martingale (Mt)t∈[0,τ) such that

∀ t ∈ [0, τ),

∫
(ρt)

4dθ ≤ c(ω)t+Mt

Up to enriching the underlying probability space, we can find a Brownian motion
(Wt)t≥0 such that

∀ t ∈ [0, τ),

∫
(ρt)

4dθ ≤ c(ω)t+W〈M〉t (4.4)

Thus on {τ < +∞}, we will deduce (4.3) as soon as we show

lim
t→τ−

〈M〉t < +∞

Note that if we had
lim
t→τ−

〈M〉t = +∞
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we would get from (4.4) that

inf
t∈[0,τ)

∫
(ρt)

4dθ = −∞

which is a contradiction. Hence there exists c1(ω) such that (4.3) is satisfied on the
event τ <∞. According to Proposition 4.10 there exist a finite constant c2(ω) ≥ 0 and a
continuous martingale (M̃t)t∈[0,τ) such that on {τ < +∞}

∀ t ∈ [0, τ),

∫
(∂θρt)

2dθ ≤ c2(ω)t+ M̃t

We deduce (4.2) by the same argument used to get (4.3).

Proposition 4.13. Under Hypothesis 3.7 and the assumption that D0 has n axes of
symmetries, with n ≥ 7, there exists a random variable c(ω) such that on the event
τ <∞:

ρt ≤ c(ω) <∞ ∀t ∈ [0, τ).

Proof. On the event τ <∞, according to Propositions 4.12 and 4.8, there exists a random
constant c(ω) <∞ such that for all t < τ we have:

Entt ≤ c(ω)∫
(∂θρt)

2 ≤ c(ω).

Let rt B sup{ρs(θ), (θ, s) ∈ [0, 2π]×[0, t]} for t < τ . Then there exists (θ1, t1) ∈ [0, 2π]×[0, t]

such that ρt1(θ1) = rt. For all θ2 ∈ [0, 2π], we have

|ρt1(θ1)− ρt1(θ2)| =

∣∣∣∣∣
∫ θ2

θ1

∂ρt1(θ) dθ

∣∣∣∣∣
≤
√
|θ1 − θ2|

√
c(ω),

so
rt −

√
|θ1 − θ2|

√
c(ω) ≤ ρt1(θ2).

Then using Proposition 4.4 we get

Entt1 ≥
∫
|θ−θ1|≤

r2t
4c(ω)

∧π2
log(ρt1(θ)) dθ +

∫
|θ−θ1|≥

r2t
4c(ω)

∧π2
log(ρt1(θ)) dθ

≥ 2 log
(rt

2

)( r2t
4c(ω)

∧ π
2

)
+

(
2π − 2

(
r2t

4c(ω)
∧ π

2

))
log

(
1

1
inf ρ0

+
√

2 sup[0,t1]Bs + 2c(ω)t1

)

≥ 2 log
(rt

2

)( r2t
4c(ω)

∧ π
2

)
+

(
2π − 2

(
r2t

4c(ω)
∧ π

2

))
log

(
1

1
inf ρ0

+
√

2 sup[0,τ ]Bs + 2c(ω)τ

)
.

On the event τ <∞ the last term of the above equation is almost surely bounded, since
the entropy is bounded from above on [0, τ). We get that ρt has to be a.s. uniformly
bounded on t ∈ [0, τ).

We will need the following lemma which is a little refinement of Lemma 4.1.1 from [6].
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Lemma 4.14. Let a 2π periodic positive function ρ ∈ Cα(T), with α ∈ (0, 1), satisfying

(1.1). Consider the curve X : θ 7→ (
∫ θ
0

cos(u)
ρ(u) du,

∫ θ
0

sin(u)
ρ(u) du), as before parametrized by

the angle θ ∈ T of its tangent with respect to the horizontal axis, and whose curvature
function is ρ. When X is parametrized by its arc-length, it becomes C2+α.

Proof. Under the parametrization of X by θ, the curve may seem to be only of order C1+α.
Let us check it is in fact C2+α under the arc-length parametrization. Denoting s the arc
length parametrization of X, we have ∂s = ρ∂θ and s(θ) =

∫ θ
0

1
ρ(u) du, ∂sθ(s) = ρ(θ(s)),

T (s) = (cos(θ(s)), sin(θ(s)) (as it should be, by definition of the parametrization by θ).
From ∂sθ(s) = ρ(θ(s)), we see that s 7→ θ(s) is C1+α. Furthermore, in the parameter
s, the curve X̃(s) B X(θ(s)) satisfies ∂sX̃ = (cos(θ(s)), sin(θ(s)), so we get that X̃ is
C2+α.

Theorem 4.15. Under Hypothesis 3.7 and the assumption that D0 has n axes of symme-
tries, with n ≥ 7, a.s. τ =∞, where τ is the maximal lifetime of (3.1).

Proof. Suppose that P(τ <∞) > 0. Let Ct(θ) be the solution of (3.1) namely{
dtC(t, θ) =

(
[−ρt(C(t, θ)) + 2ht]dt+

√
2dBt

)
νt(C(t, θ))

C(0, θ) = C0(θ)

On the event {τ <∞}, using Lemma 4.3 and 4.13 we have for all t < τ , ht ≤ c(ω) <∞
and ρt(θ) ≤ c(ω) < ∞. Since ‖νt(C(t, θ))‖ = 1 we have for s, t < τ such that |t − s| is
small:

|C(s, θ)− C(t, θ)| ≤ c1(ω)|t− s| 12−ε,

where the random variable c1 depends on c. Hence there exists Cτ : T 7→ R2 such that Ct
converges uniformly to Cτ . On the other hand, using Proposition 4.12 we get by Hölder
inequality that for all t < τ

|ρt(θ)− ρt(β)| ≤

∣∣∣∣∣
∫ θ

β

∂ρt(γ)dγ

∣∣∣∣∣ ≤ c(ω)
√
|θ − β|.

Hence ρ. is equi-continuous. So using again Proposition 4.13 and Ascoli Theorem we get
that there exists a sequence (tn)n converging to τ and a C

1
2 function ρτ such that ρtn

converges uniformly to ρτ .
We want to show that Cτ , is in fact C2+ 1

2 .
By Theorem 3.9 we have the following representation of the solution of (3.1):

C(t, θ) B C̃(t, θ) +

∫ t

0

(−∂θρu(0), ρu(0)− 2hu) du− (0,
√

2Bt)

where

C̃(t, θ) =

(∫ θ

0

cos(θ1)

ρt(θ1)
dθ1,

∫ θ

0

sin(θ1)

ρt(θ1)
dθ1

)
.

Since C(tn, 0)→ Cτ (0), there exists A ∈ R2 such that∫ tn

0

(−∂θρu(0), ρu(0)− 2hx) du− (0,
√

2Btn)→ A.

Also since ρtn converges uniformly to ρτ and by Proposition 4.4, ρτ > 0, we have that

C̃(tn, .) converges uniformly to
(∫ .

0
cos(θ1)
ρτ (θ1)

dθ1,
∫ .
0

sin(θ1)
ρτ (θ1)

dθ1

)
. Hence

C(tn, .)→
(∫ .

0

cos(θ1)

ρτ (θ1)
dθ1,

∫ .

0

sin(θ1)

ρτ (θ1)
dθ1

)
+A = Cτ (.)
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By Lemma 4.14 we get that the curve Cτ is C2+ 1
2 . Using Theorem 22 in [2], and the

Markov property we can extend the solution after the time τ by a solution starting at the
curve Cτ , which is in contradiction with the maximality of τ .

We have the following corollary of Theorem 61 in [2].

Corollary 4.16. Consider (Dt)t≥0 the solution of (3.1). Under Hypothesis 3.7 and the
assumption that D0 has n axes of symmetries, with n ≥ 7, we have a.s. in the Hausdorff
metric,

lim
t→+∞

Dt√
λ(Dt)

= B(0, 1/
√
π)

where B(0, 1/
√
π) is the Euclidean ball centered at 0 of radius 1/

√
π.

Remark 4.17. We conjecture that the above corollary could be extended to many other
situations, with fewer symmetries and a possible change of the sign of the curvature of
the initial curve, as illustrated by the following simulation: https://iecl.univ-lorraine.fr/
wp-content/uploads/2021/06/dualstar.mp4

5 Symmetric convex sets in R2 with star shaped skeletons

Let C be the set of smooth closed simple and strictly convex curves embedded in R2.
Fix n ≥ 2. Let Tn be the set of closed curves symmetric with respect to the vertical

axis, denoted ∆, and invariant by the rotation R2π/n of angle 2π/n (and thus invariant by
the group Gn generated by these two isometries).

Let us describe the set C in terms of its curvature. Let C0 ∈ C, and let C : T → R2

be the parametrization of C0 such that θ is the angle between the tangent line and the
x axis at the point C(θ) i.e a tangent vector is (cos(θ), sin(θ)) ∈ TC(θ)C. Note that this
parametrization is possible since ∂sθ = ρ(θ) > 0 where s is the arc-length parametrization
(due to Frénet equation). From now on, we will take this parametrization for curves in C.

Recall from Lemma 4.1.1 of Gage and Hamilton [6] that a 2π periodic positive function
ρ represents the curvature of a simple closed strictly convex plane curve if and only if
Ic,ρ(2π) = Is,ρ(2π) = 0, where

Ic,ρ(β) B

∫ β

0

cos(θ)

ρ(θ)
dθ, Is,ρ(β) B

∫ β

0

sin(θ)

ρ(θ)
dθ β ∈ T.

More precisely, we have

C ' {ρ ∈ C1(T, ]0,∞)) : Ic,ρ(2π) = Is,ρ(2π) = 0} ×R2

through the reciprocal bijections given by

{θ 7→ C(θ)} 7−→ ({θ 7→ ρ(θ)}, C(0))

{θ 7→ (Ic,ρ(θ), Is,ρ(θ)) +X} ←− [ ({θ 7→ ρ(θ)}, X)

Let us describe the set C ∩ Tn in terms of its curvature. Let C ∈ C ∩ Tn. For any
θ ∈ T, denote Sθ the symmetry with respect to Rθ(∆). Using the symmetry S0 we have
C(−θ) = S0(C(θ)) implying that C(0) = S0(C(0)) and

C(0) = (0,−b) for some b ≥ 0. (5.1)

Using the symmetry Sπ/n = R2π/nS0 (thus belonging to Gn) we have: C(2π/n − θ) =

Sπ/n(C(θ)), yielding for θ = π/n:

C
(π
n

)
= Rπ/n((0,−a)) for some a ≥ 0. (5.2)

EJP 29 (2024), paper 183.
Page 36/43

https://www.imstat.org/ejp

https://iecl.univ-lorraine.fr/wp-content/uploads/2021/06/dualstar.mp4
https://iecl.univ-lorraine.fr/wp-content/uploads/2021/06/dualstar.mp4
https://doi.org/10.1214/24-EJP1245
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The stochastic renormalized curvature flow

The two numbers b, a are positive since (0, 0) ∈ int(C) by convexity. Also C is completely
defined by its restriction to [0, πn ]. Using the invariance by Gn we have the following
property of the associated curvature

ρ
(
θ +

π

n

)
= ρ

(π
n
− θ
)
, θ ∈

[
0,
π

n

]
, and ρ is

2π

n
-periodic. (5.3)

So ∂θρ
(
kπ
n

)
= 0 for all k ∈ {0, . . . , 2n− 1}.

A fundamental object for the study of elements of C ∩ Tn will be the projection to
some well chosen lines. Let C ∈ C ∩ Tn. For θ ∈ (0, πn ], let (0,Π(θ)) be the intersection of
the line Dθ orthogonal to C at the point C(θ) and the vertical axis ∆. Define

Sn :=
{
C ∈ C ∩ Tn, Π is increasing on

[
0,
π

n

]}
. (5.4)

Define also
S↓n :=

{
C ∈ C ∩ Tn, ρ is decreasing on

[
0,
π

n

]}
. (5.5)

Notice that for C ∈ Sn or C ∈ S↓n, since C ∈ C ∩ Tn, it is characterized by its values for
θ ∈ [0, πn ].

Proposition 5.1. Let C ∈ Sn. Then Π(π/n) = 0, and Π has a limit −y0 < 0 as θ ↘ 0, so
it extends to a C1 nonpositive non-increasing function on [0, π/n].

Proof. Since the outward normal at C(θ) is ν(θ) B (sin(θ),− cos(θ)) we have for all
θ ∈ (0, πn )

Π(θ) = −b+

∫ θ

0

sin(β)

ρ(β)
dβ + cot(θ)

∫ θ

0

cos(β)

ρ(β)
dβ = −b+

∫ θ

0

cos(θ − β)

ρ(β) sin(θ)
dβ

with b defined in (5.1), so

lim
θ↘0

Π(θ) = −b+
1

ρ(0)
=: −y0. (5.6)

On the other hand, by symmetry of C, the point (0,Π(π/n)) also belongs to R2π/n(∆), so
Π(π/n) = 0. As a consequence, since we have assumed that Π is non-decreasing, we
have y0 > 0 and Π is negative on [0, π/n).

From now on we let Π(0) := −y0.
Using an integration by part we have for θ ∈ (0, π/n)

Π′(θ) =
1

ρ(θ) sin(θ)
− 1

sin2(θ)

∫ θ

0

cos(β)

ρ(β)
dβ

=
1

ρ(θ) sin(θ)
+

1

sin2(θ)

([
− sin(β)

ρ(β)

]θ
0

−
∫ θ

0

ρ′(β) sin(β)

ρ2(β)
dβ

)

=
−1

sin2(θ)

∫ θ

0

ρ′(β) sin(β)

ρ2(β)
dβ. (5.7)

Note that
Π ∈ C1

((
0,
π

n

])
∩ C0

([
0,
π

n

])
.

Taking into account that limθ↘0 Π′(θ) = 0, due to ρ′(0) = 0, we end up with Π ∈
C1([0, πn ]).

The following result is a direct consequence of Equation (5.7):

Proposition 5.2. We have S↓n ⊂ Sn.
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Consider the mapping r defined by

∀ θ ∈ [0, π/n], r(θ) B ‖C(θ)− (0,Π(θ))‖

Since the curve does not cross the vertical axis before π
n , r ∈ C1((0, πn ]) ∩ C0([0, πn ]).

Hence we have the following parametrization of the curve C, for θ ∈ (0, πn ]

C(θ) = (0,Π(θ)) + r(θ)(sin(θ),− cos(θ)) (5.8)

Lemma 5.3. The map θ 7→ (Π(θ), r(θ)) extends to a C1 map defined on [0, π/n], and
satisfying

(Π(0), r(0)) =

(
−b+

1

ρ(0)
,

1

ρ(0)

)
.

Proof. We are only left to prove the assertion for the map r. Putting the two parametriza-
tions together, since 〈C ′(θ), N(θ)〉 = 0 and 〈C ′(θ), T (θ)〉 = 1

ρ(θ) , from (3.6), we deduce

from (5.8) that for any θ ∈ (0, π/n],

lim
θ↘0

r(θ) =
1

ρ(0)
,{

−Π′(θ) cos(θ) + r′(θ) = 0

Π′(θ) sin(θ) + r(θ) = 1
ρ(θ) ,

(5.9)

i.e 
(

Π(θ)

r(θ)

)′
+

(
0 1

sin(θ)

1 cot θ

)(
0

r(θ)

)
=

(
0 1

sin(θ)

1 cot θ

)(
0
1
ρ(θ)

)
(

Π
(
π
n

)
r
(
π
n

)) =

(
0

a

) (5.10)

where a is defined in (5.2). Using the first equation of (5.9), we get that limθ↘0 r
′(θ) = 0,

so r ∈ C1([0, πn ]).

Proposition 5.4. Let C be a curve in C ∩ Tn.

1. If Π is non-decreasing on [0, π/n] (i.e. if C ∈ Sn), then the skeleton of C is
Gn({0} × [−y0, 0]).

2. If the skeleton of C is Gn({0} × [−y, 0]) then Π is non-decreasing.

Proof. (1) First assume that C ∈ Sn. Denote by S the skeleton of C.
a) First we prove that Gn({0} × [−y0, 0]) ⊂ S. For this it is sufficient to prove that for

all θ ∈ [0, π/n], the point (0,Π(θ)) belongs to S.
We only need to prove it for θ ∈ (0, π/n) since the skeleton is closed. For the same

reason we can also assume that Π′(θ) > 0. So let θ ∈ (0, π/n) with Π′(θ) > 0. The
closed disk B̄((0,Π(θ)), r(θ)) centered at (0,Π(θ)) and with radius r(θ) meets C at least
at the two points C(θ) and C(−θ). To prove that (0,Π(θ)) ∈ S we need to prove that it is
inside D̄. This will be done in two steps.

• We prove that the set{
(0,Π(θ)) + r(cosϕ, sinϕ)| 0 ≤ r ≤ r(θ), −π

2
− π

n
≤ ϕ ≤ −π

2
+
π

n

}
is included in D̄.

The proof is by contradiction, assume there exists θ′ ∈ [0, θ) such that ‖C(θ′) −
(0,Π(θ))‖ = r(θ). Consider the closed disk O centred at (0,Π(θ)) of radius r(θ),
passing through C(θ) and C(θ′), see Figure 1.
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Π(θ)

Π(α)

Π(θ′)
C

O

C(θ)

C(α)

C(θ′)

qα

r(θ)

r(θ)

Figure 1:

On one hand, by (5.9) we have r(θ) < 1
ρ(θ) , so for α < θ and α close to θ, the points

C(α) are outside the disk O. On the other hand, since Π(α) < Π(θ), there exists
qα ∈ Dα ∩ ((0,Π(θ)), C(θ′)]. As we can see in the proof of the point b) below, C(α)

is the nearest point of qα in C. We have ‖qα − C(α)‖ ≤ ‖qα − C(θ′)‖. Hence

‖C(α)− (0,Π(θ))‖ < ‖qα − C(α)‖+ ‖qα − (0,Π(θ))‖
≤ ‖qα − C(θ′)‖+ ‖qα − (0,Π(θ))‖ = r(θ)

and we get a contradiction.

A similar contradiction is obtained if we assume there exists θ′ ∈ (θ, π/n], with
‖C(θ′)− (0,Π(θ))‖ = r(θ).

We get the wanted inclusion.

• We easily check that the convex hull H(θ) of the n pieces of disks

Gn

({
(0,Π(θ)) + r(cosϕ, sinϕ)| 0 ≤ r ≤ r(θ), −π

2
− π

n
≤ ϕ ≤ −π

2
+
π

n

})
contains B̄((0,Π(θ)), r(θ)) (check for instance that the curvature of its boundary is
everywhere smaller than 1/r(θ)). But H(θ) ⊂ D̄ since D̄ is left invariant by Gn and
convex. As a conclusion, B̄((0,Π(θ)), r(θ)) ⊂ D̄, so (0,Π(θ)) ∈ S.

b) Finally we prove that S ⊂ Gn({0} × [−y0, 0]). For θ ∈ [0, π/n] and r ∈ (0, r(θ)),
consider the point P = (0,Π(θ)) + rν(θ). We have to prove that it does not belong to S.
Consider θ′ ∈ [0, 2π) such that C(θ′) minimizes the distance between P and C. First note
that we must have θ′ ∈ [0, π/n], otherwise the minimizing segment would cross an axis
of symmetry, allowing to construct a shorter segment from P to C. Next let us show
that necessarily θ′ = θ. Indeed, otherwise, the lines Dθ and Dθ′ would then intersect
at P . Assume for instance that θ < θ′, then we would get that Π(θ) > Π(θ′), which is
forbidden. Finally, since d(P,C(θ)) < r(θ) ≤ 1/ρ(θ), the distance to C is not singular at
P and P cannot belong to S. Using all symmetries, this proves that the complementary
of Gn({0} × [−y0, 0]) in D̄ does not meet the cutlocus S of distance to C.

(2) Assume that the skeleton of C is Gn({0} × [−y0, 0]). Then for all θ ∈ (0, π/n), we
have B((0,Π(θ)), r(θ)) ⊂ D. This implies that r(θ) ≤ 1/ρ(θ). Then by (5.9) we get

Π′(θ) =

1
ρ(θ) − r(θ)

sin(θ)
≥ 0,

so Π is non-decreasing.
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Proposition 5.5. The set of curve S↓n is stable under the stochastic curvature flow
namely (3.10). It is also stable under the usual deterministic curvature flow.

Proof. Let C0 be a curve in S↓n, and ρ0 the associated curvature function, by hypothesis
∂ρ0(θ) ≤ 0 for θ ∈ [0, πn ]. Let Ct be the solution of the stochastic curvature started at C0,
namely the solution of:{

dtC(t, u) = (−ρt(C(t, u)))νC(t,u)dt+
√

2νC(t,u)dBt
C(0, u) = C0(u).

Using the parametrization by the angle θ of the tangent vector and the horizontal axis as
above we have, denoting ρ(t, θ) B ρt(θ),{

dtρ(t, θ) = ρ2(t, θ)(∂2θρ(t, θ))dt+ ρ2(t, θ)
(
3ρ(t, θ)dt−

√
2dBt

)
,

ρ(0, ·) = ρ0.

(see (3.7) with h replaced by 0).
Using Lemma 3.10 we get that ρt > 0 for t < τ where τ is any lifetime of the stochastic

curvature flow. Using Itô formula, we have for 0 ≤ t < τ

d
1

ρt(θ)
= (−∂2θρt(θ)− ρt(θ))dt+

√
2dBt, (5.11)

Computations similar to those of the proof of Theorem 3.9 show that Ic,ρt(2π) =

Is,ρt(2π) = 0. Recall S0 is the reflection with respect to the vertical axis. Using the
uniqueness of the stochastic curvature flow, we have

S0(Ct(C0)) = Ct(S0(C0)) = Ct(C0).

Doing the same thing with the rotation R2π/n, it follows that ρt satisfies Equation
(5.3). To get the result we only have to show that ∂θρt(θ) ≤ 0 for 0 ≤ t < τ and θ ∈ (0, πn ).

Differentiating (5.11) in θ we get:

d

(
∂θρt(θ)

ρ2t (θ)

)
= ∂2θ (∂θρt(θ))dt+ ∂θρt(θ)dt.

Let ψt(θ) = ∂θρt(θ)
ρ2t (θ)

, then ψ satisfies the following partial differential equation with
stochastic coefficient and with lifetime τ (see Lemma 3.10):

∂tψt(θ) = ∂2θ (ψt(θ)ρ
2
t (θ)) + ψt(θ)ρ

2
t (θ)

= ρ2t (θ)∂
2
θψt(θ) + 4ρt(θ)(∂θψt(θ))(∂θρt(θ)) + ψt(θ)

(
∂2θρ

2
t (θ) + ρ2t (θ)

)
with initial condition ψ0(θ) = ∂θρ0(θ)

ρ20θ)
. By hypothesis ψ0(θ) ≤ 0. Note also by the

conservation of the symmetry that we have the boundary conditions ψt(0) = ψt(
π
n ) = 0.

To show that ∂θρt(θ) ≤ 0 for all t < τ we will argue by contradiction. Suppose that there
exists t∗ < τ and θ ∈ [0, πn ] such that ∂θρt∗(θ) > 0 so ψt∗(θ) > 0. Let

µ = −2
(
‖∂2θρ2. (.)‖[0,t∗]×[0,π2 ] + ‖ρ2. (.)‖[0,t∗]×[0,π2 ]

)
> −∞,

and Wt(θ) = eµtψt(θ), which satisfies the following equation:

∂tWt(θ)

= ρ2t (θ)∂
2
θWt(θ) + 4ρt(θ)(∂θρt(θ))(∂θWt(θ)) +Wt(θ)(∂

2
θρ

2
t (θ) + ρ2t (θ) + µ).

(5.12)
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Define b B supθ∈[0,πn ]Wt∗(θ) > 0,

t0 B inf

{
t ≤ t∗, s.t. sup

θ∈[0,πn ]

Wt(θ) = b

}

and let θ∗ be such that Wt0(θ∗) = b. From boundary conditions we have θ∗ ∈]0, πn [. At
(t0, θ

∗) we have

∂tWt(θ
∗)|t0 ≥ 0, ∂2θWt0(θ)|θ∗ ≤ 0, ∂θWt0(θ)|θ∗ = 0.

Using equation (5.12) we get the contradiction, since

0 ≤ ∂tWt(θ
∗)|t0 ≤ b

µ

2
< 0.

With a similar proof, we get the second part, namely the conservation of the class S↓n
under the usual deterministic curvature flow.

Corollary 5.6. The class of domain S↓n is also stable under the normalized stochastic
curvature flow (3.1).

Proof. Since the solutions of (3.1) are obtained by a change of probability from the
solutions of the stochastic curvature flow, the state space does not change, and the result
follows from Proposition 5.5.

6 A new isoperimetric estimate

Let us end our consideration of Sn by observing that its elements are quite round
when n2 is much larger that the length of their skeleton:

Proposition 6.1. For any curve C in the set Sn defined in (5.4) (and in particular with
skeleton Gn ({0} × [−L(C)/n, 0])) we have

π2(rout − rint)2 ≤ σ2(C)− 4π vol(D)

≤ 2π2

n2
L(C)2

(
1−

sin
(
2π
n

)
2π
n

)

≤ 4π4

3n4
L(C)2,

where L(C) is the length of the skeleton of C.

Proof. The lower bound on σ2(C)− 4π vol(D) is just Bonnesen inequality (2.5). For the
upper bound, let ρ be the curvature function associated to C, and p(θ) = 〈C(θ), ν(θ)〉 the
support function. Using computation in (5.9) we have

p(θ) = −Π(θ) cos(θ) + r(θ),

p′(θ) = Π(θ) sin(θ)

p′′(θ) + p(θ) =
1

ρ(θ)
.

By symmetry of C we have the following Fourier series of p:

p(θ) = a0 +
∑
k≥1

ak cos(knθ).
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Also vol(D) = 1
2

∫ 2π

0
p(θ)(p(θ)+p′′(θ))dθ = πa20+π

2

∑
k≥2 a

2
k(1−n2k2) and a0 = 1

2π

∫
p(θ)dθ =

1
2πσ(C). Hence

σ2(C)− 4π vol(D) = 2π2
∑
k≥1

a2k(n2k2 − 1)

≤ 2π

∫ 2π

0

p′(θ)2dθ

= 4nπ

∫ π/n

0

Π2(θ) sin2(θ)dθ

≤ 4nπ

(
L(C)

n

)2 ∫ π/n

0

sin2(θ)dθ

=
2π2

n2
L(C)2

(
1−

sin
(
2π
n

)
2π
n

)

≤ 4π4

3n4
L(C)2

since 1− sin(x)/x ≤ x2/6 for any x ∈ R (with the usual convention sin(0)/0 = 1).

a)

b)

t = 0 t = Tc

Figure 2:
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