NasCar
Loading...
Searching...
No Matches
Bibliography
[1]

P. Angot, C.H. Bruneau, and P. Fabrie. A penalization method to take into account obstacles in a incompressible flow. Num. Math., 81(4):497–520, 1999.

[2]

Tariq D. Aslam. A partial differential equation approach to multidimensional extrapolation. Journal of Computational Physics, 193(1):349–355, 2004.

[3]

Fang Bai and Adrien Bartoli. Procrustes analysis with deformations: A closed-form solution by eigenvalue decomposition. International Journal of Computer Vision, 130(2):567–593, jan 2022.

[4]

M. Bergmann and A. Iollo. Modeling and simulation of fish-like swimming. Journal of Computational Physics, 230(2):329 – 348, 2011.

[5]

M. Bergmann and A. Iollo. Numerical simulation of horizontal-axis wind turbine (hawt). The Seventh International Conference on Computational Fluid Dynamics, July 9-13 2012. Mauna Lani Bay, Hawai, USA.

[6]

Michel Bergmann and Angelo Iollo. Bioinspired swimming simulations. Journal of Computational Physics, 323:310 – 321, 2016.

[7]

M. Bergmann, J. Hovnanian, and A. Iollo. An accurate cartesian method for incompressible flows with moving boundaries. Communications in Computational Physics, 15(5):1266–1290, 2014.

[8]

M Bergmann, A Iollo, and R Mittal. Effect of caudal fin flexibility on the propulsive efficiency of a fish-like swimmer. Bioinspiration & Biomimetics, 9(4):046001, 2014.

[9]

M. Bergmann, G. Bracco, F. Gallizio, E. Giorcelli, A. Iollo, G. Mattiazzo, and M. Ponzetta. A two-way coupling cfd method to simulate the dynamics of a wave energy converter. In OCEANS 2015 - Genova, pages 1–6, May 2015.

[10]

Michel Bergmann. Numerical modeling of a self-propelled dolphin jump out of water. Bioinspiration & Biomimetics, 17(6):065010, oct 2022.

[11]

J.U Brackbill, D.B Kothe, and C Zemach. A continuum method for modeling surface tension. Journal of Computational Physics, 100(2):335 – 354, 1992.

[12]

A. Chéné, C. Min, and F. Gibou. Second-Order Accurate Computation of Curvatures in a Level Set Framework Using Novel High-Order Reinitialization Schemes. Journal of Scientific Computing, 35(2-3):114–131, 2007.

[13]

A.J. Chorin. Numerical solution of the Navier-Stokes equations. Math. Comp., 22:745–762, 1968.

[14]

B. Lambert, L. Weynans, and M. Bergmann. Local lubrication model for spherical particles within incompressible navier-stokes flows. Phys. Rev. E, 97:033313, Mar 2018.

[15]

B. Lambert, L. Weynans, and M. Bergmann. Methodology for Numerical Simulations of Ellipsoidal Particle-Laden Flows. International Journal for Numerical Methods in Fluids, 2020.

[16]

F. Luddens, M. Bergmann, and L. Weynans. Enablers for high-order level set methods in fluid mechanics. International Journal for Numerical Methods in Fluids, 79:654–675, December 2015.

[17]

Thomas Milcent and Emmanuel Maitre. Eulerian model of immersed elastic surfaces with full membrane elasticity. Communications in Mathematical Sciences, 14, 10 2014.

[18]

F. Noca. On the evaluation of time-dependent fluid-dynamic forces on bluff bodies. PhD thesis, California Institute of Technology, 1997.

[19]

S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations. J. Comput. Phys., 79(12), 1988.

[20]

G. Russo and P. Smereka. A Remark on Computing Distance Functions. Journal of Computational Physics, 163(1):51–67, 2000.

[21]

M. Sussman, P. Smereka, and S. Osher. A level set approach for computing solutions to incompressible two-phase flow. Journal of Computational Physics, 114(1):146 – 159, 1994.

[22]

Hiroto Tanaka, Gen Li, Yusuke Uchida, Masashi Nakamura, Teruaki Ikeda, and Hao Liu. Measurement of time-varying kinematics of a dolphin in burst accelerating swimming. PLOS ONE, 14(1):1–25, 01 2019.

[23]

R. Temam. Sur l'approximation de la solution des equations de navier-stokes par la methode des pas fractionnaires ii. Archiv. Rat. Mech. Anal., 32:377–385, 1969.