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In this paper we state the variational principle for the weighted porous media equation.
It extends V.I. Arnold’s approach to the description of Euler flows as a geodesics on some
manifold, i.e. as critical points of some energy functional.
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r é s u m é

Dans cette article, on établit un principe variationnel pour l’équation des milieux poreux.
On généralise ainsi la description de V.I. Arnold des flots d’Euler par des géodésiques vues
comme des points critiques d’une fonctionnelle d’énergie.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In the beginning of the 18th century, Leibniz, Maupertuis, and Euler claimed that all physical phenomenons might
be obtained from the Least Action Principle, and since Lagrange and Hamilton it was well understood for the classical
mechanics. However, it was only in 1966 that V.I. Arnold in [2] achieved it for the fluid dynamics. To do this, he remarked
that the group of volume-preserving diffeomorphisms Dμ(M) of a manifold M (μ being a given volume element on M) is
the appropriate configuration space for the hydrodynamics of an incompressible fluid. In this framework, the solutions to
the Euler equation become geodesic curves with respect to the right invariant metric on Dμ , which at g ∈Dμ is given by
(X, Y ) = ∫

M〈X(x), Y (x)〉x dμ(x), for X, Y ∈ T gDμ , 〈·, ·〉x is a metric on TxM , and μ is the volume element on M induced by
the metric. The relation between geodesics on Dμ and the Euler equation was further studied in [7] and shortly may be
expressed in the following way. Let t �→ gt ∈ Dμ be a geodesic with respect to the right invariant metric (·, ·), vt = d

dt gt

be the corresponding velocity, and ut = vt ◦ g−1
t be a time-dependent vector field on M . Then ut is a solution to the

Euler equation for a perfect fluid. In particular, the map t �→ gt defined on some time interval [0, T ] minimizes the energy
functional:

S(g) = 1

2

T∫
0

(∫
M

∥∥∥∥dgt

dt

∥∥∥∥
2

dμ(x)

)
dt

and the Euler–Lagrange equations for this functional are precisely the Euler equation for perfect fluid.
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Developing this approach in [1,3], by means of stochastic methods, it was shown that an incompressible stochastic flow
g(u) with generator 1

2 � + ut is critical for some energy functional if and only if u solves the Navier–Stokes equation for
a viscous incompressible fluid. See also [4] and [8] for other stochastic characterizations of solutions to the Navier–Stokes
equation. The purpose of this article is to show that the weighted porous media equation [6,5], which generalizes the
standard porous media equation,

∂u

∂t
=

(
−u · ∇ + 1

2
�

)(‖u‖q−2u
) + ∇ P (1)

may be also obtained in the framework of the Least Action Principle for a specially chosen energy functional. In the partic-
ular case of q = 2, this yields the Navier–Stokes equation.

2. Operator formulation of the variational principle

For simplicity, we work on the torus T of dimension N . From now on, when integrating in the torus, dx will stand for
the normalized Lebesgue measure.

Definition 2.1. For some smooth divergence-free time-dependent vector field (t, x) �→ vt(x) ∈ TxT, we define the flow of v̇t :
et(v) ∈Dμ(T) as a solution to the ordinary differential equation:

det(v)

dt
= v̇t

(
et(v)

)
, e0(v) = IT. (2)

Let us remark that in some sense et(v) is a perturbation of identity map in space Dμ(T). The solvability of this equation
easily follows from the compactness of T and the smoothness of v .

Consider a time-dependent divergence-free vector field u on [0, T ] × T. So u takes its values in the tangent bundle
of T which can at every point be identified with RN . “Divergence-free” means that

∑N
j=1 ∂ ju j ≡ 0. Define the operator

L(ut) : C∞(T,RN ) → C∞(T,RN) by L(ut) f = 1
2 � f + ut · ∇ f .

Definition 2.2. The energy functional is defined for q > 1 as

Eq(u, v) = 1

q

T∫
0

∫
T

∥∥[(
∂t + L(ut)

)
et(v)

](
e−1

t (v)(x)
)∥∥q

dx dt, (3)

where e−1
t (v) is the inverse map of the diffeomorphism et(v) : T → T.

Definition 2.3. We say that u is a critical point of Eq if for all divergence-free time-dependent vector field v such that
v0 = 0 and v T = 0, d

dε |ε=0Eq(u, εv) = 0.

Theorem 1. A divergence-free time-dependent vector field u is a critical point of Eq, q � 2, if and only if there exists a function P (x)
such that (1) is satisfied.

Proof. For et(εv)∗(ut)(x) = Te−1
t (εv)(x)et(εv)(ut(e−1

t (εv)(x))), we compute:

[(
∂t + L(ut)

)
et(εv)

](
e−1

t (εv)(x)
) = ε v̇

(
t, e−1

t (εv)(x)
) + et(εv)∗(ut)(x) + 1

2

(
�et(εv)

)(
e−1

t (εv)(x)
)
,

where T yet(εv)(·) is the tangent map of et(εv) at point y. Therefore, we have:

d

dε

∣∣∣∣
ε=0

[(
∂t + L(ut)

)
et(εv)

](
e−1

t (εv)(x)
) = v̇t(x) + [ut, vt](x) + 1

2
�vt(x).

Since ut = (∂t + L(ut))(I), for I = et(0) : T → T the identity map, d
dε |ε=0Eq(u, εv) equals:

T∫
0

∫
T

∥∥(
∂t + L(ut)

)
(I)

∥∥q−2
〈

v̇t + [ut, vt] + 1

2
�vt, ut

〉
dx dt =

T∫
0

∫
T

‖ut‖q−2
〈

v̇t + [ut, vt] + 1

2
�vt, ut

〉
dx dt.

On the other hand,

0 =
∫
T

‖uT ‖q−2〈uT , v T 〉dx =
T∫

0

∫
T

{‖ut‖q−2〈ut, v̇t〉 + 〈‖ut‖q−4(q − 2)〈u̇t, ut〉ut + ‖ut‖q−2u̇t, vt
〉}

dx dt.
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Therefore, writing u = ut and v = vt ,

0 = d

dε

∣∣∣∣
ε=0

Eq(u, εv) +
T∫

0

∫
T

{
‖u‖q−2

(
〈u̇, v〉 − 〈[u, v], u

〉 − 〈�v, u〉
2

)
+ (q − 2)‖u‖q−4〈u̇, u〉〈u, v〉

}
dx dt.

Due to equalities
∫

T ‖u‖q−2〈∇v u, u〉dx = 1
q

∫
T〈∇‖u‖q, v〉dx = − 1

q

∫
T ‖u‖q div v dx = 0 for div v = 0, we have, using [u, v] =

∇u v − ∇v u,

− d

dε

∣∣∣∣
ε=0

Eq
(
u, (εv)

) =
T∫

0

∫
T

{
−‖u‖q−2〈∇u v, u〉 − 1

2

〈
v,�

(‖u‖q−2u
)〉

+ (q − 2)‖u‖q−4〈u̇, u〉〈u, v〉 + ‖u‖q−2〈u̇, v〉
}

dx dt

=
T∫

0

∫
T

〈
∇u

(‖u‖q−2u
) − 1

2
�

(‖u‖q−2u
) + (q − 2)‖u‖q−4〈u̇, u〉u + ‖u‖q−2u̇, v

〉
dx dt

=
T∫

0

∫
T

〈(
∂t + u · ∇ − 1

2
�

)
‖u‖q−2u, v

〉
dx dt

(notice that in the second equality we used the fact that
∫

T u(〈v,‖u‖q−2〉)dx = ∫
T div u〈v,‖u‖q−2〉dx = 0). This equality is

true for all time-dependent divergence-free vector field v , so it gives the equivalence between u critical point of Eq and
solution to equation (1). �
3. Stochastic variational principle for incompressible diffusion flows

We define a diffusion flow gt(x) on T, x ∈ T, t ∈ [0, T ], T > 0 as a stochastic process, which satisfies the Itô stochastic
equation:

dgt(x) = σ
(

gt(x)
)

dWt + ut
(

gt(x)
)

dt, g0(x) = x (4)

where ut is a time-dependent vector field on T, σ ∈ Γ (Hom(H, T T)) is a C2-map satisfying, for all x ∈ T, (σσ ∗)(x) = I TxT ,
Wt is a cylindric Brownian motion in Hilbert space H.

Let us remark that a diffusion flow is a diffusion process {gt(u)(x)}t�0 with generator L(ut) = 1
2 � + ut . We define an

incompressible diffusion flow gt(u)(x)(ω) as a diffusion flow such that a.s. ω for all t � 0, the map x �→ gt(u)(x)(ω) is a
volume-preserving diffeomorphism of T. Examples of incompressible diffusion flows can be found in [3]. Notice that a
necessary condition is div ut = 0.

For the diffusion flow gt (4), we define the drift as the time derivative of the finite variation part by Dgt(ω) := ut(gt ,ω),
and the energy functional by:

Eq(g) := 1

q
E

[ T∫
0

∫
T

∥∥Dgt(x)(ω)
∥∥q

dx dt

]
, q > 1. (5)

We make a perturbation by letting gv
t (u) = et(v) ◦ gt(u), where v is a smooth divergence-free time-dependent vector

field and et(v) is defined in (2).

Definition 3.1. We say that gt(u) is a critical point for the energy functional Eq if for all smooth time-dependent divergence-
free vector field v on T T such that v0 = v T = 0, d

dε |ε=0Eq(gεv(u)) = 0.

Theorem 2. Let q � 2. An incompressible diffusion flow gt(u) with generator L(ut) is a critical point for the energy functional Eq if
and only if there exists a function P (x) such that ut satisfies equation (1).

Proof. The proof of this theorem is a consequence of Theorem 1 and the Itô formula. �
Acknowledgements

The research of A. Antoniouk was supported by grant No. 01-01-12 of the National Academy of Sciences of Ukraine
(under the joint Ukrainian–Russian project of NAS of Ukraine and Russian Foundation of Basic Research).

This research was also supported by the French ANR’s Grant No. ANR-09-BLAN-0364-01 ProbaGeo.



Author's personal copy

34 A. Antoniouk, M. Arnaudon / C. R. Acad. Sci. Paris, Ser. I 352 (2014) 31–34

References

[1] M. Arnaudon, A.B. Cruzeiro, Lagrangian Navier–Stokes diffusions on manifolds: variational principle and stability, Bull. Sci. Math. 136 (8) (2012) 857–881.
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