ON THE ARITHMETIC AND GEOMETRY OF SPACES L, ;i

MICHEL MATIGNON, GUILLAUME PAGOT, AND DANIELE TURCHETTI
March 27, 2025

ABSTRACT. In this paper, we prove several new results on certain Fp-vector spaces of logarithmic
differential forms in characteristic p called spaces Lyp,+1,n. Expanding the previous work by the
first two authors, we prove positive and negative results for the existence of spaces Ly, +1,» in many
situations, as well as a classification of all spaces Li2,2 and Lis,2 for p = 3. The novel tools used are
Moore determinants and computational algebra.

1. INTRODUCTION

Algebraic geometry in positive characteristic is a rich subject that has been intensively studied
ever since the foundations of algebraic geometry were rigorously established.! As a result, a plethora
of positive characteristic methods have been developed. These mathematical tools not only unlock
novel insights into the geometry of algebraic varieties but also have surprising applications to
other disciplines. For example, they form the foundations for the development of advanced coding
techniques and cryptographic protocols used nowadays. Moreover, the richness of algebraic geometry
in positive characteristic has been also exploited to prove results in characteristic zero. Roughly
speaking, this is made possible by the use of two complementary procedures: lifting to characteristic 0,
that assigns an object in characteristic zero with a given object in positive characteristic, and reduction
modulo p, that assigns an object in positive characteristic with a given object in characteristic zero.

In this paper, we focus on a particular phenomenon in positive characteristic, namely the existence
of the so-called spaces Ly 41.n.

Definition. Given k an algebraically closed field of characteristic p > 0 and strictly positive integers
n,m € N, a set € of differential forms on ]P’/,l€ = kUoo is called a space Ly,y1, if it satisfies the
following conditions

e The set () is a n-dimensional vector space over F;
e Every w € Q — {0} is logarithmic;
e Every w € Q — {0} has a unique zero at oo of order m — 1.

Classically, the motivation for studying spaces Ly, 41, arose from the following lifting problem:
let G C Auty k[z] be a finite order subgroup of k-automorphisms of the ring k[z] of formal power
series over k. It is said that G lifts to characteristic zero if there exists a finite extension R of the
ring of Witt vectors W (k) with uniformizer 7 and a commutative diagram

AutrR[Z]
(1.1) j l
IMost notably, studying varieties over finite fields was the main motivation that prompted Weil to write his seminal

book Foundations of Algebraic Geometry [1].
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where i is the inclusion and r is the reduction modulo w. The local lifting problem for curves is the
question of determining which embeddings G C Auty k[z] admit a lifting. This problem has now a
long tradition and can be studied from many angles: the interested reader is referred to the surveys
[2] and [3] for a thorough discussion. In this context, the spaces Ly, 41, arise in the elementary
abelian case, that is, when G = (Z/pZ)™. This connection is now well established, thanks to the
results obtained in [4], [5] (for n = 1), [6] and [7] (for n > 1). Thanks to these investigations, we
know that the existence of a space Ly, 414, for a given triple (p, n,m) is equivalent to the existence of
a lifting of (Z/pZ)™ with equidistant branch locus and m + 1 fixed points.> We also know that m + 1
is necessarily of the form A\p"~! for some A > 0, a fact that leads naturally to the following question

Question. For which triples (p,n, \) does there exist a space Lyyn-1,,7

In this paper we make progress on this largely open question, as well as introduce tools that can
be used to see it in a new light. Let us recall what was known prior to this paper: if n =2 and p = 2
there are spaces Loy o for every A > 0 (|7, Théoréme 2.2.4]). If n =2 and p > 3 then there are no
spaces Ly o and no spaces Lsp 2, while spaces Loy 2 exist if, and only if p = 3 (|7, Théoréme 2.2.5]).
If n =2 and A > 4 the only examples of spaces Ly, o that were known before this paper have the
special property that A is a multiple of p — 1 and obey a strict geometric constraint. Similarly, in
the case n > 3 the known examples (see Section 5.1) satisfy p — 1|\ and are of a very special nature.

Our contributions to the question above solve the problem of existence of spaces Ly,n-1,, in three
distinct cases:

e The case n =2, p=3 and A =4,5;
e The case n =2 and p > 3);
e The case n > 2 and p = 2.

More precisely, we provide a complete classification of spaces Ly, for p = 3 and A = 4,5, we show
that for p > 3\ there are no spaces Ly, 2. Moreover, we prove new results on the existence of spaces
Lypn-1,, for n > 3 that, when applied to the case p = 2, lead to construction of large classes of
spaces Lygn-1,, when A is either even or congruent to 1 modulo 2" — 2. In proving the results above,
we make use of techniques that have not been exploited in this context before, and that we believe to
be of independent interest, such as computational commutative algebra, étale pullbacks, and Moore
determinants. The first main result presented in the paper is the case n = 2 and p > 3.

Theorem (cf. Theorem 3.7). There are no spaces Lyp o when p > 3\.

The proof of this theorem relies on a result of Pagot?, that shows how the existence of  a space
Lypo for fixed X and p is equivalent to the existence of two polynomials Q1,Q2 € k[X] of degree
A satisfying three conditions. The first condition is that @1 and Q2 are Fj-linearly independent.
The second condition is that the set of poles of Q coincides with the set of zeroes of the polynomial
Q1Q%5 — QVQ2. The third condition can be expressed as a multivariate polynomial system, whose
indeterminates are the coefficients of ()1 and Q2. This system is in general very complicated, but a
subsystem of necessary conditions can be extracted thanks to the fact that the nonzero elements of
Q) are logarithmic and hence their poles have residues in . In the context of our theorem, the
necessary conditions can be expressed in terms of the coefficients of 1 and Q2 and become tractable
enough to get a contradiction under the assumptions of the theorem.

This result is a big progress towards the classification of spaces Ly, »: thanks to it, the existence of
a space Ly, o for a fixed A needs to be checked only at a finite number of primes, which in principle
can be done by solving the polynomial system in the coefficients of ()1 and Q)2 given by Proposition
3.1. The use of computational tools, such as one of the many algorithms to compute Grobner bases,

2See [8, Théoréme 11] for the construction of a lifting with equidistant branch locus given a space Lp41,n.-
3Proposition 3.1, first appearing as [8, Proposition 7]
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is essential to perform this task, but not enough to conclude. In fact, the resulting computations are
of a high complexity and a straightforward implementation does not yield a solution in a reasonable
time when A > 3. Hence, some simplifications are needed to reduce the number of variables in the
polynomial system under consideration. A first simplification is made possible by the fact that a
space Ly,n-1, can be transformed by applying to IP’}C a homography that fixes co. The resulting
space is again a space Ly,n—1 , that is said to be equivalent to the first. Another useful construction
is obtained by considering the action of the relative Frobenius morphism on a space Ly,n-1,, (see
Section 2.3). The resulting space is again a space L apn—1.n that is said to be Frobenius equivalent to
the first.

When p = 3 and n = 2, by performing the above simplifications and applying considerations of
symmetry under change of variables, we can find enough relations between the coefficients of (91 and
()2 to make the polynomial system treatable in the cases A =4 and A = 5. In this way, we not only
find instances of, but we can also classify all possible spaces Li22 and L5 2.

Theorem (cf. Theorem 6.2). Let p =3, n =2, and A = 4. Up to equivalence, a pair (Q1,Q2) of
polynomials satisfies the conditions of Proposition 3.1 (and hence determines a space Li22) if, and
only if, it is of the form
Qi =a(X*+ (a* —a®> - 1)X? +d®
Q=X*—(a*+a®> - 1)X? +1,
for some a € k such that a® ¢ Fs.

Theorem (cf. Theorem 6.7). Let p = 3, n = 2, and A\ = 5. Up to equivalence and Frobenius
equivalence, a pair (Q1,Q2) of polynomials satisfies the conditions of Proposition 3.1 (and hence
determines a space L1s2) if, and only if, it is either of the form

Q=" —p-DX°+X°— (p* = p—1)X? - pX
Qo= —pX°+ (WP +p— )X+ (P + ) X* + (> = )X — (1 + p+ 1),
where i € Foy is such that u®> — 41 =0, or of the form

Qi =a(X° - X?*-X?>4+aX —(a+1))
Q= (—a—-1)(X°—(a+1)X3+(a+1)X*+ X +a),
where a € Fg is such that a®> +1 = 0.

In particular, we have infinite equivalence classes of spaces L1 2 and only finitely many equivalence
classes of spaces L152. Finding a geometric explanation of this phenomenon would be very interesting.

In the case p > 3 the above simplifications are not enough to conclude. However, a finer strategy
can be employed to obtain a classification of all spaces Ly, o for all prime p’s, even though it requires
substantial more work. In fact, in this case Theorem 3.7 allows us to consider only the cases p =3
(discussed above) and p = 5,7, 11. In these cases, we can use a combination of elementary arguments
to find previously undiscovered relations between the zeroes of Q1Q% — Q]Q2. In almost all cases
(i.e. except when @1 and Q2 are of a very specific form) these relations take the form of vanishing of
certain Schur polynomials, that can be turned, using Jacobi-Trudi relations, into the vanishing of
certain Toeplitz determinants involving symmetric polynomials in some of the zeroes. These new
relations are easier to work out and show that, for p = 5 all the spaces Log 2 are of a previously
known form, and for p = 7,11 there are no spaces Lyp2. A discussion of the remaining outstanding
case necessitates additional arguments and the computation of Grobner bases, but can be achieved
and confirms that there are no spaces Lyp 2 other than the previously known cases in general. The
write up of this result is in preparation.



We then turn our attention to the case of spaces Ly,n-1,. The crucial new tool that we use in
this setting is the Moore determinant A, (a) of a n-uple of elements a := (aq,...,a,) in a field of
characteristic p. This is defined as the determinant of the associated Moore matrix, namely we have

al a9 PN (479
@ ...
An(@) =
-1 n—1 n—1
P
Cll CLQ .o An,

The Moore determinant is a basic object in arithmetic in characteristic p, due to its relationship with
the theory of additive polynomials (cf. [9, Chapter 1]). In this paper, we apply a mix of classical
and recent results (obtained in [10]) on Moore determinants to describe effectively the differential
forms belonging to a space Lypn-1 ,. Our exposition of Moore determinants is self-interested and
self-contained: we put all and only the results we need in the dedicated Appendix A, and include
there further, more complete, references for the interested reader.

Moore determinants allow us to prove two main new results about spaces Lypn-1,. These take
the form of a necessary and sufficient criterion for the existence of spaces Lyyn-1 ,,, which for n = 2
boils down to Proposition 3.1.

Theorem (cf. Theorems 4.7 and 4.8). Let n > 2 and let Q be a n-dimensional Fp,-vector space of
differential forms on Py, generated by elements wy, ... ,wy. Then Q is a space Lypn-1,5, if, and only
if, the following conditions are met:

(i) There exists a non-zero logarithmic form w € .
(ii) There exist a n-uple of polynomials Q := (Q1,...,Qn) € k[X]" such that

e The polynomials Q; are of degree A for everyi=1,...,n.
e The leading coefficients qi,...,qn of Q1,...,Qyn satisfy Ay(qi,...,q,) # 0.
o We have
1Y IAL (O
o — (D™ Ana(@Qi)
An(Q)
for everyi=1,...,n, where @ denotes the n — 1-uple obtained by removing Q; from Q.

This condition simplifies our task of classifying spaces Ly,n-1,, insofar as it gives us a practical
recipe to use the polynomials @);’s to build a basis of (2. In Section 4.2 we develop a constructive
strategy to build suitable @;’s, that is fruitfully applied in the case p = 2 to create a large class of
new examples. Our main result in this sense is the following:

Theorem (cf. Theorem 4.26 and Corollary 4.28). Let \ be either even or A =1 mod (2" — 2).
Then there exist infinitely many equivalence classes of spaces Lygn—1 .

Then, we turn our attention to the examples of spaces Ly,n-1, for n > 3 that were known in the
literature prior to the present paper. We remark that all these spaces share a very special structure:
each of them is an étale pullback of a space L, _1)yn-1, whose set of poles is the set of nonzero
elements in a n-dimensional Fp-subvector space of k. We call standard any space L,_1),n-1, whose
poles satisfy the property above, and we apply Theorems 4.7 and 4.8 in the special case of standard
spaces, shedding new light on their arithmetic properties. As a result, we are able to characterize
the subspaces of standard spaces as étale pullbacks of standard spaces of lower dimension.

Proposition (cf. Proposition 5.6). Let Q2 be a standard Ly—1ypn—1,, space and let Q be a proper

r-dimensional subspace of ). Then, there exists a standard L,_1y,r-1, space Q' and a degree p""

morphism o : IP),lC — IP’/,lC ramified only at oo such that Q is the pullback of ' under o.
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When p = 2, we can show that all standard Lgn-1, spaces and their étale pullbacks arise from
the construction of Section 4.2.

Finally, we remark that the spaces L1229 and L152 discovered in this paper are, to our knowledge,
the first known examples of non-standard spaces Lyyn-1, with p # 2 that are not equivalent to
étale pullbacks of standard spaces. Since p = 3 in these examples, their étale pullbacks generate
examples of non-standard spaces Lzgq2 and Lysq o for every positive integer d. The spaces Lysq,2
when d is odd can not be equivalent to étale pullbacks of standard spaces, by a simple argument of
pole counts, and therefore we have an infinite class of examples not arising from standard spaces.
We don’t know to what extent this generalizes to other values of p and n. More specifically, the
following questions remain open:

e Are there spaces Lypo for p > 5, that are not étale pullbacks of standard spaces?
e Are there spaces Ly,n-1, for n > 3, that are not étale pullbacks of standard spaces?

Answers to these questions would result in great progress in the understanding the role of étale
pullbacks in generating examples of spaces Ly,n-1,, and more generally in the structure of these
spaces when p, A\, n vary.

Structure of the paper. In Section 2, we present known results and useful constructions on
Lypn—1,, that are used in all the other sections. In Section 3, we recall an important characterization
of spaces Lyp 2, due to Pagot (Proposition 3.1), and we prove the non existence of spaces Ly, 2 when
p > 3. In Section 4, we generalize Proposition 3.1 to the case of spaces Ly,n-1, and we apply this
to the case p = 2 to construct our new examples of spaces Lygn-1,. In Section 5, we define and
study standard Lypn-1 ,-spaces. In Section 6, we fix p = 3 and provide a complete classification of
spaces L1z 2 and L152. Finally, in Appendix A we collect all the results on Moore determinants that
are used throughout the paper (mostly in Sections 4 and 5).

Notation and conventions. Let k£ be an algebraically closed field of characteristic p > 0. Recall
that a differential form on P}, can be written as w = f(X)dX for f(X) € k(X), the field of rational
fractions in one variable over k. Such a differential form is called logarithmic if it is of the form
w= dTF for some F' € k(X). We usually denote by Q a space Ly, 41, and by {w1,...,w,} a basis
for this space. For a given subset S C 2, we denote by P(S) the subset of k consisting of elements
that are poles of at least a non-zero differential form in S. If w € Q — {0}, we write P(w) for the
set of poles of w. One deduces from the definition that the set P(w) consists of m + 1 simple poles.
Finally, given a finite set of logarithmic differential forms {wy,...,wy}, we denote by (w1, ..., wn)F,
the IF)-vector space that they generate. Most of the times, this will not be a space Ly,41,,, but it
will be one under certain predetermined conditions.

2. PRELIMINARIES

In this section, we collect the preliminary results later used to show existence, non-existence and
classification results of spaces Ly, 11,,. We first recall known results on the number of poles in such
spaces, as well as proving new lemmas on the combinatorics of the arrangements of such poles. Then
we introduce useful constructions: Frobenius twists and étale pullbacks of spaces Ly, 1. Finally,
we briefly discuss known results in the case n = 1. The main result in this section that was not
previously known is Corollary 2.10, stating that a space Ly,11, is characterized by its set of poles.

2.1. The Jacobson-Cartier condition. Let us recall here the Jacobson-Cartier condition for
verifying that a meromorphic differential form on P}, is logarithmic. Let w = f(X)dX € Q(k(X)) be

such a form. Since k is perfect, we have that k(X) = EBf;Olk‘(X)pXi, and hence a unique writing

F(X) =@l fi(X)PX.
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Note that the polynomial fp—1 is invariant by translation by any element a € k. In fact, we can
also write f(X) = @!_ OgZ(X) (X —a)?, and by comparing the coefficients we find that f,—1 = g,—1.
It is a classical result that w is logarithmic if, and only if, f(X) = f,_1(X)* In our case, that of
differential forms over the projective line, this fact has an elementary proof, that we provide below.

Proposition 2.1. Let w = f(X)dX € Q(k(X)) with f(X) = Olfl( )P X be a non-zero differen-
tial form. Then w = dTF for some F € k(X) if, and only if, f( ) fp—1(X).

Proof. Let {z1,...2,} be the set of poles of w, which is non-empty because w # 0. To have w = dTF

it is necessary and suﬂicient that the z;’s are simple and their residues are in F;. When this is the
T

case, w =) iy x--dX. So, assuming that w is logarithmic (and hence a; € IF ), we find that

fp1(X) = (ZX‘ix> ) -y <X‘fxi)p_l =iX‘fxi = f(X).

=1 =1 =1

Conversely, suppose that f(X) = f,—1(X). Then we can consider the pole expansion for the
meromophic function f(X), namely:

r ab.

Our assumption that f(X) = f,—1(X) can be rewritten as
E(X) = Ep1(X) and ga;(X) = (92;)p-1(X).
So, if we write E(X) = ZP__l Ei(X)PX' with E;(X) € k[X] we have deg(E) = rnaxi(pdeg E; +1),

p

so that deg(E) = deg(E,—1) implies E = 0. Slmllarly, by writing =17 = %= Z')qms for suitable

ay; aj; (X —x;)P~ al;
g and 0 < s < p, we have that x- $)j = X m)(q+1>P If s # 1, then Xz 1:0, hence we
p—
D
just need to consider the case s = 1, where we have <(XLE;)J> = a”l =T . The condition
‘ p—1 (X —z;)

92,(X) = (9z,)p—1(X) implies then that ap = Qj(14+(j—1)p) Wthh is to say that a;; € F), and aij = 0
for 7 > 1. Summarizing, we find that E(X) =0 and g¢,,(X) =

is to say that w is a logarithmic differential form. O
Corollary 2.2. Let w = f(X)dX € Q(k(X)) be such that f(X) = P—) with P( ) € k[X]. Then
w = % for some F € k(X) if, and only if, the p — 1-th derivative ( ) of the polynomial

Pr=1 s equal to —1.

Proof. By Proposition 2.1, we have that w = dTF if, and only if, f = fp,—1. Since the p—1-th derivative

of f satisfies f®P~1) = (p — 1)'f = — 571, then it is equivalent to require that f®=1) = —fp.
—1\ (P—1) (=1

In the case where f(X) = W’ we find f-1) = (%) g % On the other hand,

—fr= Pp, and so the condition f = f,_1 becomes (prl)(pfl) =-1. O

4In the case of curves this result is due to Jacobson. The study of the correspondence f — f,—1 as an operation
over differential forms over curves is addressed in subsequent work of Tate, that was later generalized to higher
dimensions by Cartier. Because of this, such correspondence is often known under the name of Cartier operator. We
therefore deem it reasonable to refer to the result on curves as to the “Jacobson-Cartier” condition. We refer to [11,
§10, §11] for a discussion of the topic that brings all these different perspectives together.
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2.2. The combinatorics of poles of a space L, 1 ,. The condition that n logarithmic differential
forms wi,...,wy, generate Q a space Ly,11, put additional restrictions. Recall that P(2) is the
set of poles of at least a differential form in §2. Pagot proved the following result [8, Lemme 5 and
Lemme 6].

Lemma 2.3. Let Q be a space Ly11,. Then, there is an integer X > 0 such that m + 1 = \p"~ L.

Moreover, |P(Q)| = )\pp:ll. O

Thanks to this result, in the rest of the paper we can restrict to study spaces Ly,n-1, for different
values of p and A, knowing that this hypothesis does not constitute a loss of generality.

Let Q be a space Lyyn-1,, fix a basis {wi,...,wn} of Q and pick a pole z € P(Q2). We
denote by h; the residue of w; at = for ¢ = 1,...,n, setting h; = 0 if x is not a pole of w;.
Let w = ajwi + -+ + apwy, € Q with a; € F). Then we have that x € P(w) if, and only if,
arhy + -+ + aphy # 0. As a result, the set H(z) = {d> " ajw; € Q: Y1 a;h; = 0} is a hyperplane
of € consisting of all the differential forms that do not have x as a pole. Conversely, given a
hyperplane H C 0, we define Xy := P(Q) — P(H), the subset of P(2) consisting of all poles that
do not occur as poles of any element in H. If we denote by H(£2) the set of hyperplanes of €, the
correspondence  — () defines a function § : P(Q) — H(2) with the property that $~1(H) = Xp
for every H € H(Q2).

Lemma 2.4. We have that |Xg| = X for every H € H(Q). As a result, the map $) is surjective and
it 1s injective if, and only if, A = 1.
Proof. Note that a hyperplane H € H(£2) is a space Lipypr—2n—1- By Lemma 2.3 we have that

|P(Q)] = )\p;__ll, |P(H)| = )\pz%ll_l, and we know that P(H) C P(£2). From this it follows that

3 B B B -l o ptt -1 -1 —p
(Xl = P(@Q) = P(H)| = [P@Q)] = [PUH)| = A" —F = W= —— =A—————— =X

0

The result of Lemma 2.4 can be rephrased by observing that P(Q) = Uy X is a union of sets of
cardinality A, indexed by the % hyperplanes of €. In the light of 2.3, we see that this is in fact a
disjoint union.

The following Corollary is essentially equivalent to |7, Lemme 2.2.2.]. We include here a proof
that uses the notation above for the reader’s convenience.

Corollary 2.5. Let 2 be a space Lyyn-1,, and let {w1,...,wp} be a basis of Q. Then, for every
1 <r <n we have that |P(w1) N+ NP(w.)| = Ap —1)" " 1p.

Proof. We begin by remarking that, for every w € Q — {0} and H € H(Q) either H~1(H) C P(w)
or H Y H)NP(w) = 0. As a result, P(w1) N - N P(w,) is a union of sets of the form Xy, and
therefore P(w1) N+ NP(w,) = HL(H(P(w1) N+ NP(wy))). We then have

|P(wi)N---NP(wy)| = )\|.6(73(w1) n---N P(wr))|.

We can then conclude with a hyperplane-counting argument: we have that $(P(w1)) is the set of
hyperplanes of € not containing w;. More in general, since P(w1) N --- N P(w,) is a union of sets of
the form X, we have that H(P(wi) N---NP(wy)) = H(P(w1)) N---NH(P(w,)). This latter is the
set of hyperplanes of 2 not containing w; for any i € {1,...,7} and so its cardinality is w.
As a result, we also have that

[P(w) NN Pw)| = A" " (p—1)" L



When n = 2, the result above specializes to the following.

Corollary 2.6. Let Q2 be a space Lyp 2, and let w,w’ € Q —{0}. Then,
(i) W)s, = ()x, if, and only if, [P(w) N P(W)| = Ap
(ii) (w,w)r, = Q if, and only if, |P(w) NP(W')| = A(p — 1).
[l

Let us now show that the set of poles of a space L, 1, completely characterizes such a space,
starting with the case n = 1.

Lemma 2.7. Let w,w’ be logarithmic differential forms on IP’,IC with a unique zero at oo of order
m — 1, and let P(w) and P(w') be the respective set of poles. Then, P(w) = P(w') if, and only if

(W)r, = (W)F,-

Proof. The non-trivial part is to prove that P(w) = P(«w’) implies that the two forms generate the
same F-vector space. Let P(w) = P(w') = {0,..., 7} and let us show that there exists ¢ € F
such that w’ = cw. As these differential forms are logarithmic with no zeroes outside co, we have the

unique writings w = " v%—dX and o’ = )" Xb_ix_dX, with a;, b; € ).

Suppose by contradiction that there is no ¢ € F such that a; = cb; for every i. Then there is
a j € F, such that a; + jb; = 0 for some but not all i’s. Then, the form w + jw’ is a non-zero
logarithmic differential form with a zero of order at least m — 1 at infinity, and at the same time it
has at most m simple poles. This is not possible, since the degree of any (non-zero) meromorphic
differential form on IP’/,lc is —2. O

Proposition 2.8. Let n > 2, let Q be a space Lyyn-1,, and let W' be a logarithmic differential form
having a unique zero at infinity of order A\p"~! — 2 and such that P(w') C P(Q). Then ' € Q.

Proof. Suppose by contradiction that o’ & Q. Let w € Q — {0} be a non-zero differential form. We
begin our argument with a proof by contradiction that

(2.9) P(w) NP <A@ =p" 7).
Forj=1,...,p—1, weset Yj := {z € P(w) NP(w') : resy(w') = j - resy(w)} in such a way that

p—1
Pw)NPW) = U Y;
j=1

is a disjoint union. If we assume by contradiction that |P(w) N P(w’)] > A(p"~! — p"~2), then there
exists at least a value of j for which |Y;| > W =

Since w’ ¢ Q, we have that w; # 0 and then that w; is a logarithmic differential form with
P(w;) NY; = 0. Moreover, since both w and w’ have a zero of order Ap"~! — 2 at oo, then the order
of 0o as a zero of wj is at least Ap"~! — 2, resulting in |P(w;)| > Ap"~!, because all the poles are
simple. By construction, we also have that P(w;) = P(w) UP(w’) —Y;. Combining this information,
we estimate the cardinality |P(wj)| as

X" < [P(w))] = [P@)] + [PW)] — [P@) NP — [¥5] < 220" = A" = p"2) — a2
— Apnflj

)\p"_Q. For such a j, we set w; := W — jw.

leading to a contradiction and proving the validity of the inequality (2.9).
We then show that inequality (2.9) can not hold for every w € Q using the hypothesis that w’ & Q.
First of all, we fix a basis wy,...,w, of {2, we consider the dual basis w7, ...,w} of 0 and we index
8



every element of  as w, := ) a;w; for every a € Fj. In this way, we have that W' # w, for every
a € Fy. For all € := eqwi + - + euwy, € P(Q%), we set

H, = {w, € Q: e(w,) =0},

Xe:=Xpg, ={r € P(Q) :res;(w) =0V we H}
and
N, = |P(w') N X|.

Since P(w') C P(), we have that P(w') = || (P(w') N X,) and hence that Y Ne = A\p"~.
We note that, for every a € P(F}) the set P(w,) is the union

U x.

c€P(Q*)
E(Wg)fo

and in particular it depends only on the class [a] € P(F;). To conclude the proof, we count
> la]ePEn) |P(wa) NP(w')] in two different ways:

aleP(Fp e

On the one hand, we have

S Penre= ¥ OY N= Y Y N

[aleP(F}) [a]eP(Fy) eeP(2%) €€P(Q*) [a]€P(F})
€(wa)#0 €(wa)7#0
Z pnleg _ )\pnflpnfl _ )\p2n72‘
e€P(Q)

On the other hand, since W' # w, for every a € P(IF;), we can apply the inequality (2.9) with
w = w, for every a € P(F}) to get that

> Pwd) NP S AP = )@ 4+ 1) = AP = p ).
la]€P(Fp)

We obtain the contradiction Ap?"~2 < A(p?"~2 — p"~2) and we conclude that w’ € Q.
O

From Lemma 2.7 and Proposition 2.8 we deduce the very useful corollary that a space Ly,n-1,, is
characterized by its set of poles.

Corollary 2.10. Let n > 1 and let Q and Q' be spaces Lyyn-1,,. Then Q = Q' if, and only if,
P(Q2) =P().

We conclude this section by establishing a notion of equivalence between two spaces Ly,n-1 ,,
which will be employed in later sections.

Definition 2.11. If Q,Q' are two spaces Ly,n-1,, we say that they are equivalent if there is an
automorphism o € Auty(P}) such that o(c0) = co and Q' = o*Q.

An immediate consequence of Corollary 2.10 is that € is equivalent to €’ if, and only if, there
exist a € k*,b € k such that P(Q) = aP(Q) + b.
9



2.3. Frobenius action and étale pullbacks. Given a space Lypn-1,, there are two constructions
that we can apply to construct more spaces.

The first construction exploits the action of the relative Frobenius on a space Ly,n-1,. Recall
that Q(k(X)) denotes the k-algebra of meromorphic differential forms on Pi. Consider the relative
Frobenius operator ® : Q(k(X)) — Q(k(X)) acting on the coefficients of a form by raising them to
the power p:

Ya X" Sal Xt
o ~dX | = =Lt —dX.
<sz‘XZ Y X

Then we have the following result:

Lemma 2.12. Let Q be a space Lyyn-1,. Then ®(2) is again a space Lyyn-1,,. Moreover, for every
choice of p, A, and n, ® is bijective when restricted to the set of spaces Lypn-1 .

Proof. Let w = Z?:pz—l x5 dX € Q with a; € F. Then ®(w) = Zf‘zpz_l Xii:cf dX is clearly
logarithmic. Moreover, it has a unique zero at co because this condition is equivalent to the first
line of the equations (2.15). Since Fp-linearly independent forms are sent to linearly independent
forms, we have that ®(Q2) is a space Lyyn-1,,.

To show the bijectivity note that, since k is algebraically closed, the Frobenius is an automorphism
of k. Its inverse induces the inverse of ®, which restricts naturally to the set of spaces Lyyn-1, for

the reasons above. O

Concretely, the relative Frobenius acts on the points of ]P’/,lC by raising them to the p-th power. If
) is a space Ly,n-1,, then one gets the poles of ®(2) by raising to the p-th power the poles of §2.
This condition determines uniquely the space ®(2) thanks to Corollary 2.10.

The second construction exploits the properties of finite étale covers of the affine line in character-
istic p > 0. More precisely, we fix d > 0 and we recall that in this setting a finite étale morphism
A}l — A} of degree dp is induced by a map k[X] — k[X] sending X to a polynomial of the form
vX 4+ T(XP) with v € k* and T € k[X] a polynomial of degree d. This is equivalent to ask that X
is sent to a polynomial whose derivative is a non-zero constant. Such a morphism extends uniquely
to a degree dp cover ¢ : IP’,lC — IP’,lC branched only over co, and we can consider the pullback map
6" QR(X)) — QR(X)).

Lemma 2.13. Let ¢ : Pk — ]P’/,lc be the compactification of a finite étale morphism A}C — A}C of
degree dp. Let Q= (w1, ...,wn)F, be a space Lypn-1,. Then, the Fy-vector space generated by the
differential forms ¢*(w1),...,¢*(wn) is a space Laxpn pn, called the étale pullback of  via ¢.

Proof. The restriction of ¢ to A} is induced by a polynomial S(X) such that S'(X) = v € k*.

Set Z = 8(X) and w; = % = g&(; dX. Then ¢*(w;) = %d)( and hence is logarithmic.
Moreover
N dz dX
¢"(wi) = =

P(Z) P(S(X))
and hence it has a unique zero of order dAp™ — 2 at infinity. Finally, ¢* is a linear operator, hence
we have ) . a;¢0*(w;) = ¢* (D, asw;). It follows that any [F,-linear combination of ¢*(w;) is also a
logarithmic differential form with a unique zero of order dAp™ — 2 at infinity. (|

2.4. Known results on spaces L) ;. It is easy to verify that every /-dimensional subspace of a
space Lypn-1,, is a space Lypn-1 . It is therefore useful to have results in the case n = 1, as these
can provide significant information for studying the higher dimensions too. In this short section, we
recall the known results in dimension one that will be used in the rest of the paper.
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Proposition 2.14. Let w € Q(k(X)) be a differential form on the projective line Py.. The following
conditions are equivalent:
(i) The Fy-vector space (w)F, is a space Ly 1.
(i) The differential form w has precisely \ distinct simple poles x1,...,x)\ and corresponding
residues ay, . ..,ay in Fy (which is equivalent to being logarithmic). Moreover, these poles
and residues satisfy the polynomial equations:

A
(2.15) D airf =0 for 0<k<A-2.
=1

(11i) We can write w = ﬁdX with P(X) € k[X] of degree X in such a way that the coefficient of
XP~1 in the polynomial PP~1 is 1 and that the coefficient of X*P~1 in the polynomial PP~1

vanishes for all 2 < p < X+ Ll;f’\J

Proof. Let us assume (i). Then w is logarithmic and has a unique zero of order A — 2 at infinity. We

write w = Zf‘zl X“_ixz_ dX and we introduce a change of variable Z = % Then,
P SN o T PR o
im1 Z(l — .Z‘ZZ) i—1 A 1— sz im1 (1 — J}ZZ) ’

the first equality resulting from partial fraction expansion, and the second arising from the fact that
w has no poles at infinity and then Z?Zl a; = 0. The further condition that the zero at infinity of w
is of order A — 2 results in the equality

a;x; uZA2
Z — 7% T A dz,
il [[im (1 —2iZ)
for some u € k*. By developing the denominators in this equality in formal power series in the
variable Z, one obtains the following equations:

A
Zaixf:() for 0<k<A—2,
i=1

A
(2.16) Z aic} ™t = u,
i=1
A
Zami‘“ﬂfl =u-ck(xy,...,zy) for k>1,
=1

where ¢, is the k-th complete homogeneous symmetric polynomial. The first line show that the
system (2.15) is satisfied, while the second line ensures that the poles are distinct.

Conversely, assume (7i). Then, we have that w is logarithmic thanks to the condition on the poles
and residues. Moreover, from the development in formal power series it follows that the equations in
(2.15) imply that the zero at infinity is of order > A—2. Since there are precisely A distinct simple poles,
this is enough to conclude that there are no other zeroes and that the order at infinity is precisely A—2.

The equivalence between (ii7) and (i) follows from Corollary 2.2. O

Remark 2.17. The element u € k* appearing in Equation (2.16) can be expressed in terms of the

polynomial P appearing in condition (iii) as u = é, where « is the leading coefficient of P.

It is easy to construct logarithmic differential forms w satisfying the conditions of Proposition
2.14, as the following examples show:
11



Example 2.18. Let A € Z with A > 1 and (A — 1,p) = 1. Consider f(X) := % and the

~- Then, we have that w = % for

associated logarithmic differential form w : Tf (A=1) XCAIX

P(X) = X; IX There are X\ simple poles and no zeroes outside oo, then the unique zero at oo is of

order A — 2 and (w)r, is a space Ly 1

It follows from Example 2.18 that spaces Ly ; exist for all (A —1,p) = 1. The converse is also
true: if p|(A — 1) then by Proposition 2.14 (iii) the leading term of PP~! vanishes, but this implies
that deg(P) < A, which is not possible. The paper [4] by Green and Matignon contains more results
on spaces Ly 1, such as a description of all possible spaces L) ; in the case A < p+ 1. A simple but
fundamental example that fits in this case is the following:

Example 2.19. Let p > 3 and f(X) := Hf;ll(X —ily,)" € k[X], where 1; € k is the unity of the
field k. Then, Q := <%>1Fp is a space Lp_1,1. In fact, by construction the non-zero forms in €2 are

logarithmic and their set of (simple) poles is {1,2,...,p—1}. At the pole 4, the residue of w is equal
to i. We can then verify that the equations (2.15) are satisfied:

lezk—o mod p for1<k<p-—2
Zp lzpl_zpll——l mod p

By Proposition 2.14, € is a space L,_1,1. We can obtain the same result by rewriting the differential

form as w = % = 1_%%, from which the computation of residues also follows.

Remark 2.20. Without the assumption m < p, a deeper overview of the possible m + 1-uples of
residues a (called Hurwitz data) is contained in Henrio’s Ph.D. thesis [5]. It is worth noting that
several questions about Hurwitz data remain unanswered (see also [8, §1.1]).

Remark 2.21. Let ¢ = p' with ¢ > 1. In [10, Definition 3.2.] a generalization of spaces Ly,+1., to the
setting of F,-vector spaces is introduced. Namely, a space LI 415 18 defined as a Fg-vector space of
differential forms on ]P’,}/, whose nonzero elements have simple poles, a unique zero of order m — 1
at oo and residues in ;. We remark that all the results proved in this section for spaces Ly, 11,5
generalize to spaces LI in In particular, the key Proposition 2.1 has a natural analogue, and if
one introduces the operator V acting on the field k(X) by

v (Fe0e )

the Jacobson-Cartier condition (Corollary 2.2) is generalized over F, by saying that a differential
form w = % has simple poles and residues in F, if, and only if, VI(P(X)?™!) = (=1)!. Asin
Proposition 2.14, it is therefore possible to express the fact that w generates a space Lan’1 as a
condition on the coefficients of P(X)?~1. More precisely, the condition states that the coefficient of
X471 is (=1)! and that the coefficients of X#4~! vanish for every pu > 2.

More generally, it is not difficult to adapt the majority of the results in the rest of the papers
to spaces LI The main idea is to change the key definition of the Moore determinant of an

m—+1,n"
n-tuple a := (al, ...,ap) € k™ into
aj a PN A,
al al .. ad
An(@) =
qn—l qn—l qn—l
af ag co.oah

as already considered in [10]. The vanishing of this Moore determinant is a necessary and sufficient
condition for [Fy-linear dependence of the elements of a and key Theorem 4.8 restated in terms of
g-Moore determinants and spaces LI, 41, holds with a very similar proof.
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However, we have decided not to state our results in this full generality and the case ¢ = p remains
the focus of our study: in fact, only in this setting the elements of a space LI +1,n, are logarithmic,
while we do not have a similar interpretation otherwise. This property is crucial to solve a concrete
question about lifting local actions of elementary abelian groups (see [8, Théoréme 11]), while it
remains unknown what geometric interpretation or other use might have the existence of a space
Ly, 1., for g not prime.

3. AN OBSTRUCTION TO THE EXISTENCE OF SPACES Ly 9

We now consider the case n = 2, where we recall results established by Pagot and show that, for
p > 3\ there are no spaces Ly o.

3.1. Known results on spaces Lj,3. We recall the following fundamental result by Pagot (|8,
Proposition 7]). A proof is included, which contains elements that are crucial for the main result of
this section, as well as for the generalization that we propose in Section 4.

Proposition 3.1. Let wi,ws € Qk(X)). Then the Fp-vector space ) generated by wi and ws
is a space Lypo if and only if there exist two polynomials Q1,Q2 € k[X] satisfying the following
conditions:

(i) deg(iQ1 + jQ2) = X, for every [i : j] € P'(F)

1 _—m_— ———
Q105 — QYQ2 Q1045 — Q1Qs o)
-1

(1ii) The p — 1-th derivative ((Q{’ - Qng_l)p*) g of the polynomial (Qf — Qng_l)p*l is

equal to —1.

and w9y =

Proof. Suppose that Q is a space Ly, 2. Let us fix a basis (wq,ws) of Q, and remark that the set of
poles of an element iw; + jws € Q depends only on the corresponding [i : j] € P* (Fp). Let us then
denote by X|;.; the set of poles of differential forms in {2 that are not poles of iwy + jws. By the
results of section 2.2, every X|;.; consists of A elements and the set consisting of the X{;.; for all

[i : j] € PY(F,) is a partition of the set of A(p + 1) poles of Q. Let us consider the polynomials
PijyX)= J] X-2) and P(X)= [ PuyX).
:EEX[Z-:]-] [i:j]EPl(Fp)
Since iwy + jwz has a unique zero at infinity and poles outside X;.;), we need that
¢ij Pz (X)
P(X)
for nonzero constants c;; € k that satisfy the condition
¢ij P (X) = ic10P1.0)(X) + jeor Py (X).
Since all the Pj;.;; are monic polynomials, this means in particular that c¢;; = ici0 + jeo1. Let us set

a = 2(1)—‘1) and note that a ¢ IF,,, otherwise we would have c,_1), = 0, which is not possible, as w;

and wy are assumed F,-linearly independent. As a result, since £ is algebraically closed, there is an
element ¢ € k™ satisfying ¢ = Let us set

Wy + Jjwe = dX

" co1(aP—a)’
Ql = —CP[O:” and QQ = CLCP[LO}.

Then, iQ2 — jQ1 = c(iaP1.q) + jPo.]) = C%P[,-:j], which is a polynomial of degree .
Q2dX

00— Qrg, ™

Moreover, we have Q1Q5 — Q1Q2 = —cPT(a? — a)P = =P and hence w; =

13



—Q1dX

- Q105 — QTQ»
satisfied, by virtue of Corollary 2.2.

wo , as required by condition (i7). Finally, condition (7i7) in the statement is also

Conversely, let us start with )1 and () satisfying the three conditions of the proposition and show
that they give rise to a space Ly 9. First let us show that the differential form w; = % is
2 1

logarithmic if, and only if wy = is logarithmic. We have that

—Q1dX
Q1Q5-QYQ2
-1 -1
(Q7Q2 — 1Q5)" = Q1Q2(Q7Q2 — 1Q5)" " — Q1Q5(Q1Q2 — Q1Q5)”
_1vp—1 _ -1
= QIS - Q)" — QB2 - Q)"
Since the derivative of the left hand side is 0, we have that the p — 1-th derivative of the right hand

side also vanishes, and therefore that ((Q’f - Qng_l)p_l>(p Y = ((Q’f—ng — Qg)p_l (p 1). This
implies that we only need to check via Corollary 2.2 that ws is logarithmic to ensure that w; is
logarithmic too. In fact, this stays true if we replace w; with iwy + jws since (Q7Q2 — Q1Q%) =
QY (iQ1 + Q2) — Q1(1Q1 + Q2)P. Hence, it suffices to have condition (ii) for the differential forms
w1 + jws to be logarithmic for every ¢ and j. In particular, these have simple poles. To prove that
the [F,-vector space generated by wi and ws is of dimension 2, it suffices to remark that, by (), there
are A poles of wy that are not poles of wo, so that ws can not be a multiple of wy. Finally, condition
(7i) is enough to ensure that both w; and we have 0o as their only zero. U

Remark 3.2. The polynomial (Q1Q5 — Q{Q2) appearing in the denominators of wi,ws is called
the Moore determinant and denoted by As(Q1,Q2). This is the determinant of the Moore matrix
<Q1 Q2

QF @
of higher order have a fundamental role in the generalizations of Pagot’s result for spaces Ly,n-1 -
Moreover, results on Moore determinants will be helpful to simplify some proofs, even in the case of
dimension 2. For this reason, we have collected the results we need on Moore determinants in the
Appendix A.

> . Its appearance is far from a coincidence: as we will see in Section 4, Moore determinants

In light of the result of the Proposition 3.1, we introduce the following definition, which will be
extensively used in the classification of spaces L122 and L5 o:

Definition 3.3. Let @1, Q2 € k[X] be polynomials of degree A such that deg(iQ; + jQ2) = A, for
every [i : j] € P1(F,). Define the associated differential forms

dX dX

w1 = (QlQI;l - Qi’) and wy 1= (QQQﬁ’*l - Qé’) .

We say that the pair (Q1,Q2) gives rise to the pair (w1, w2). Moreover, if there exists ¢ € k* such
that the pair (cQ1,cQ2) gives rise to (%, %2) a basis of Q a space Ly, 2, then we say that the pair

cP ) cb

(Q1,Q2) is a prompt for the space €.

Remark 3.4. By Proposition 3.1, a pair (@1, Q2) of polynomials of degree A is a prompt for a space
L)y if, and only if, @)1 and Q2 have leading coefficients that are IF)-independent, and are such

_ (p—1)
that ((Qzl’ - Q15 1)p_1> is a non-zero constant d € k*. The number ¢ then needs to satisfy

d(cP)P~! = —1, and hence it is uniquely determined up to multiplication by a p — 1-th root of unity.

Convention 3.5. If we have polynomials Q1 and Q2 satisfying the conditions (7) and (i7) of Proposition

3.1, we can write (Q] — Qng_l)pfl(X) = > 7r; X% and apply Proposition 2.14 to deduce that

condition (i77) is equivalent to the equalities rp—1 =1 and rp,—1 =0 for k =2,...,A(p — 1). The

r;’s are polynomials in the coefficients of ()1 and ()2, and the equalities above will be used in Section
14



6 to classify certain spaces Lyp 2. In order to simplify a frequently used notation, we set Ry := r5p—1
fork=1,...,A(p—1).

Lemma 3.6. Let Q1,Q2 € k[X] be polynomials of degree \ with

A
Qi(X)=a (XA + Z(—l)isp@—i)
=1

A
Q2(X) =10 (XA + Z(—l)itiXH> .
=1

If the pair (Q1,Q2) is a prompt for a space Lyp o, then we have s; = t1.

Proof. We have that Q1 and Q2 satisfy condition (#iz) of Proposition 3.1 and hence the polynomials
Ry, of Convention 3.5 vanish for k > 1. In particular, this is true for Ry(,_1), the coefficient of

degree A\(p — 1)p — 1 of the polynomial (Q] — Qng_l)pfl(X). To compute Ry,—1), let us write

X X
compute the coefficient of Z in the expression in brackets above. We have:

—1 p—1
QY — Qngfl)p_l = XMe-Dp [(%)p 9 _ (Ch)p] , introduce the variable Z = % and

-1

=b(@ '(1—(ti—s1)Z V") mod Z°
From this, we deduce that
()7 &-(5)) = @02 =) mod 2
! ((ap_1 R N (e Ll (g s1)Z) mod Z2.

We see then that Ry,_1) = bP~1aP~ (a1 — bP~1)P~2(¢; — s1) = 0. Since a,b are nonzero and
Fp-linearly independent, then we have that s; = ¢;. O

3.2. A new generic obstruction to the existence of spaces L), . It is a result of Pagot (cf.
[8, Theoréme 1 and Theoréme 2|) that spaces L, 2 and L3y, 2 exist only for p = 2 and spaces Loy, 2
exist only for p = 2, 3. In this section, we show that there are no spaces L) if p is large enough
with respect to A, vastly improving on the previously known situation. The genericity in the title of
the section refers then to the fact that our result holds for all but finitely many primes once A is
fixed. This allows for the finite remaining cases to be checked with a computer, since it suffices to
check the existence of solutions of a polynomial system (see Convention 3.5). For p = 3 and A = 4,5,
this is done in Section 6.

Let us now state our result. To simplify the demonstration, we exclude from the statement the
case A = 1, which has a known short proof (see [8, Théoréme 2, Part 1]). By contrast, the proof
in the other known cases A = 2,3 consists of several pages and the argument below consistently
simplifies it.

Theorem 3.7. Let p > 3X. Then there are no spaces Lyy, 2.

To prove the theorem, we need to recall some notation and establish two fundamental lemmas.
If we have a space L)y 2 generated by a basis(wi,ws) and we consider the polynomials @1 and Q2
giving rise to (w1,ws), we recall from the proof of Proposition 3.1 that, for every [i : j] € P}(F,),
Pj;.;) denotes the monic polynomial whose zeroes are those of iQ2 — j@Q1, and that a denotes the
quotient of the leading terms of Q1 and Q2, which satisfies a ¢ F,,. We are now ready to establish
our lemmas:
15



Lemma 3.8. For everyt € k—{—a}, let P, := %ﬁpﬁ):” and denote by Disc(P;) its discriminant.

Then there exists a polynomial R(X) € k[X] such that:

(i) We have Disc(P;) = (af;)% and deg(R(X)) < 2\ — 3.

(ii) Let p > 3\. Then the element —aP € k is a zero of order > A+ 3 of R(X).
Proof. We will first prove item (), and then use it as one of the ingredients for the proof of (7).

Proof of (i): Let a; be the coefficient of degree ¢ in the polynomial P;. The discriminant Disc(F;)
is the determinant of the Sylvester matrix

ay ax—1 ax_9 e ag 0 0
0 ay ax_1 N ai ap 0
0 0 0 0 a) a)—1 e Qo
)\a,\ ()\ — 1)0,)\,1 (/\ - 2)@)\,2 ce al 0 0 ce 0
0 )\a)\ (/\— 1)@)\,1 2(12 al 0 0
0 0 0 )\a>\ (/\— 1)a>\,1 ()\—2)@)\,2 ey

Since both ay and a)_; are independent of ¢ (the former being 1 and the latter as a result of Lemma
3.6), the first two columns of this matrix are always the same for every t. As a result, we are
left with at most 2\ — 3 rows that contain quantities of the form 2 ;i(?, where p;;(t) is either zero
or a polynomial of degree 1. Applying Leibniz formula for the determinant, we then obtain that

Disc(FP;) = (aﬁ)% for some R(t) of degree at most 2\ — 3 as desired.
Q2dX

Proof of (ii): Consider the differential form w; = ~—2"5p~-
Q1Q27Q1Q2
the zeroes of the polynomial Q} — Q‘;’_IQl = H?;é (Q1 — jQ2). Hence, for every pole x of wy, there

. Remark that the poles of w; are

exists a number 7 € {0,...,p— 1} such that x is a zero of iQ2 — Q1. The residue of w; at = can then
be computed as follows:

-1 1 1
resy, (x) = = =

(@ - @3‘%21)/ () Q2= QU@ ]x(1Q2 = Q@) (1Q: — Q1) (@)(-Q5 (@)’

For every i = 0,...,p — 1, we recall from the proof of Proposition 3.1 that iQ2 — Q1 = c(a + 1) Py,
and we observe that Pj;. coincides with P; as in the statement of the Lemma. We can then rewrite

the identity above as
1

~cla+19)P/(z)Qa(x)pL
We can then consider the product H; of the residues at all the poles that are roots of P;

—1)*
H; = H res,, () = : — (P,) p—1, -
2€Z(P;) Ma+1) HmeZ(Pi) ; () Ha:eZ(Pi) Q@ (x)

If we denote by Res(e, ®) the resultant of two polynomials, we can rewrite the above as

resy, (x) =

(c(a+ i)))‘(p_Q) A+ (c(a+ Z’))A(P—Q)
Hi — NOrD) = (—1 2

(=1)~ 2 Disc(P;)Res(iQz — Q1, Q)P Disc(F;)Res(—Q1, Q2)P~
By Lemma 3.8 (i), we can express the discriminant Disc(F;) in terms of the polynomial R(X) to
obtain that H; = 5%%, where we have set § := (—1) s puCa Ua) 7= for ease of notation,

R(D) Res(—Q1,Q2)P T
since this is independent of 1.
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Since the differential form w; is logarithmic, we have that H; € ;' and in particular that H P o
The following equations then hold for every i € {0,...,p — 1}:
6P a +4) P31 — Rp(;)r~!
57 Ya + )PP E3243) By §)P
57 Ya+ i) (a+1)>R(i) = R(i)P(a + i) M3
'Y (a” + i) Ma+i)*R(i) = Ry(i)(a? + 1),

I
=

where R,(X) denotes the polynomial obtained from R(X) by raising its coefficients to the p-th
power. We thus have obtained the equation
P~ (a”” + i)Ma+i)*R(i) — Ry(i)(a®? + i) M) =0,

which is a polynomial equation of degree at most 3\ in ¢ that is satisfied for every ¢ =0,...,p — 1.
Since we have that p > 3], this is actually an equality of univariate polynomials, namely we have

S (a” + X)Ma + X)PR(X) = Ry(X)(a? + X))
in the ring k[X]. The right hand side of the equation admits —aP as root of order at least A + 3.
Since af # a and af # a?* we conclude that R(X) has —aP as root of order at least A+3, as well. [

Remark 3.9. In spite of its fairly elementary proof, Lemma 3.8 (i) is already quite powerful. Combining
the lower bound on the order of —aP as a zero of R(X) given in (¢i) and the upper bound on the
degree of R(X) given by (i) one gets that 2\ — 3 > A + 3, which gives A > 6. It follows that no
further argument is needed to prove Theorem 3.7 when A < 5.

Lemma 3.10. Let k be an algebraically closed field of characteristic p > 0. Let P,Q be coprime
polynomials in k[ X] such that 0 < deg(Q) < deg(P) < p and consider the polynomial function
2+ D(z) := Disc(P — 2Q) € k[z].

!/
Let Zp be the set of zeroes of D and Zs be the set of zeroes of <g> where in both sets zeroes are
counted with multiplicity. Then the correspondence
F:Zs— Zp
P
P
Q(x)

15 a well defined bijective function.

Proof. For every t € k, we denote by Z; be the set of zeroes of P — tQ (counted with multiplicity).
The condition deg(Q) < deg(P) < p ensures that Zp, Zs and Z; are all finite sets, as they are sets
of roots of non-zero polynomials.

We have that D(t) = coRes(P — tQ, P’ — tQ'), where ¢y € k does not depend on ¢. and we can then

write
=1 H —tQ")(

TEZt

for ¢; € k™ not depending on ¢. We have that ged(P, Q) = 1, which guarantees that [[ ., Q(z) # 0,
and we can then write

1 / —+0'(z z)) =c !
PO =g 1L (P@RE@-1@@ew) = e pig g

17
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where co € k* is independent of ¢.
We now set N := P'QQ — PQ’ and denote by Zy its set of zeroes (counted with multiplicity). By
using this notation and properties of resultants, we transform the equation above into
D(t) = cym———Res(P'Q - PQ',P —1Q) =c3 [[ (P -1tQ)(),

TELN

Res(P Q)

where ¢3 € k* is independent of ¢. Then, we define the following sets: the set Zy g of common
zeroes of N and ) (counted with multiplicities) and the set “Zx g of zeroes of N that are not zeroes
of Q. We note that, if z € Zy ¢ then it is also a zero of @': as a result, its multiplicity as a zero of @
is at least two, and precisely one more than the multiplicity of x as a zero of N. From this, it follows

/
that Zy = Zn,o U “ZN,g. On the other hand, if x € °Zy o we can use the fact that (g) = % to

!/
deduce that the multiplicity of x as a zero of IV is the same as the multiplicity as a zero of <g> It

follows from this last consideration that Zs = “Zn . In particular, Zs N Zg = ) and the function F
is well defined.
The above equation then gets rewritten as

Dity=cs [ P-tQ)@) [ P-tQ)@)

T€ZNQ TEZN,Q
II P JI ®P-tQ)
TEZN,Q TECZN,Q
e ] P-1Qw)
TECLN,Q
P(z)
Q(z) —t
:I:EC]‘_Z‘EQQ a?Gg\LQ <Q(IE) >
. Pz)
51;[ (Q(ac) )

where ¢4, c5 € k* are independent of £. It then follows that the function F' is surjective onto Zp.
From the equation, it also follows that |Zp| = |*Zn gl|. Since Z5 = “Zn g, then Zs and Zp have the
same cardinality and F' is bijective. O

Proof of Theorem 3.7. Assume by contradiction that there is a space Ly,2 with p > 3\. We set
P:=aPy.q —a’ P, and Q := G(P[l;o] — P[O:l]) and we remark that these satisfy the conditions of

Lemma 3.10. As a result, the zeroes of z +— D(z) = Disc(P — zQ) are all of the form % for x a

/
zero of (g) . In particular, z = 0 is a zero of D of order at most deg(P’) = A — 1, as it corresponds

!/
to a zero x of (g) that also satisfies P(x) = 0 (and therefore also P'(z) = 0).

Let us now give a lower bound to the order of 0 as a zero of D and see that it is incompatible with
the one above. To do this, we apply the function D to a new variable z = ££2° In this way, we have

t+a
D(2) = Disc <p - %i )> Q> e <<t + a)i - S)+ aw)

_ Dise <(a — aP)(aPy.q) + tPg.))
(t+a)

> = Disc((a — a”)P;) = (a — aP)** 1 Disc(P,).

18



By Lemma 3.8 (i), this last expression can be written in terms of R(t), giving
R(t)
(a+t)2A=3"
By Lemma 3.8 (ii), —aP is a zero of order at least A + 3 of the polynomial function ¢ — R(¢) and,
since the expression of z in t is a linear fractional transformation, we have that 0 is a zero of the

same order of the polynomial z — D(z). This gives the desired contradiction and concludes the
proof of the theorem. O

D(z) = (a —a?)»"!

4. CONDITIONS FOR THE EXISTENCE OF SPACES Ljy,n-1,,

In this section, we prove a generalization of Proposition 3.1 that applies to spaces Lyyn-1, for
any n > 2 and discuss some of its consequences. As anticipated in 3.2, our strategy makes a crucial
use of Moore determinants. Definition and results about Moore determinants that we use in this
section are recalled in Appendix A. For every n-tuple of the form X := (X,...,X,), we denote by
A, (X) the associated Moore determinant. Moreover, we denote by & the n — 1-uple obtained from
X by removing X; and by An_l(Xi) the associated Moore determinant.

We develop our results in the following setting: we let Q1,...,Q, € k[X] be polynomials of
degree A > 1 and denote by ¢; the leading coefficient of @Q; for 1 <i < n. We write P := A,(Q),

P = (—1)i_1An_1(@) and P, := ), ¢ P; for every € € F)) — {0}.
Lemma 4.1. The polynomial P and the n-tuple P = (Py, ..., P,) satisfy the relation
A(P) = PUoE,
Proof. This is a direct corollary of Theorem A.3. g

If we assume that A,(q) # 0, then the ¢js are Fp-linearly independent. This entails that
degP = (1+p+p>+..+p" YA and deg P, = (1 +p + p? + ... + p" %)), since their leading
coefficients are A, (q) and ), €;A,_1(g;) respectively. The first is nonzero by assumption, the second
by virtue of [10, Corollary 2.1] a

Proposition 4.2. Assume that A,(q) # 0. Then, we have that P|P for every e € F; — {0}.
Proof. We first note that we have

€1 €2 . €n
n Q%, QIQJ . QZ
Pe= Z(_l)i_leiAnfl(@) —| & Q5 e Qn ’
o1’ SRR A

a determinant that we denote by d¢(Q) as in Appendix A.

Let W := (Q1,...,Qn)F,. Since En(g) # 0, then the Q;’s are F)-linearly independent, hence
dimW = n. Let {Q7,...,Qs} be the basis of W* which is dual to {Q1,...,Q,} and denote by
¢ € W* the Fp-linear form Y. (—1)""'e;QF. Then by Formula (A.11) we have

I[I e=Cnle@r =yt
Qeker p.—{0}
We choose the following system of representatives of the projectivization P(W) of W:
n
S(W) = U (Qi +FpQi1 + - +FpQ1) .

i=1
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and for every subspace V' C W we denote by S(V') the intersection V' N S(W). It is a system of rep-

resentatives of Proj(V). A counting argument shows that [[gey (01 @ = (—1)dimV(HQ€S(V) Q)P 1,

-1
which combined with the above gives the identity ngfl = (HQES(ker o) Q)p . We have then

that there exists yu € Fj such that Pe = p]]pegmery,) @ By Equation (A.2), we have that
P = An(Q) = [Igesw) Q- Since S(ker(pe)) C S(W) it follows that P.|P. O

Remark 4.3. Proposition 4.2 shows that the expression % is a polynomial. We observe that it is

an additive polynomial in the variable ;. Let us prove this for ¢ = n, from which the other cases
follow. First of all, from (A.2) we get that

P:H H H (Qi +€-1Qi—1 + -+ €1Q1)

=1 ei—ler €1€Fp
and that
n—1
P, = (-1t H H H (Qi +€i-1Qi—1 + - - + Q).
i=1 ¢;_1€F, e1€lF,
Putting these two equations together results in the formula

P _
5= (—1)" ! H H (Qn+€n1Qn_1+---+ea1Qq).
n en—1€Fp e1€Fp
If we denote by Q,, 1 the Fy-vector space (Q1,Q2, .. .,Qn-1)F, the formula above is rewritten as
P _
F - (_l)n 1PQn—1 (Qn)v
n

where Pg, | is the structural polynomial of Q,,_1 of Definition A.4, which is additive in the variable

Qn-

4.1. The main theorems. We now have all the tools to prove the two main results of this section
(Theorems 4.7 and 4.8). Let us first establish some general results on the relationship between the
();’s and some spaces of differential forms that we can build from them:

Definition 4.4. Let Q := (Q1,...,Qn) € E[X]" be a n-tuple of polynomials of degree A\ > 1 with
leading coefficients g; satisfying A, (q) # 0. We write P := A,(Q) and P; := (—1)i_1An_1(@). We
define differential forms w; := %dX and the space Q := (w1, ..., wp)r,. We say that the n-tuple @
gives rise to the basis (wy,...,wn).

By Proposition 4.2 we have that for all € € F) — {0} the polynomial P, divides P and from
Definition 4.4 we see that

P
?dX = €Wy + - + €pn.

This entails that all the nonzero differential forms in Q have a unique zero of order A\p"~! — 2 at
infinity. However, they are not in general logarithmic. In the following, we begin an investigation of
conditions for €2 to be a space Ly,n-1 , that culminates in Theorem 4.7.

For every M € GL,(F,) we denote by (QM)1,...,(QM), the components of the vector QM
obtained by applying the matrix M to Q). We note that all the entries (QM);’s are polynomials
of degree A with leading coefficients that are Fp-independent. We associate with this n-tuple the

; Anf /\i
differential forms w := (—1)“1%dX and the space V' := (w/, ..., wM)p, .
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Proposition 4.5. Assume the notation of Definition 4.4.
4.5(1) For every M € GLy(F,) we have that
(W, WMy = (wr, ..., wp) (MY,

where (M~1)t € GL,(F,) is the transpose of the inverse of M. In particular, ' = .

4.5(i1) Let Q := (Q1,...,Qn) and T := (11,...,T,) be n-tuples of polynomials in k[X] giving rise
to the same basis (w1, ...,wp). Then Q@ =T.

4.5(1i) Let Q := (Q1,...,Qn) and T := (T1,...,T,) be n-tuples of polynomials in k[X]| giving rise
to bases of the same space Q). Then, there exists a matriv M € G Ly, (F,) such that T = QM.

Proof. (i) For every 4,5 € {1,...,n} we denote by M; ; the (¢, j)-th minor of the matrix M.
We then have that An_l((QM)j) =>", Mz‘,jAn—l(@) using [F,-multilinearity and the

alternating property of A, 1. Then, using the fact that A,(QM) = Ay (Q) det(M) and that
M is invertible, we get

(—1)7+1 A, 1 ((QM) )

(D7 Y MigAn1(Q) (o 0y (2D My P

M — ’J
M. dX = dX
“ An(QM) An(QM) An(QM)
1 n M P, n (_1)i+j
= -1 Z+‘]MdX == MZ j W -
det(M) ;( U Z; det(M) I
In other words, (Wi, ..., wM) = (w1,...,wy)(M~1)!. We have then that wi/, ... wM is

a basis of ) for every invertible matrix M € GL,(F,).
(ii) and (iii) Let w;q := %—(&T(Qi)d)( and w; = %A(%)_l(md)(. Since T' and @ both arise
from the space  we have that there exists a matrix N € GL,(F,) such that
(W1,Q, -y wn,@)N = (W1, ..., Wn,T)

Then, by part (i), one has that the n-tuple Q(N_l)t gives rise to the basis (w17, ...,wn1).
Let M := (N~1)! and let us show that QM = T this will both prove (ii) (in which case
N = M =1) and (ii7). From the fact that @M and T give rise to the same basis we get

Anil (@\]\4)1> (_1)n_1An71 <@”) o An—l(Tl) (_1)n_1An—1(Tn)
An(QM) " An(QM) L Aal@ An(T) '

We can then apply the Moore determinant to the terms of this equality and use Theorem
A.3 to get that

An(@MY" ™ = An(T)",
which implies that A, (QM) = A, (T). Hence, we have that

(1) A 1 ((QM);) = (—1)" A, y(T}) forevery i=1,...,n
which we know by Proposition A.15 to be equivalent to the fact that QM = 0T for
some 6 € k(X)™9 with 917+ 7" = 1. But since Ap(QM) = An(T), we have that
912" = 1 and hence 6*" ' =1, that is, 6 = 1.
]

For a space Lyn-1,, we will show in Theorem 4.8 that we can always associate polynomials
Q1,...,Qy giving rise to a basis as in Definition 4.4. In this context, Proposition 4.5(iii) says that
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two choices of such a n-tuple are necessarily related by multiplication of an invertible matrix with
entries in IF,.

Let us now prove another useful proposition, first recalling from Definition A.4, that the structural
polynomial of a Fy-vector space V' is defined as Py (X) := [], (X —v) € E[X].

Proposition 4.6. Let Q = (w1, ...,wn)F, be as in definition 4.4. For every 1 <t <mn, let Q; C Q
be the Fp-subspace of Q generated by {wn—t11,...,wn} and let Qny = (Q1,...,Qn—1)r,. Then, the

t-uple of polynomials (Po,,_,(Qn—t+1);-- -, Pa,_,(Qn)) gives rise to the basis (—1)" " (wn—t41, ..., wn)
Of Qt,

Proof. If we specialize Corollary A.17 to the case X; = Q;, we get, for every n —t + 1 < i < n, that

Bn1(Q) _ Ar-1(Po,(Quotin): - Po, (@), Po,,(Qu)

AH(Q) B At(Pant(Qn—t-H)? KRR Pant (Qn))
As a result, the t-tuple (Pg, ,(Qn-t+1),-..,Po, ,(Qn)) gives rise to the basis of ; given by the
t-uple ((—=1)"twn—t41,. .., (=1)"twy,). O

Theorem 4.7. Let Q be a space of differential forms constructed as in Definition 4.4. If there exists
a non-zero w € §) that is a logarithmic differential form, then 2 is a space Lyyn—1 .

Proof. Lemma 4.1 ensures that A, (P) # 0, hence the P;’s are Fp-linearly independent and then
Q= (w,... ,wn>]pp is a vector space of dimension n of differential forms that have a unique zero at
oo (recall that by Proposition 4.2 we have that P.|P).

Up to a change of basis of €2, we can assume that w = w,. We then need to show that, if w, is
a logarithmic differential form then all the forms in € are logarithmic. We start by claiming the
following: if wy, is logarithmic, then (wy,—1,wn)F, is a space Ly,n-1 9. For this, we recall from the proof

RidX

RURy — R R}

. This is done by applying Proposition 4.6 to the case t = 2, and setting

of Proposition 3.1 that it is sufficient to find polynomials R; and Ry such that w, =

RodX
Ri1RY — RVRy
R = Po,_,(Qn-1) and Ry = Pg,_,(Qn).

It follows that w,_; is also a logarithmic differential form. Using the same argument, we can show
that w; is logarithmic for every ¢ = 1,...,n — 1 and then that every form in € is logarithmic, which
entails that €2 is a space Lypn-1 .

and w,_1 =

To see that P = A,(Q) has simple roots, note that its degree is precisely A2—-, and that by

construction its zeroes are the elements of P(2), which we know by Lemma 2.3 to be a set of

cardinality )\pzj%ll. The roots then need to be simple. O

" —1
p

The reciprocal of Theorem 4.7 also holds, completing the generalization of Proposition 3.1:

Theorem 4.8. Let 2 be a space Lyyn-1 ,, withn > 2. Then, there exist polynomials Q1,--- ,Qn € k[X]
of degree A such that, writing P := A,(Q) and P; := (—1)i_1An_1(@), we have that P;i|P and
Q= (wi,...,wn)F, with w; = %dX.

Proof. The case n = 2 is provided by Proposition 3.1, so we can proceed by induction: we fix n > 3

and assume that we have the result of the theorem in dimension up to n — 1.

Let (w1,...,wy) be a basis of 2, and let P(X) = H (X —x). Then we can find Py,..., P, € k[X]
z€P()

such that w; = Z2dX. By Lemma 2.3 the degree of P is A(14p +--- 4+ p"~!) and then deg(P;) =

A1+ p+---+p"2). By [10, Proposition 4.1] specialized at the case ¢ = p (cf. also the remark in
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[8, p. 68]) we have that A, (P1,...,P,) = ~ PUPH4P""% for some v € k*. By possibly multiplying
P and the P;’s by p € k™ satisfying ,L/Jp%ly =1, we can assume that

(4.9) An(Py,..., Py) = Plot0,

We now remark that the space (w1, ..., wn—1)F, is a space Lyyn-1,_; and then by inductive hypothesis

i—1 An%(@)

————— which means that
Ap-1(8)

%
there exist Si,...,S,—1 € k[X] of degree Ap such that 5= (-1)
P = (_1)i_1A”*2(&)An%(s)~ We then have that

- . Pltpttpt? Pltpttpn?
4.10 A 1(Pr,..., Py 1) =0 1((—1)Ap_o(S; — = —,
(4.10) 1(Py 1) 1((=1) 2(7))An71(§)1+p+...+pn R N I
where the last equality is obtained by applying Theorem A.3.
To conclude, we need to show that there exist Q1,Q2,- -+ ,Qn € k[X] of degree A such that

P = Ay(Q) and P; = (—1)“1An_1(@). Let ¢ : k™ — k™ be the map defined by (¢(a)), =

(=1)"'A,_1(d;). Then by Proposition A.15 (since A,(P) # 0) there exist n-tuples @, R of elements
of k(X)) satisfying p(R) = Q, ¢(Q) = P, and

(411) B — (_1)n—1An(E)1+p+...+pn73R§)n—2.

We ought to show that the entries of @ are polynomials with coefficients in k. From equation (4.11)
we can deduce the following identities

(4.12)
n— n— n—2 n—2 n—2
Anfl(Pl, s 7Pn71) = (_l)n_l(An(E))(H_p—’—m—HJ Dltptetp 2)An71(R11) 7RI2) PRI Rﬁ—l )

(413)  Ap(P) = (~1)" DA (R) et DM O A L (R = A (R) O
Combining (4.13) with (4.9) gives

(4.14) A (R — gp
for some 6 € k such that §1+P++p""* = 1,
Moreover, we have that Q, = (—1)"'A,_1(R1,...,R,_1), and then
pn—2 _ (_q\yn—1 pn—2 pn—2 . An—l(Pb N 7Pn—1> N
Qn - ( 1) An*I(Rl LA 7Rn—1 ) - An(E)(1+p+...+pn—2)(1+p+...+pn—3) -
- Anfl(Pla"anfl) Pl+p+~~-+p"*2 Ppn72

(QP)1+p+A..+pn73 (HP)1+p+...+pn73 An—l (ﬁ)pn72 - 91+p+'-~+p”73 An—l (ﬁ)pn—2 ’

where the equalities are obtained by applying equations (4.12), (4.14) and (4.10). Finally, using the
fact that O1HP++P""* = 1 we get that

0P
An-1(S)
which is a polynomial of degree A thanks to the fact that the zeroes of A,,_1(S) are simple and
correspond to the set of poles of the space (w1, ...,w,—1)F, (see Theorem 4.7). Moreover, by Lemma

2.4, we have that deg(Q@,) = A. In a completely analogous way, we can show that the @;’s are
polynomials of degree A also for 1 <i<n — 1. O

Qn:

Finally, we conclude the section with two results that relate the poles of a space Ly,n-1,, and the
zeroes of linear combinations of the polynomial @;’s.
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Corollary 4.15. Let Q = (w1, ...,wn)F, be a space Lyyn-1,, and let Q1, ..., Qyn be the n-uple of poly-

nomials arising from Theorem 4.8. Then, for every 1 <t < n the subspace Q = (Wn—t11,-..,Wn)F,
is such that
n—t
P =PO)- | ~Z (Z eiQi) .
eeFy ' —{0} =1

Proof. By Proposition 4.6, we have that P(;) = Z(S;) where
St = At(Pant (Q?’L—t-i-l)a s 7PQn7t (Qn))7

where Pg, _, is the structural polynomial of (Q1, ..., Qn—¢)r,. Since Pg,_, is an additive polynomial,
we have that

St = H H e H (Po, ,(Qi+€-1Qi—1+ -+ €n—t4+1Qn—t+1)) =

t=n—t+1e;_1€F, €n—t+1€F,

n
H H e H H (Q+ Qi+ €-1Qi—1+ -+ n—t+1Qn—t+1),
i=n—t+1 Ei—ler €n—t+1 EFP QEQn_¢
and the fact that the zeroes of A, (Q) are simple (see Theorem 4.7) ensures that the zeroes of S; are

precisely those zeroes of A,(Q) that are not zeroes of any @ € Q,_; — {0}. This is equivalent to say
that

n—t
P(§) =P() — U Z (Z 6iQi) .
eeFp ' —{0} =1
]
Corollary 4.16. Let Q = (w1,...,wn)r, be a space Lyyn-1,, and let Q1,...,Qy be the n-uple of

polynomaals arising from Theorem 4.8 for this basts.
Denote by q; the leading coefficient of QQ;. Then we have the equality of Moore determinants

Ap(Q1s- -+, Qn) = aAy(Po, ,(Qn-t+1),- -, Po, (Qn))An—t(Q1, ..., Qn—t),

where
o= An(qla"'vq’n) Ekx
At(Pg(Qn—t-‘rl), SR Pg(Qn))An—t(QL s 7Qn—t)
and Pﬂt the structural polynomial of the vector space (qi,...,qn—t)F,-

Proof. We know that the zeroes of A, (Q) are simple and consist of the set P(2), and by Proposition
4.6 the zeroes of A¢(Pg, ,(Qn—t+1),--.,Po, ,(Qr)) are simple and consist of the set P(§2;) with
O = (Wn—tt1,...,wn)F,- We may then apply Corollary 4.15 to see that the set of zeroes of the
polynomials on both sides of the equation are equal, and that these zeroes are all simple. The
corollary then follows from a comparison of the leading coefficients of these polynomials. O

We conclude this part with a result that describes the n-uples of polynomials giving rise to a basis
of an étale pullback of a space Lyyn—1,,.

Proposition 4.17. Let Q = (w1,...,wn)F, be a space Lyyn-1,, and let Q1,...,Qy be the n-uple
of polynomials arising from Theorem 4.8. Let S(X) € k[X] with S'(X) € k* and let *(2) be the
pullback of @ with respect to the morphism Py, 5 P} induced by X ~ S(X) (c¢f. Lemma 2.13). Then

n—1 1

the polynomials arising from Theorem 4.8 for *(2) are (nQ1(S), ..., nQn(S)) with n?" = )

In particular, we have that P(c*()) ={a € k | S(a) € P(Q)}.
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(=D An—_1(Qi)
An(Q)

S =T ey

Proof. From the equation w; = dX it follows that

n—1
where nP" = ﬁ 0

4.2. Polynomial conditions for the existence of spaces Lj,.-1,. The results of Theorems
4.7 and 4.8 show that the existence of a space Ly,n-1, is equivalent to the existence of a n-uple
Q € k[X]™ satisfying certain conditions. In analogy with the case n = 2, Proposition 2.14 (iii) gives
us a way to check this by solving the following system of polynomial equations (note that in this
situation the number of poles is Ap"~!, and the number of equations is computed accordingly)

(1.18) coelf ((£)"~" x071) =1
4.18 "
coeff (P%)pfl,X“p*I) =0, 2<pu<Ap"%(p-1).

In terms of the Q);’s, we have from Remark 4.3 that

£ = (_1)7171 H (Qn +en—1Qn-1+ €n—2Qn_2+ -+ 61@1)7

P,
gEFZ_l
P\ !
which in particular implies that the coefficients of (P—n) are polynomial expressions in the

coefficients of the );’s. In what follows, we aim to describe these polynomial expressions more
precisely. We begin by stating and proving the following proposition, which is independent of
previous results obtained in this paper. This result is interesting also because it leads to a direct
proof (i.e. not relying on the case n = 2) of Theorem 4.7.

Proposition 4.19. Let I, := . For every element € € I, let s(e) = Yo If

A= H (Xn +en—1Xp-1+ep2Xy o+ + Ele)p_l

e€ly_1

and

B = H (6an +en1Xn-1+ep2Xp o+ + 61X1) y
e€ln
s(e)#0

then
A+B= H (Xn+ en1Xn-14+ enoXno+--+eX)P.

ecly_1
s(e)#-1

In particular, we have that A= —B mod k[X]P.

Proof. Let us write B = BBy with

Bi:= ][] (eXnten1Xna1+--+eaXi)andBo= [ (en1Xn 1+ +eaXi).
ecly, el 1
s(€)#0,e,7#0 s(e)#0
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Let us show that the polynomial By contains the common factors between A and B: we can rewrite
this polynomial as

Bl = H H (Gan + Enlenfl + .o+ €1X1)

€n eIF,f e€ln_1

s(e)#—en
= [ & 1 <Xn+€”‘lxn_1+---+qxl>
€n €n
ene]F;f €€ln_1

s(e)#—en
= I II GntenaXoa+-+eaX)

en€FX €€ln_1
T s(9#-1

= H (Xn + 6nfl)(nfl + -+ ele)p—l )
§e[n71
s(e)#-1

and this shows that A + B = B1C with
C = H (Xn+€n—1Xn_1 —|—...+61X1)p71 +B2

€cln_1

s(e)=—1
In order to conclude, we need to show that

C= ][] GntenaXn1+-+aXi),
€€ln—1
s(e)#-1
which is equivalent to consider C' as a monic univariate polynomial of degree (p — 1)p"~2 in the
variable X,, and show that its set of roots is {0,-1X,—1 + -+ 01Xy : § € I,_1,8(0) # 1}. To
verify this, for every 6 € I,—; with s(d) # 1 we set ¢ := s(J) — 1 and we substitute X,, with
0n—1Xpn_1+ -+ + 61 X1 in the expression of C' — By. This gives

H (5”—1Xn—1 +--+ 51X1 + 671—1)(71—1 S R 61)(1)p_1 = H (en—an—l + -+ ﬁle)p_l =

e€lp €€ln1
s(e)=—1 s(e)=c
n—2 €En— €
- H €n H ( Z “ X1+ :IXl) = H €n (n—1Xn—1+ - +eaX1)
en€Fy €€ln1 " " en€Fy €€ln—1
s(e)=c s(e)=
- H (en—1Xpn—1+ -+ eX1) = —DBs.
§€In71
s(e)#0

As a result, 0,1 X,,—1 + -+ -+ 01 X1 is a zero of C € k[Xy,..., X,—1][Xy]for every 0 € I,,_; satisfying
5(8) # 1. O

Remark 4.20. As a corollary of Proposition 4.19 we get a new proof of Theorem 4.7, which is of quite
a different nature than the one given in Section 4.1. More precisely, employing the same notation as
in the Theorem, the non-trivial part is to show that, if the form w, is logarithmic, then the forms w;
p—1
are logarithmic for every ¢ = 1,...,n. We then need to prove that, if (%) satisfies the system
p—1
of equations (4.18) then (%) also satisfies (4.18) for every 4. In fact, we can apply Remark 4.3
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p—1 —
to show that <§i) is, up to a sign, equal to A(Q;, Q1,...,Qi,...,Qy). From this, it follows that

(%) can be obtained from (P%) by applying a permutation of the Q;’s.

On the other hand, Proposition 4.19 shows that the coefficients of A appearing in equations (4.18)

—
are the same as those of —B, which is symmetric in the @);’s, hence we have that (%) satisfies

(4.18) if, and only if <%)p satisfies (4.18).

4.2.1. Many new examples of spaces Lygn-1,. As an application of Proposition 4.19, we construct
for all values of n > 2 new large classes of examples of spaces Lysn-1, in characteristic 2. In this
case, we have that p — 1 = 1, and the equations (4.18) are equivalent to the condition

A(le R Qn) -Xe k[X]2
We can describe the coefficients of A(Q1,..., Q) appearing in (4.18) in more detail.

Proposition 4.21. Let p =2 and let A, be the alternating group on n letters. Then, we have

n—2

AX1, o X)) =) Xo)Xo@) Xo@) - Xom mod k[X]%.
Uemn

Proof. The polynomial A is homogeneous of degree 2”1, and is additive in the variable X,,. By
Proposition 4.19, its reduction modulo k[X]? is invariant with respect to any permutation of the
X,’s, and hence it is additive in X; for every i. As a result, the monomials appearing in A mod
k[X]? are all of the form ]I, a; X" with a; € {27,0 < j < 2772} satisfying > 1, a; = 2"~ 1. Since
we are studying only the terms that are not squares, at least one of the a;’s needs to be equal to
1. We claim that the conditions above uniquely determine the exponents a;. More precisely, let
us assume for simplicity that we have a; < --- < a,. We claim that then we have a1 = 1, as = 1,
az =2, a4 =2, ..., a, = 2" 2%

Proof of the claim. Since the a;’s are powers of 2, in order to show the claim it is enough to show
that a; < 2772 for all i = 2,...,n. We can do this by finite induction on i: we certainly need to
have as = 1 since the sum of all the terms is even. We then assume that, for every j <14, we have
a; < 292 Tt follows that

2"~ — o —ap=ar o +a; <270

Applying the 2-adic valuation vo, we have that

27’L—1

va( —Qiy1 = —ap) =v2(a1+ - +a;) <i— 1

Applying the non-archimedean triangular inequality gives
va (2" — a1 — - —an) = vaaipr + - 4 an) > va(ain),

which allows us to conclude that vo(a;y1) < j — 1, that is a;41 < 2071 O

As a result of the claim, the monomials appearing in A mod k[X]? are precisely the required ones.
We now have to show that the coefficients are all equal to 1. By symmetry, it is enough to show
that the coefficient of (H?:_f anﬂil)anan in the polynomial A is equal to 1. To produce such
a term, we pick X7 from all the 2”2 factors where it appears (those with e; = 1), we pick X3 from
the 273 factors where X5 appears (those with e; = 0, €2 = 1), and so on, until we remain with the
expression X, (X,,—1+ X,,) from which we need to pick the monomial X,,_1 X,,. Since this is the only
process that produces the monomial ( ?:_12 anﬂil)Xn_an, its coefficient in A is equal to 1. O
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Corollary 4.22. Let p =2 and let Q € k[X]" be a n-uple giving rise to a basis of a space 0 as in
Definition 4.4. Then € is a space Lygn-1,, if, and only if
det(Q,Q,Q%,...,Q¥ ) =1

Proof. As a direct consequence of Proposition 4.21, we have that the system of equations (4.18) is
equivalent to (demn Qg(l)QJ(Q)Qg@) e Qg’g;;) — X € k[X]?, which is equivalent to

(Z Qo) Qo2 @3 QJ,S) =1.

Uemn

By denoting 7 € &,, the transposition exchanging 1 and 2, we can express the left hand side of this
equation in the desired determinantal form. In fact, we have that

n— 2 n—2
( Z Qg(l)Qg(Q) 0(3 Q2 = Z Q;(l)Qa(Z)Q?;(E}) a(n + Z QO’ / 0(3 Q2

o, g€, o€Up
2 2n72
- Z Q;‘(l)QU(2)QU(3) O'(n + Z QO’T QO’T Q 3)° ..QO'T(’H,)

o€Un oy,

gn— 2 2 gn— 2
= Z Q/g(l)QU(Q) Q5w T Z Q;—(1)Qa(2)QU(3) Qo)

og€An ccG,—Apn
= Y QR Qi Q2 = det(@,Q. Q% Q")

ceG,

O

If n = 2, Corollary 4.22 leads to a complete classification of spaces Loy o in characteristic 2. In fact,
there are unique polynomials Uy, Us, V4, Vo € k[X] such that Q; = U + XV and Q2 = U3 + X V2.
With these notations, we have Q] = V;Z and Q) = V, and hence

' V2 U2+ XV, Ve U
det @; g;) _ det <V;2 o XVQQ) _ det <V;2 U§> — (Vilh + U1 VA)?.

The condition imposed by Corollary 4.22 then is equivalent to
ViUs + U1 Vo = 1.

If X is odd, then the polynomials V7, V5 have degree ; By Bézout’s theorem, if V; and V5 are
coprime, then there exists a unique pair (Uy, Us) with deg(U ) < )‘% satisfying the above condition.
If we pick (V4,V3) such that Vi + V3 has also degree 251 and we let (U1,Us) be the pair given by

Bézout’s theorem, then by Corollary 4.22 the polynomlals U? + XV? and U3 + XV give rise to a
basis of a space Lgy 2. If we relax the condition deg(U;) < %, then we have other pairs that satisfy
Bezout’s theorem: these can be obtained from the minimal one (U, Us) as (Uy + aVi,Us + aVi) for
a € k.

If A is even, then the argument above works by choosing coprime Uy, U € k[X] of degree % with
Uy + Us of degree % and applying Bézout’s theorem to find V1, V5. This shows that spaces Loy o exist
for every A and in large abundance. While this is already known by work of Pagot |7, Théoréme
2.2.4], the approach relying on Corollary 4.22 is of a different nature.

For n > 2, this approach is in principle not enough to give a complete classification, but we can
extract sufficient conditions for the existence of spaces Lgn-1) , that lead to the discovery of new
large classes of examples for every n.
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Proposition 4.23. Let p =2 andn > 3. Let Q € k[X]" be a n-uple giving rise to a basis of a space
Q as in Definition 4.4. For everyi=1,...,n let U;,V; € k[X] be such that Q; = U? + XV;? and
that they satisfy the system of equations

det(U,V,U%,...,.U*" ") =1
(4.24) ) o\

det Q7K,((1 +63)Q+63K) av((l‘i‘fn)g"i‘enz) - 07
where (e3,. .., €,) runs over all elements of F3~% — {0}. Then Q is a space Lyon-1,,.

Proof. We need to show that, if U and V. satisfy (4.24), then @ satisfy the condition of Corollary
4.22. This latter is equivalent to det <K2,Q2,Q72, . ,Q2n72> = 1, which is in turn equivalent to

det (z, U,Q,... ,g"*) — det (K,Q,Qz FXV2 LU XKQ"_2) ~ 1.

By linearity of determinants, the above condition can be expressed as a polynomial condition in X,
namely

Z det <Q, V(14 e)U+eV)% . (1 +en)U + €nK)2n_2) Cx(Dia? ) g
(63,...,6n)€]17372
If the system (4.24) is satisfied, then the non-constant coefficients of the polynomial above vanish

and the constant term is equal to 1. Hence we can apply Corollary 4.22 to get that ) is a space
L)\Qn—l,n. Il
Proposition 4.25. Letn > 3. Let Uy, ..., U, and Vi, ..., V,, be polynomials in k[ X] and o, 5 € k(X)
such that:

(i) U= oV + BV?

(i) B2 AL (V) = 1.
Then U and V. satisfy the system of equations (4.24).

Proof. The proof consists of two steps:

e We first check that U and V satisfy the first line of (4.24): by repeatedly using condition (i)
we find that

det(U,V, U2, U... .U ") = det(BV2,V, U U%,...,UY )
= Bdet(V2,V, B2V4 U4, . U"T)
= B3 det(V2,V, V4, B4VS, ... . UY)
= BT det(V2, V., VA VE, ... U )

= B et (V2 V, VA VS, L V) = 8T AL (V) = 1

e We then check the equations in the second line of (4.24): for each (e3, ..., €,) € F3~2—{0} we
let k € {3,...,n} be the smallest number such that €, # 0. Since we need every €; with i < k
to be equal to 0, the vectors (Q, V.(1+e)U+eV)? . .., (1+e)U+ ekK)Qkﬁ) forming

the first & columns inside the determinant can be rewritten as (Q VL U, ,Q2k71,z2k72>.
By condition (i), we have that all these column vectors belong to the & — 1 dimensional space
generated by V., ... ,K2k72 and hence

det (U V,U%....U" "V

2]671 2]{372

e (A e)U + 6nz)2“) — 0.
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As this is true for every (es,...,e,) € F3~? — {0}, we have that all the equations in the
second line of (4.24) are satisfied.

O

Theorem 4.26. Let k be an algebraically closed field of characteristic 2 and n > 3.

Let W := (Wq,...,W,) C k[X]" be a n-uple of polynomials such that all the nonzero elements of
(W1,...,Wy)r, are pairwise coprime and of the same degree, denoted by d (in particular, we have
that A, (W) # 0). If we set Vi := Ap_1(W;) for every i = 1,...,n, then there exists a rational

function a € mk[)(] satisfying the folloTuing properties:

(i) The rational function
V4
= 7 X 2\1/2
is a polynomial for every i =1,...,n.
(ii) The n-uple Q = (Q1,...,Qn) € k[X]" gives rise to a basis of a space Lon-1y,,.

Moreover, given such an «, the set of all rational functions satisfying (i) and (i) is {a+ R|R € k[X]}.

Proof. We set 8 = W and remark that the expression of @; given at the point () is equal to

U? + XV where U; := aV; + V2. As a result, to prove the theorem we need to define a € k(X)
such that both the conditions of Proposition 4.25 are met. In fact, by virtue of that Proposition, it
follows that @ satisfies Proposition 4.23 and then gives rise to a basis of a space Lon-1 .

We begin by observing that the hypothesis that V; = An,l(@) for every i, combined with
Theorem A.3 implies that
An(V) = Ay (W)* 7N
Hence condition (7i) of Proposition 4.25 is met. It then remains to find an appropriate a € k(X)
such that aV; + BVZ-Q is a polynomial for every ¢t = 1,...,n.
We denote by 20 the space (Wh,...,W,)F, and for every subspace 20 C 20 we consider its

structural polynomial Py (Y') := [ [y con (Y — W) € E(X)[Y] (cf. Definition A.4). We then consider
the spaces

20; .= <W1,...,V/[Z,...,Wn)y2foreveryz’:1,...,n,

and note that every polynomial in W; 4+ 20; divides Py, (W;) by definition. Conversely, if W € 20
divides Py, (W;) then W € W; 4+ 20;. In fact, it is clear that W has a factor in common with
a polynomial W' € W; 4+ 20; and since any two distinct elements in 20 — {0} are coprime, then
w=w. X

We then apply Lemma A.5 to get that gV, = AZ;%‘(,VK;) = Pm.l(Wi)‘ If we write @ = By with
v € k[X], we then have that Z

v+ V;
Ui =aV;+ BVE = BV;(v+ Vi) = ————.

We now find the desired «y as a solution of a system of congruences in k[X] with coprime moduli:
for every W € (W1,..., W,) — {0}, we let kyy := min{k e N: W € (Wy,..., W)} and we consider

the set of congruences
(4.27) {y=Vi, modW |W e0—{0}}.

We claim that this system is equivalent to the condition that Py, (W;) divides v + V; for every

i € {1,...,n}. In fact, let i # j and set W;; := W, NW;. f W e (Wy,...,W,) — {0} is

a common divisor of Py, (W;) and Py, (W;) for i # j, then by the observation above W €
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(Wi +20;) N (W +20;) = W; + W; + 20;;. Therefore, W divides also Py, (W; + W;). Combining
the additivity of Py,; with Lemma A.5, we have
Vi+V;
Pay, (Wi 4+ W;) = Py, (W;) + Py, (W;) = —— ,
il i) (W) (5) Apo(Wi,. o Wiy Wy, W)

which implies that W divides V; + Vj. As a result, every solution vy to (4.27) satisfies
v=V; mod W for all pairs (j, W) with W|Py, (W;).

This ensures that v =V; mod Py, (W) for every i € {1,...,n}.

Since the elements of 2 — {0} are pairwise coprime, we can apply the Chinese reminder theorem
to find a unique solution v € k[X] to (4.27) such that deg(y) < d(2" —1). Moreover, all the solutions
to (4.27) are of the form v+ RA, (W), for R € k[X]. As a consequence, « satisfies (i) and (i) if,
and only if, & + R satisfies (i) and (i7).

In summary, for every choice of the polynomials Wy,..., W, and of a solution of (4.27), this
construction gives rise to a unique n-uple of polynomials Uy, ..., U, satisfying Proposition 4.25.
Since the nonzero elements of 2 are all of the same degree, and R is fixed, then also the resulting
Q; = U? + XV;? are such that all the nonzero polynomials in (Q1,...,Qn)r, are all of the same
degree, denoted by A. The n-uple @ satisfies the conditions of Proposition 4.23 and then gives rise
to a basis of a space Lygn-1,,. o g

We want to investigate the parameter space of spaces Lygn-1 ,, arising from the construction of
Theorem 4.26. For this, we use the notion of equivalence between spaces Lygn-1 , introduced in
Definition 2.11. For every d > 0, let Wy C (k[X])™ be the quasi-affine variety consisting of elements
(Wi,...,Wy) of the same degree d such that all the non-zero elements of W := (Wy,..., Wy)r, are
of degree d and pairwise coprime. This is defined inside the space of coefficients k(41" by the
inequation

An(wi,...,wy) [ Res(W,W') #0,
W,W’'ew—{0}
where, for every ¢ = 1,...,n, w; is the leading term of W;. Then the construction of Theorem 4.26
associates with every element of (W7, ..., Wy, R) € Wy x k[X] a n—uple of polynomials (Q1, ..., Qn)
giving rise to a basis of a space Lygn-1,. More precisely, the construction yields Q; = U?+ X V2 with
V; = An_l(@) and U; = (a«+ R)V; + %, where a denotes the unique proper rational function

(i.e. of the form W with v € k[X] such that deg(y) < deg(A,(WW))) satisfying conditions (i) and
(#) in Theorem 4.26.
Corollary 4.28. Letn > 3, d > 0 and let Q and ' be the spaces Lyon-1,, arising respectively

from elements (Wh,...,Wy,R) and (W{,..., W/ R') € Wy x k[X] as in Theorem 4.26. Then the
following hold:

(i) We have Q = ' if, and only if, R = R' and (W{,... ., W) g, = (W1,..., Wy)p,.
(ii) We have that Q is equivalent to Q' if, and only if, there exists b € k such that
Wi, s Whp, = Wi(X +6), ..., Wo(X + b)), and R' = R +b.

(i) If \ =1 mod (2" —2), then there exist infinitely many equivalence classes of spaces Lyon-1 ,.
They arise from elements (W1,..., Wy, R) € Wy x k[X] such that R is constant.
(iv) If X is even, then there exist infinitely many equivalence classes of spaces Lygn-1,. They

arise from elements (Wq,..., Wy, R) € Wy X k[X] such that deg(R) > 1.
Proof. Let Q = (Q1,-..,Qy) be the n-uple arising from (W1,..., Wy, R) and Q' = (Q},...,Q,,) be
the n-uple arising from (W7,..., W/, R’). We recall that the writings

(4.29) Qi =U? + XV? and Q) = U + XV}
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are unique, and call U,U’,V,V’ the n-uples arising from these. We now prove separately the
statements of the corollary:

(i) We first show that to have Q = ' it is necessary and sufficient to find a matrix M € GL,,(F2)
such that VM = V' and UM = U’. In fact, by Proposition 4.5(i) and 4.5(iii) Q = Q' if,
and only if, there exists M € GL,(F2) such that Q" = QM. By uniqueness of 4.29, this

is equivalent to have (U')? = (U*)M and (V')? = (V?)M, and, since the entries of M are
elements of Fa, it is equivalent to have that U' = UM and V' = V.M.

We then prove the two implications stated above:

e Let R=R and (W{,...,W))p, = (W1,...,Wy)r,, so that there is M € GLy(F3) such
that W' = WM. Then by Lemma A.18, we have that V/ = VM¢. Since R = R/, this
implies that we also have that U’ = UM¢ and hence Q = .

e Conversely, suppose that U' = UM and V' = VM for some M € GL,(F3). Then,
applying M ! on both sides of the equation

N INY (LY)Q
U'=(+R)YV +An(M)
results in U = (o/ + R)V + #;V/). We also have that U = (o + R)V + %, so that
|4 |4
R +———=(a+F = __
S o 7 B W 17
By rearranging the terms, we get that
1 1 , , .
An(W) A (W) Vi=(@+R)—(a+R)Vi=1,...,n

and since V; # Vj if i # j, and n > 3, we deduce that A,(W) = A,(W’) and
a+R=d +R.

Note that V. = (W) and V' = p(W'), where ¢ is the map defined in Proposition A.15.
Then, by applying this proposition, we have that

2n—2 2n—2

(V) = AW TI and (V1) = A, (W2
Since V' = V.M, then we can apply Lemma A.18 and get (V') = o(V)M¢, which,
combined with the equality A, (W) = A, (W) results in

on—2 on—2

=W M°,
proving that (Wy,...,Wy)p, = (W1, ..., W) )p,. Finally, from o+ R = o/ + R" and the
fact that there is a unique proper rational function in the set {a + R|R € k[X]}, we
obtain that a = o/ and R = R'.
(ii) If W’ and R’ are as in the statement, then it is easy to see that they give rise to 2’ equivalent
to , as we can see by applying the construction that Q%(X) = Q;(X +b?) foralli =1,...,n.
Conversely, assume that there exist a € k* and b € k such that Q;(aX + b?) = Q}(X).
We can see that
Qi(aX + V%) = Us(aX + )2 + b*V;(aX + %) + aXV;(aX + b*)?
= [Ui(aX + V%) + bV;(aX + b))* + X [VaVi(aX + b?)]?,
resulting in the relations

U/(X) = Us(aX + b%) + bV;(aX + b?)
V/(X) = VaVi(aX +b?).
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From the latter of these, combined with Proposition A.15, we get that
W/(X) = fa 2@ =TT Wi(aX + b%)
for 6 € k such that 2" '~1 = 1. In particular, we have that
A (W) = 07" ~103871D A, (W (aX + 1),
We now compute U/ in two different ways. On the one hand, we have

Vi(aX + b2)?2

! = Ui(aX + b H(aX +b%) = (aX + b
Ul = UiaX +0%) 4 WilaX +) = ok R+ DVi(oX +8°) & X o)

—1y// X 2 " ! X 2
:(omtRer)V;,(X)Jr a fén( ) :(a+R+b)W(X)+92 1ty Vi )/.
Va f1-2" 3@ TT A, (W) Va An (W)
On the other hand, we have
V/(X)?
Ui = (@ + RWV/(X) + 30

and since this both computations are true for all ¢, an argument analogue to the one used
to prove (i) shows that 62" ~1q77=2 = ga2=2 = 1. But we have that §2"~2 = 22" ') — 1
and hence a = 1. As aresult, « + R+b =o'+ R’ and hence « = o/ and R’ = R+ b.

We have shown so far that applying the construction of Theorem 4.26 to the n + 1-uple
(Wi(X +0%),...,Wo(X +b%),R+b) produces (Qf,...,Q)) giving rise to a basis of
equivalent to Q. By applying part (i) we conclude that the same Q' can only arise from
(W{,..., W), R') with

(W1, W, = (Wi(X +02),...,Wn(X +b*))p, and R' = R+ .
(iii) If R is constant, we have
A=1+2degV;=14+2d(2" ' —1)=1+4d(2" - 2).

For every A =1 mod 2" — 2 we can then construct infinite equivalence classes of spaces
Lygn-1,, by picking d = =% and all possible n-uples (W1,...,W,) € Wj.
(iv) If R is not constant, then deg(U;) > deg(V;) and A is even. In fact, any even value of A can

be achieved in this way, simply by choosing W1, ..., W, to be constant and R to be of degree
A

R

0

Remark 4.30. Even though in Theorem 4.26 we assumed n > 3, the construction of the n-uple @ in
its proof makes sense also for n = 2. Namely, for every pair (W7, Wy) € Wy one can set Vi = W,
Vo = Wy and fix a solution « to the congruences

Y= V1 mod V2
~y=V1 mod Vi + Vs
Y= V2 mod Vl.

By considering

o (W) (v+13)
Va(Vi + Va) Vi(Vi +V2)’
one produces a pair (U2 + X V2, U3 + X V) giving rise to a space Loy 2. We can show that this

construction recovers all the spaces Lgyo. In fact, starting from pairs U,V satisfying Bezout’s
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identity U;Va + ViUs = 1 (cf. the discussion following Corollary 4.22 to see that these define all
possible spaces Loy 2), we have that

U1V2 = 1 mod ‘/1
U2V1 =1 mod VQ

Using these, we verify that the polynomial
v = ViU + V3UL = Vi+ VaUi (Vi + Vo) = Vo + U Vi(Vi + Va)
solves the congruences (4.27) and yields

(v +W1) (v + V2)
Up=—+ "YU _ and Up= — 2 _
YT+ ve) 2T W+ W)

as above. For every choice of U and V we can find such a v: hence we can recover in this way all
the spaces Lo 2.

Remark 4.31. We remark that, if  a space Lon-1y,, is arising from an element (W1,..., Wy, R) €
Wy x k[X] as in Theorem 4.26, then every étale pullback of €2 also arise from this construction. More
precisely, let S(X) € k[X] with S'(X) = 1 and let 0*(Q2) be the pullback of £ with respect to the
morphism o € End(P}) induced by X ~ S(X) (cf. Lemma 2.13). Then, we know by Proposition
4.17 that (Q1(S(X)),...,Qn(S(X))) is the n-uple arising from Theorem 4.8 for *(£2). One verifies
that Q;(S(X)) = (Ui(S(X)) + RV;(S(X))? + XV;(S(X))?, and as a result one proves that o*(€2) is
the space arising from (W0 S,..., W, 0S, R+ S — X).

5. STANDARD L n-1, SPACES AND THEIR SUBSPACES

p—1)p

In this section, we analyze certain spaces Lyyn-1, for A = p — 1 that appear implicitly in [6]. In
that paper, they are instrumental to lift to characteristic zero certain local actions of elementary
abelian groups and they have since been made explicit in [8] as well as in [10], in a generalized form.
Due to their relevance, and for the fact that they were among the first examples of spaces Lypn-1 ,, to
be discovered, we choose to give these spaces a name and we call them standard L,_yy,n-1,, spaces.
In the first subsection, we explain how to construct these spaces using Theorem 4.8. Namely, we
find sufficient conditions for a set of polynomial Q1,...,Q, as in the theorem to produce a standard
space. In the second subsection, we show that we can construct all the subspaces of a given standard
space using étale pullbacks of other standard spaces.

5.1. Standard spaces. We begin by giving the definition of a standard Lyn-1(,_1), space. We
recall from Corollary 2.10 that the set of poles of a space Ly,n-1, characterizes the space itself.

Definition 5.1. A standard Lyn-1(,-1), space §)is a space Lyn-1(,_1),, such that there exists a
n-uple a := (a1, az,--- ,a,) € k" with A, (a) # 0 for which P(Q) = (a1, a2, -+ ,an)r, — {0}

For i € {1,...,n} and a as above, let

(5.2) w; = Z Y gx.

n
_ Y i
(€14eerv€n )EFR™ 2371 I

Then (w1, ...,wn)r, is a standard space by [10, Proposition 3.1]. This shows that, for every a € k"
whose entries are [F)-linearly independent, there exists a standard space whose set of poles is
<a17a27 e 7an>]Fp - {O}
We can recover a description of standard spaces using the polynomials @Q;’s of Theorem 4.8, as we
establish in the following proposition
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Proposition 5.3. Let wy,...,w, be defined by the identities (5.2), and let
Ag(ai, X)

P x

with Mpnfl = W;P*l' Then we have w; = %dX where P := Ay (Q) and P; := (—l)iflAn_l(@).

Qi = = p(a; XP~1 —al)

Proof. First, we compute

n—1

P (XY An1(Da(as, X))
7= <M> A (Bolar, X),- . Dg(am, X))

which combined with Lemma A.6 (for m = 1) gives

P 1 () Au@,X)
Pt Apgi(e, X)

Using [10, Proposition 3.1|, we can write

1 zflAn(i

Anyi(a, X)

w; = —Ap(a)P! =

dX ¥V i=1,...,n,

and this proves the proposition. ]

Example 5.4. Let n = 2 and choose a1 = 1, ag € F2 — F),.
Then we have

w —pz_:l ! + 2 TR p—l X
b\ X —(I+iag) | X — (2+iag) X —(p—1+iag)

w —pz_:l( L 2 +o p_1 )dX
P\ X = (ita) X —(i+2a) X —(i+ (p—1)ap) '

Each w; has p(p — 1) poles. The poles in P(2) are all the elements of the multiplicative group
IE‘;:Q and those in common between w; and wy are those elements of [F» that neither belong to the
one-dimensional [F-vector space generated by 1 nor to the one generated by as.

Remark 5.5. Let us fix a n-tuple a € k" such that A, (a) # 0 and let us denote by A := (ay,...,an)F,
the IF,-vector space generated by a and by A* its dual. We can make several remarks:

(i) If © is the standard space with P(Q2) = A — {0}, there is a natural pairing
P:AXxA ———F,

resy(w) if x # 0,

(w,z) —— i
0 if z=0.

We remark that this is a perfect pairing.
In fact, writing x = e1a1 + - - - + €pa,, we deduce from equation (5.2) that

reS, (E aiwi> = E Q€4
% 7

which shows that 1 is bilinear and that ¢ (w;, a;j) = d;;, the Kronecker symbol. Hence 1)
is perfect and, as a result, the homomorphism w to = — ¥ (w, ) defines an isomorphism
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t: Q= A*. We can explicitly describe the inverse of ¢ as follows: for all p € A* — {0} define

the differential form wy, := > 4 %. Then the isomorphism

L/IA*—>Q

. {w@. if 0,
0 if ¢ =0.
satisfies o/ = id and ¢/ o1 = id.

(ii) Using Definition 5.1 it is easy to show that the Frobenius twist of the standard Ly,n-1,,
space associated to the vector space A = (a1,...,a,)r, is the standard space associated to
D(A) = (al,...,ah)F,.

(iii) We can apply a translation to a standard space ) to get a space Lyn—1(p—1)n equivalent to
), in the sense of the definition at the beginning of Section 6. This will not be in general a
standard space.

5.2. Subspaces of standard spaces via étale pullbacks. Let A be a n-dimensional Fj-vector
subspace of k. The construction of Section 5.1 results in a map

A— Q(A)

associating with it the standard Lyn-1(,_1),, space whose set of poles is A — {0}. It is easy to see that
every subspace of (A) of dimension ¢ < n is a space Lyn-1(p—1),¢, and that it can not be equivalent
to a standard space.

However, we have seen in Lemma 2.13 how to find spaces Lygpn , starting from spaces Ly,n-1 .,
via the pullback of the differential forms under suitable morphisms of degree dp. In this section, we
characterize the subspaces of the standard spaces constructed in §5.1 as étale pullbacks of standard
spaces of lower dimension. More precisely, let n > 1,1 <t <n and A := (ay,-- ,an)F, C k with
a:= (ar,az,--- ,ap) such that Ay (a) # 0. Let A,y = (a1, ..., an—1)F,, A5t = (@n—t41, ..., an)F, and
let Py, , be the structural polynomial of A,_; (cf. Definition A.4). For every n—t+1 < i < n, we set

—

a; := P4, ,(a;). Then, by Lemma A.16 we have that A;(a) # 0 and hence AS_, = (Gn—t+1, -y -, Gn)
is a [F,, vector space of dimension t. Let Q(A) be the standard space associated with A and let

wi= Y #d}(, 1<i<n
(€1,rem)EF §=1 3%
be the elements of its usual basis. Let Q1, ..., Q, be the n-uple of polynomials arising from Theorem
4.8, which we know by proposition 5.3 to satisfy Q; = u%"’x) with ,upn_l = W%p‘l' Similarly,

we let

;= 3 € _dX, n—t+1<i<n

X - €0,
(En—t+41,-,6n) EFY, Z]_nﬂ%l 7

be the elements of the usual basis of the standard L:-1(,_1)-space Q(Il%:) Finally, we let
Qn_t+1; e @71 be the t-uple of polynomials arising from Theorem 4.8, which satisfy ’Qv, = ﬂ%
with i# = -1 —

Ag(An—ti1y.-,0n)P

Proposition 5.6. Consider the subspace Q° = (wp—t11,- -, wn)rF, C Q(A).

(i) We have that Q° = o**(Q(Zf:jt)). More precisely, for everyn —t+1<1i<n, w; is equal to

o*(@;), the pullback of @; with respect to the morphism Py, 5 P} induced by X — Py, ,(X).
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(ii) The t-uple of polynomials arising from Theorem 4.8 for the basis (0*@p—t41,...,0 W) of
0% =o*(QAS_,)) is given by

nQn7t+1(PAn_t)7 D 7nQn(PAn_t)7

(1

1 _
PAn—t T An—i(ar,an—¢)PL"

These polynomials satisfy the condition
(—1)" "nQi(Pa,_,) = Po, (@) Vn—t+1<i<n,

where Pg,,_, is the structural polynomial of the Fy-vector space Qn—¢ := (Q1, -, Qn—t)F,-

with n satisfying P~ =

Proof. (i) By Lemma A.5, we have that P}  (X) = (=1)""Ap_4(a1,...,an )" € k¥, s0
that the morphism o gives rise to an etale pullback as in Section 2.3. Since the degree of
Py, _, is p"', it follows that o*(Q(A;,_,)) is a space L,_1)

we remark that @w; = dlé? with

pr1 ¢ For every n—t+1 <1 < n,

n n

Fi(X) = II (X— > @)= I1 (X = D gPa, (@)

(€n—t4+15--,€n)EFY Jj=n—i+1 (€n—t415e-,€n)EFY j=n—t+1

By using additivity of Py we have that

n—t?

€

Fi(Pa,_, (X)) = 11 Pa, (X = ) €jay)

(en_t_,_l,...,en)e]F;, j=n—t+1

= ]I 11 (X —(at D ea)

a€An_t (En—t41y-ees en)EF? j=n—t+1

(€160 ) EFR Jj=n—t+1

dF;(P
As a result, o*(@;) = F,»((Pf&:t)) has the same set of poles as w;, and each pole has the same
residue for both forms. By applying Lemma 2.7, we conclude that o*(@;) = w;.
(ii) By Proposition 4.17, the t-uple of polynomials arising from Theorem 4.8 for the ba-
sis (0*@Wn—t41, ..., 0% Wy ) of o*(QAS_,)) is NQn—t+1(Pa, ,),---,nQn(Pa, _,), with ' =
1 o (_l)nft
Ph_,  An-tlaran—)P=t?

From Proposition 4.6, we have that the t-uple of polynomials arising from Theorem 4.8
for the basis ((—1)"fwp—t41, ..., (=1)""twy,) of Q% is (Pg,_, (Qn-t+1), ..., Po,_,(Qn)). We
can apply Proposition 4.5(i) to find that the ¢-uple of polynomials arising from Theorem
4.8 for the basis (wp—t41,...,wn) of Q% is ((—=1)""Pg,_,(Qn-t4+1),-..,(=1)""Pg,_.(Qn)).
Since by (i) we know that 0*(&;) = w;, and Proposition 4.5(ii) ensures the uniqueness of the
t-uples of polynomials arising from Theorem 4.8 for the same basis, we have that

()" 'Qi(Pa,_,) = Po,_(Q:) Vn—t+1<i<n.

as stated.

O

Example 5.7. Let n = 3, and t = 2. Choose A" := (o, B)r, C k of dimension 2 and consider the

corresponding standard L,,_1) 2 space Q(A’). Let a1 € k*, and define S(X) := XP — a’l’_lX.
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Since k is algebraically closed, we can choose a solution ag to the equation S(X) = a, as well as a
solution ag to the equation S(X) = 8. We remark that

S(fia1 + faaz + f3az) = foS(a2) + f35(a3) = foa + f36 V fi, fa, f3 € Fp,

and this vanishes only when f, = f3 = 0. In particular, if (fa, f3) # (0,0) then fia; + faas + fsas #
0. We then have that As(ai,as,a3) # 0, so we can consider the standard space Q(A) with
A := (a1,a2,a3)r, and Proposition 5.6 tells us that the pullback of Q(A’) with respect to the
morphism induced by X — S(X) is a two dimensional subspace of Q(A).

Note that, by making different choices of as, as we still end up with the same vector space A.
Hence, the datum of the space A’ together with the element a; € k* is enough to determine the
space A.

Proposition 5.6 proves that subspaces of standard spaces can be realized as étale pullbacks of
standard spaces. While a complete characterization of the spaces that can be obtained as étale
pullbacks of standard spaces is outside the scope of this paper, we include here a lemma that gives a
necessary condition for a space Ly,n-1, to be equivalent to such a pullback.

Lemma 5.8. Let 2 be a space Lypn—1, obtained as in Lemma 2.13 via an étale pullback of 21 a
space Ly, pn—1 . If 2 can also obtained via an étale pullback of Qa, a Ly,pn—1 ,, space with A1 < g
then p|Aa.

Proof. For i = 1,2 let S; be the polynomial defining the étale pullback of £2;. We write

S1(X) = ad1Xd1p + adl_lX(dl_l)p + -4+ mX +ag

S9(X) = bg, XUP 4 by, 1 X 27DP 4 A0 X by

with non-zero leading coefficients. Let Q11, ..., @n1 be a n-uple of polynomials giving rise to a basis
of Q1. Then by Proposition 4.17, up to multiplying by a constant, Q11(S1(X)), ..., Qn1(S1(X)) give
rise to a basis of . Similarly, if Qi2,...,Qn2 give rise to a basis of {2y then (up to multiplying
by a constant) Q12(S2(X)), ..., @Qn2(S2(X)) give rise to a basis of 2, as well. Up to changing the
basis of {29, we can assume that the bases of €2 produced in the two cases are the same, and then
apply Proposition 4.5(ii) to get that Q;1(S1(X)) = nQj2(S2(X)) for every j =1,...,n and n € k*.
By definition we have deg(Q;1) = A1 and deg(Qj2) = A2, and the condition A\; < Ao implies that
dy > da, since we ought to have A\{dy = Aads.

Assume by contradiction that ged(p, A2) = 1. Then deg(Q;) = A2 — 1, and since S2(X)" is a
constant we have that

deg([Q;2(52(X))]") = deg(Q)2(S2(X))) = (A2 — 1)dap.

At the same time,
deg([Q;1(S1(X))]') = deg(Q};(S1(X))) < (A1 — 1)d1p < (A2 — 1)dap.
But deg(Q;1(S1(X))) = deg(Q;2(52(X))) and hence a contradiction arises. O

A direct consequence of Lemma 5.8 is that a space obtained as a pullback of a space Lypn-1,,
with (p,\) = 1 and A > p — 1 will never be equivalent to the pullback of a standard space. For
example, the spaces Li22 and L1529 constructed in Section 6 give rise by étale pullbacks to certain
spaces L3gq2 and Lysq9 for every positive integer d, and the lemma ensures that these spaces are
never equivalent to étale pullbacks of standard spaces.
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5.2.1. Standard spaces for p = 2. When p = 2, the standard Lyn-1 ,-spaces can be also obtained
using the techniques of section 4.2.1: by Proposition 5.3 we have that any such space is generated by
a basis arising from @1, ..., Q, with

Qi = paiX + pa; = VX + U}
for V; = (uai)1/2 and U; = p'/2a;. We then have that U; = ,u*1/2Vi2 and then the condition (i) of
Proposition 4.25 is met by setting o = 0 and 8 = = /2. Recall that u2n_1 = Anl(a)' We then have
that -

ne1_ Ay ((pa)V?,. .., (nap)?) n—1
182 lAn(K) — n (M1/2)2n71_1 n _ (N1/2)2 An(g)l/Q — 1’
and hence condition (ii) of Proposition 4.25 is also met. By using Proposition A.15, we know that
there exist elements Wy, ..., W, with A, (W) # 0 giving rise to this space via the construction of
Theorem 4.26.

Conversely, for every n-uple of elements W1,..., W, € k* such that A, (W) # 0 one can set

V, = Anfl(@) ck* and U; = % € k*, and show that the resulting

2 2 2 ‘/;‘2 ’
Qi=U+XV7=V’X+

An(W)
give rise to a basis of a space Lan-1, whose set of poles is the set of non-zero vectors in (a,..., a%)pp
with a; := %. By definition, this is a standard space.

Finally, we observe that we can also obtain étale pullbacks of standard spaces using the the
techniques of section 4.2.1. In fact, by Remark 4.31, we can realise étale pullbacks of standard
spaces with respect to X — S(X) with §'(X) = 1 using the the techniques of section 4.2.1. All étale
pullbacks of standard spaces are equivalent to an étale pullback with S'(X) = 1, so we can realise in
this way at least one member from each equivalence class.

6. CLASSIFICATION OF SPACES L1229 AND Lj592 OVER I3

The aim of this section is to completely classify spaces Li22 and Li52 up to equivalence and
Frobenius equivalence in the case where p = 3. We recall that the spaces L3 2, Lg2 and Lg o (p = 3)
are classified by Pagot in [8], so the results of this section are a natural prosecution of that work. By
exhibiting the existence of a space Li52, we provide the first known example of a space Ly, where
p — 1 does not divide A. This section relies on computations of Grobner bases to solve polynomial
systems in characteristic 3. The supporting Macaulay2 code can be found in a public repository®, in
a form that can be easily replicated using other computer algebra systems.

6.1. Classification of spaces Lis2. Let p =3 and A = 4. We set
Q1 := a(X4 — 51X 4+ 59X?% — 53X + S4)
Qo= X* — 1 X3 4 t9X? — t3X + ty,

and we look for conditions such that the pair (Q1,Q2) is a prompt for a space Liza. To
this aim, we consider the expressions Ry’s of Convention 3.5 as polynomials with coefficients in
{a,s1,...,84,t1,...,t4} and look for a solution to the system of equations

{Rl(a, Si, ti) 7é 0,

6.1
(6.1 Ry(a,si,t;)) =0 for k=2,...,8.

The main result of this section is the following:

Savailable at the url https://github.com/DanieleTurchetti/equidistant
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Theorem 6.2. Let k be an algebraically closed field containing Fy and let a € k be such that a® ¢ Fs.
Then, the pair (Q1,q,Q2,q) with

Qra:=a(X* + (a* —a® - 1)X? +d®)

Qo= X*— (a* +a* - 1)X? +1,

is a prompt for a space Li22 in Q(k(X)) denoted by Q,. Conversely, if Q@ C Q(k(X)) is a space
L1 o then there exists a € k with a? ¢ 3 such that ) is equivalent to €.

Proof. We prove the two statements separately.
o Let (Q1,4,Q2,4) be as in the statement. We can verify that

((Qzls,a - Q17aQ%,a)2)// = _(a3 - a)lO(a2 + 1)5

Since we assumed that a? ¢ F3, this is non-zero. We can then apply Proposition 3.1 and
Remark 3.4 to get that the pair (Q1,q,Q2,) is a prompt for a space Li22. In the rest of the
proof, we will denote this space by €2,.

o Let Q C Q(k(X)) be a space Lig 2, and let (A, B) be a pair of polynomials in k[X] of the
form

Ql = CL(X4 — 81X3 + 82X2 — SgX + 84)
Qs = X4 - t1X3 + t2X2 — 13X 4 ty4,
such that (Q1,Q2) is a prompt for Q. Then, we can apply the following successive reductions
to get a situation where the coefficients s;’s and t;’s can be retrieved computationally :
‘s1 =t1 = 0: We know by Lemma 3.6 that s; = t; and applying the translation X — X + s; allows
us to suppose s1 =t = 0.
‘s3 = t3 = 0”: Suppose that this is not the case. Then, up to replacing ()1 with a@Qs and Qo with éQh
we can suppose that s3 # 0. Let o € k such that o = Sq Land apply the transformation
X — aX to get that s3 = 1. Then one finds that the system (6.1) has no solution (see
[12, Program 6.1]), giving rise to a contradiction.
‘sy = a®, t4 = 1’1 A computation of Grébner basis under the reductions above (see [12, Program 6.2])
returns the condition s4 = aPt4. Since t3 = 0 we know that t4 # 0 otherwise the
polynomial B would have multiple roots. We can then pick 3 € k such that 8% = t;l
and apply the transformation X — SX to get that 4 = 1.
The reductions above leave us with polynomials of the form

Q1= a(X* + 53X% + a®)
Q2 = x4 + t2X2 + 1.
Let us simplify the notation by setting s := so and t := t9, and compute these coefficients.
Now, [12, Program 6.3] can compute a Grobner basis of the system (6.1). By inspecting the
first element of the basis, we conclude that we have at most six possible expressions for s:
+(a* +a® —a+1)
s=1 +(a* —a®—1)
+(a*+a?+a+1)
Let us show how the situation can be further simplified: first, we note that the transformation
X — iX with i2 = —1 produces a new pair (S1,S2) with
Sy = a(X?t — 5o X2 4 a®)

Sy = X4+ — 15, X2 + 1.
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Then, we note that the pair (—Q1, Q2) produces the same space Li2 2. Hence, if we can find
a solution to the system (6.1) for a pair (a, s) we also have a solution for pairs (—a, s),(a, —s),
and (—a, —s), which reduces our search to the following two situations:

Case 1: s = a* — a? — 1. In this case, Program [12, Program 6.4 returns t = —(a* 4+ a® — 1)
(under the condition that s # 0), and then we find that Q1 = Q1,4 and Q2 = Q2,4, as
required. If s = 0, then the program returns t? = a® +1 = a*, which gives the two values
t = +a® = +(a* + a® — 1). Note that these two values correspond to equivalent spaces,
under the transformation X — iX. We conclude that, in Case 1, the pair (Q1,Q2) is a
prompt for a space equivalent to £2,.

Case 2: s = a*+a®+a+1. In this case, Program [12, Program 6.5] returns ¢t = —(a* —a®+a?+1)
(under the condition that s # 0).

We now compare the pair (Q1,Q2) obtained with the pair (Q1,4—1,@2,4—1) which is a
prompt for the space ,_1, namely

Qra-1=(a—1)(X*+ (a*—a®* —a*+a—1)X*+ (a— 1)%)

Qoa1=X"—(a"—a®>+a®> +1)X? 4+ 1.
One verifies that Q7Q2 —Q1Q3 = QF , 1Q2.0-1—Q1,41Q3 ;. Hence the pair (Q1,Q2)
is a prompt for a space Li22 with the same set of poles as €2,_1. By Corollary 2.10,
we have then that (Q1,Q2) is a prompt for ,_1. If s = 0, the program returns
t? = —a® — a® — a — 1, giving the two values t = £(a® + a) = +(a* — a® + a® + 1), that
correspond to equivalent spaces under the transformation X — ¢X. Hence in Case 2
the pair (Q1,Q2) is a prompt for a space equivalent to ,_1.

O

We can be more explicit about the spaces €, classified in the theorem, and compute their residues
and their writing in logarithmic form. This is the content of the following result.

Corollary 6.3. Let k be an algebraically closed field containing F3. Let a € k be such that
(a® —a)(a® + 1) # 0 and fix i,j € k such that i* = —1 and j*> = a®> + 1. Then the space Q, is
generated by %1 and %2 with

fi= J] X =(ala—1j+eai)® [ X-(ala+1)j+ea)? [ (X - (aaj+e(a® 1))

e1=*+1 e1=+1 e1=+1
e2==+1 e2==1 ea==%1
and
o= J] X =(ala—1)j+eai)™ J] (X —(ala+1)j+eai)) ] (X - (ej+eala®—1)))".
e1=*+1 e1==+1 e1==+1
e2=+1 eo==+1 ea==+1

In particular, the set of poles and residues of these generators are:

’ x | resi(x) | resy(x) || x | resi(x) | resa(x) |
jt+at—1 0 1 (a+1)j+ ai 1 1
j—a’+1 0 1 (a+1)j —ai 1 1
—j+a?-1 0 ~1 —(a+1)j+ai| -1 —1
—j—a’+1 0 ~1 —(a+1)j—ai| -1 —1
(a—1)j +ai 1 -1 aj + (a® — 1) 1 0
(a—1)j — ai 1 -1 aj — (a® —1) 1 0

—(a—1)j+ai| -1 1 —aj+ (a®>—1)| -1 0
—(a—1)j—ai| -1 1 —aj —(a>-1)| -1 0
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Proof. We start by computing the zeroes of the polynomials Q14, Q1,0 + Q2.4, Q1.0 — Q2.4, Q2.a,
which can be easily done by applying the formulas for solving biquadratic equations. We find that

2(Qua) ={j+a’ = 1,j—a’+1,—j+a’ —1,—j—a’ + 1},
Z(Q10+ Q20) = {(a—1)j +ai,(a—1)j —ai,—(a — 1)j + ai, —(a — 1)j — ai}
Z(Q1a — Q24) ={(a+1)j +ai,(a+1)j —ai,—(a —1)j + ai,—(a — 1)j — ai}, and

Z(Qla) = {CL] + (CL2 - 1)aa.j - (CL2 - 1)’ _a’j + (CL2 - 1)7 _aj - (CL2 - 1)}7
as expected. By Theorem 6.2 and Remark 3.4 we know that ), is generated by the differential forms

Q1,adX — Q2,0dX : 6,2 5(,3 _ )10
QT Q-1 aQLL) and wy := I (o IO Py Ty with ¢®(a®+1)°(a” —a)'” = 1. To compute
=+ 1

the residues of these forms at their poles, we remark that ¢ = i(a2+1)5/12(a37a)5 @

For each € Z(Q1,4) UZ(Q1,0 + Q2,0) U Z(Q1,0 — Q2,0) U Z(Q2,4) We can compute the quantities
(QF.Q2.0 — @3,) (x) and (QF, — Q1,.Q3,) (x) and check when they are equal to £5°(a® — a)®.
Up to possibly replacing j with —j, and using the formulas res;(z) =

w1 =

and

1
A(Q1,,Q20—Q3,) (@)

, we get the table of residues above, or equivalently that wy = ‘%1 and

_ 1
resa(r) = A(QF ,—Q1,0Q3,) (v)

wy = %2 with f1, fo as in the statement. O

Remark 6.4. In the light of the results of Section 5.1, it is natural to wonder if the description of
subspaces of standard spaces given by Proposition 5.6 has an analogue in the case of spaces that are
not standard. Namely, given a space Ly,n-1,, that is not standard, and assuming that p|\, one can
ask whether its ¢-dimensional subspaces for ¢ < n can be obtained as étale pullbacks of some space
Lypi-14

The classification of spaces L122 achieved in this section shows that the answer to this question
is negative, at least at the level of generality stated above. More precisely, for every value of a no
one dimensional subspace of ), can be obtained as a non-trivial étale pullback of some other space.
First, note that we only need to check this for degree 6 pullbacks of spaces Lo 1, as there are no
spaces L4 1. Then, we remark that any space Ls 1 is equivalent to a standard space, whose set of
poles is of the form {x, —z}.

The étale pullback ¢*(w) is then up to a constant of the form % for S(X) of degree 6 such
that S(X) € k*. In particular, S(X)? — 22 has always a non zero term of degree 7. If we fix a
differential form w € €2,, and we consider the polynomial whose zeroes are the poles of w, we see
that it has only terms of even degree. As a result, it is not possible to obtain w via an étale pullback
of a differential form in a space Lo .

6.2. Classification of spaces Li52. Let p = 3 and A = 5. In the first part of the section, we
exhibit explicitly two vector spaces L1 2, one whose poles are all in Fo7 and another one whose poles
are all in Fgy.

Example 6.5. Let Fo7 be the finite field with 27 elements, and let us write Fo; = F3[u], with
p? — 4+ 1=0. We have that u'3 = —1, and then p is a generator of the cyclic multiplicative group
F2,. Following the notation used in the proof of Proposition 3.1, we define a subset of Fo7 indexed
by the elements of P!(F3) = {0, 1,2, 00}:

Xo= {w?—pp+1,—p*—p—1,0,0} = {u*, 1% pn, p1 0}
{7//? +p—= 1’ 7u25 7:“’2 —H + ]-a 7:“’2 - ]-aMQ + 1} = {M57H157H247M83//J21}
X2 = {_N2 + 17 _17H2 — + 17/1’2 - 17 —/142 + M} = {/1/257/1’137/1'187/1'127”17}

Xoo= {2 +pp—1,02% 0 —p—1,—p— 13 = {p, 1%, p?, 17, ??}.
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To these sets, we associate the corresponding polynomials of Fo7[X]:

Po(X) =Tlpex,(X —2) =X°— (u2+u+1)X3—X2+(u2—u—1)X

Pi(X) =Tlpex, X —2)  =X°— (- DX - (0> —p+1)X*— (u+1)X — (1> +1)
Po(X) = [hex,(X —2)  =X"+ (u2—ﬂ—1)X3 (B+DX2+ (p* = 1)X = (u® —p—1)
Pouo(X) = [Liex, (X —2) =X°— (P +w)X° = (u+DX? = (¥ +p— )X — (u* — p+1).

Now, let
QUX) == (4* — p = DPy(X) and Qa(X) := —pPoo(X).

One verifies that the second derivative of the polynomial (QF — Q1Q3)? is equal to —1. Moreover,
since (u? — p—1) & (—p) ¢ Fs, the degree of iQq + jQ2 is equal to 4 for every [i : j] € P}(F3). Then,
<l 4X and Wy = L
QiQ2 — Q3 QiQ2 — Q3
that Q; := (w1, w2) is a F3-vector space Lis 2.

To write the generators of this spaces in logarithmic form, we need to compute their residues at
the poles. In order to do this, we denote by Z; the set of zeroes of Q2Q2 — Q3, by Zs the set of
zeroes of Q3 — Q1Q%, and we introduce the functions res; : Z; — F} and resa(z) : Zo — F5 defined
by res;(z) := res,(w;). Then, we compute them thanks to the formulas res;(z) = m and

We find the following table of values:

we can set w; = dX and apply Proposition 3.1 to show

_ 1
res2() = @ig, 087 @)

|z [resi(x) [resy(x) || @ [resi(x) ] resa(z) |

u? 0 1 p® 1 -1 -1
u’ 0 1 pt3 1 1
u19 0 1 M18 -1 -1
U 0 -1 pt? 1 1
0 0 -1 pt" -1 -1
u’ -1 1 uto 1 0
utd 1 -1 u? 1 0
p2 1 -1 u? -1 0
u® 1 -1 u’ -1 0
M21 1 -1 MQQ 1 0

Then, wy = C%l and wy = % with

F(X)= [ (X =2 and Fy(X) = [ (X —a) e,
TE€Z]L TEZ
Example 6.6. Let Fg; be the finite field with 81 elements, and let us write Fg; = Fa[u], with
pt 4+ pd —p? —p—1 =05 We have that u?® = —1, and then p is a generator of the cyclic
multiplicative group Fg;. In analogy with Example 6.5, we define for every element of P1(F3) a
subset of Fg; as follows:

Xo= {17,130, 15, 139, b3}
Xy=  {p26, 150, 152 188, 4
Xo = {u34 160 186,70 0}
Xoo = {p10, 01, 119, 420, 140
Then, we associate to these sets the corresponding monic polynomials. In this case, it turns out
that they have coefficients in Fg. More specifically, we set a = —u?? € Fg and one can verify that we

6This is equivalent to write Fs; = Fs3 [a] for a choice of a satisfying a* 4+ a? —1 =10 and set u = o® + a — 1.
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have:

Po=loex,( X —2) =X"-X’-X?>+0aX—(a+1)
P =Tlex,X—2) =X"—aX’+(a—-1)X—(a—1)
Py=Tlex,(X—2) =X°—(a—1)X?>—(a—1)X

Po=Tlex. (X —2) =X°—(a+1)X’+(a+1)X*+X +a
Then, we set
Q1(X) :=aPy(X) and Q2(X) := —(a+ 1)Px(X),
and we can verify that the second derivative of the polynomial (Qi’ — QlQ%)2 is equal to —1. Moreover,

Q1
——dX
Q3Q2 — Q103

dX and apply Proposition 3.1 this shows that Qs := (wy,we) is a space

the degree of iQ1 +jQ2 is equal to 5 for every [i : j] € P1(FF3). Hence, if we set wy =

and wo = __ @
QiQ2 — Q3
L5 2.

As in Example 6.5, we can easily compute the residues of w; and we at their poles, and get the

following table.

|z [resi(x) [resy(z) || @ [resi(x) ] resa(z) |

w’ 0 -1 w3l -1 —1
M?’O 0 -1 M6O 1 1
U51 0 -1 M66 -1 -1
u59 0 -1 M70 1 1
u3 0 -1 0 1 1
M26 1 -1 MIO 1 0
M50 -1 1 Mll 1 0
M52 -1 1 MIQ 1 0
/‘LGS -1 1 MQO 1 0
M74 1 -1 M40 -1 0
As in the previous example we have wi = C%l and wy = % with

F(X) =[] X =2 @ and F(X) = [] (X —2)re=@).
AV TEZ>o
Our main result of this section says that the examples above are essentially the only spaces L5 2.
Theorem 6.7. Let k be an algebraically closed field containing Fs and let ® : Q(k(X)) — Q(k(X))
be the relative Frobenius operator. Every Q C Q(k(X)) vector space Lis 2 is equivalent to one of the

following spaces, each representing a distinct equivalence class: Qq (defined in Example 6.5), (1),
®2(Q), Qo (defined in Evample 6.6), or ®(s).

To prove the theorem, we set
Q1= a(X’ —s1 X" +52X% — 53X% + 54X — s3)
and
Qo = X% — t1X4 + t2X3 — t3X2 + 4 X — ts.

Then, we consider the expressions Rj’s of Convention 3.5 as polynomials with coefficients in
{a,s1,...,85,t1,...,t5} and we aim to find a solution to the system of equations

Rl(a78i7ti) # 07
Ri(a,si,t;)) =0 for k=2,...,10.
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The existence of a space Lis2 gives rise to a solution to the system (6.8) (see Convention 3.5).
Conversely a solution to (6.8) produces a space Lis2. In fact, such a solution would imply that
the second derivative of (Q3 — Q1Q3)? is equal to the nonzero constant —Ri(a,s;,t;). Then,
Proposition 3.1 and Remark 3.4 tell us that we can build a space Li52 from @1 and Q2 by setting

Q1 Q2
0l - i3 M T Glas - il
Unfortunately, solving (6.8) is not an easy task even when assisted by a computer (a brute-force
calculation of Grobner basis turns out to be hopeless without further assumptions), so we need to
simplify the equations before we go further with our strategy. To this aim, we apply Lemma 3.6,
we set s1 = t; and we reparametrize IP’,lC in such a way to have s; = t{ = 0. Then, we obtain the
following result.

w1 dX, and considering the space (w1, ws).

Lemma 6.9. Let (Q1,Q2) be a pair of polynomials as above, and suppose that they yield a solution
of the system (6.8). Then, either s3 # 0 or tz # 0.

Proof. We can show this using a Grobner basis computation: Program [12, Program 6.6] computes
the ideal generated by all the relations in (6.8) assuming s; = ¢t; = 0 and s3 = t3 = 0, and checks
that this is the whole ring. As a result, the system has no solution, and we either have s3 # 0 or

ts # 0. O

Thanks to Lemma 6.9, we can suppose that s3 # 0, and use our last degree of freedom to
reparametrize IP’,l€ in such a way that s3 = 1. This is the content of our next Lemma.

Lemma 6.10. Let (Q1,Q2) be a pair of polynomials as above and suppose that they yield a solution
of the system (6.8), hence being a prompt for a space Lis o denoted by Q2. Then, there ezists a pair

(Q%,Qg) whose coefficients satisfy s1 =t1 =0, s3 =1 and (6.8). In particular, (Q%,Qg) is a prompt
for a space equivalent to 2.

Proof. We know by Lemma 3.6 that s; = t; and applying the translation X — X + s; allows us to
suppose s1 = t; = 0. To get to s3 = 1, we apply Lemma 6.9 to get to the situation where s3 # 0,
which we can do up to possibly swapping Q1 and Q. Then, we consider o € k such that a® = Sgl
and we apply the transformation X — aX. Under this transformation we have

Poﬁ(X) = H (X —ax) = X5 + a5, X% — 0353X2 + a5, X — oss.
z€X[1.0)

and
P! (X) = H (X —az) = X5+t X3 — 3t3X2 + oMty X — ot
z€X0.1]
so that the coefficient of X2 in Pj(X) is -1 as needed. Since (Q1,Q2) is a prompt for a space L1z 2
and we applied a homothety to the zeroes of Q3Q2 — Q1Q3, then by setting Qg = aﬁP(gi for a suitable
nonzero constant a? and Qg = Pgo we have that (Q%,Qg) is a prompt for a space Li52 that is
equivalent to €. In particular, the coefficients of Q% and Qﬁg satisfy the system (6.8). O

Lemma 6.10 allows us then to consider without loss of generality the situation where s; =¢; =0
and s3 = 1. Recall that we denoted by a the leading coefficient of the polynomial @)1. The following
lemma shows that one can obtain the same space by applying a suitable substitution only to the
parameter a.

Lemma 6.11. Let (Q1,Q2) be a pair of polynomials with

Q1= a(X® + 59 X3 — X% 4 5,X — s5)
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and

Q2= X"+ 1o X° — 13 X% + 14X — 15
which is a prompt for a space Lis 2, denoted by Q. For every a € {—1, a—}rl, —a—}rl, a—il, —ﬁ} there
exrists a pair (Q%, Qg) which is a prompt for the same space Q such that Qg 18 monic and Q§ =a@).

Proof. By Definition 3.3, there exists a constant ¢ € k* such that the space € is generated by w;

i . ax . ___ax . . . . .
and w9y with wq := F(Q20s—0F) and wq 1= FQI-010%)" We consider the following situations:

(i) Let (w1, —wg2) be another basis of © and pick a pair (Q%, Qg) associated with it. Since —ws
has the same poles as ws, then Qg = 2. We see then that Qq = —-Q1.

(ii) Let (w1,w; + w2) be another basis of © and pick a pair (QI}, Qg) associated with it. By
looking at the poles of wy + ws we see that Qg = @t Tpe leading coefficient of Qg is

a+1
computed as the ratio of leading coefficient of ()1 by the one of Q1 + Q2. In other words,
t_ Q
Q1= 51
The coefficients —%H, ﬁ, and —ﬁ can be obtained by composing the changes of basis of (i) and
(i) O

Remark 6.12. The transformations of the leading coefficients described in Lemma 6.11 are the unique
possible if we want to keep the simplifications made previously. In fact, we are not allowed to change
the zeroes of A as this would change the parameter s3 in the general case.

Proof of Theorem 6.7. Using the simplifications above, we are now ready to prove the main theorem.
More precisely, we use Lemma 6.10 to assume that s; =t; = 0 and s3 = 1. Then, the program [12,
Program 6.7] tells us that any solution to the system (6.8) needs to satisfy the following condition
on the parameter a:

(a3—a?—a—1)(a®—a+1)(a®+1)(a®—a?+1)(a®+a? —a+1) (a3 —a?+a+1)(a®—a—1)(a®+a—1)(a®+a?—1)(a®+a?+a—1)(a?—a—1)=0.

By applying Lemma 6.11 we can consider only an irreducible polynomial for each orbit under the
group action on (Q1, Q2) generated by a — —a and a — _{7. Namely, we are left with studying the
following cases:

Case 1: a>4+1=0

Case 2: a®—a’>+1=0

Case 3: a® —a+1=0.

In all these cases, the successive elements of a Grobner basis for the system (6.8) can be computed,
and show us all the possibilities for the coefficients of Q1 and Q2. Let Ag(Q1,Q2) = Q3Q2 — Q1Q3
be the Moore determinant of (Q1,@2). We remark that, if (Q1,Q2) and (S1, S2) are prompts for
spaces Lis2 and Ag(Q1,Q2) = A2(S1, S2), then they actually are prompts for the same space by
virtue of Corollary 2.10. Let us denote by Al the Moore determinant of the pair (Q1,Q2) appearing
in Example 6.5, by AL the Moore determinant of the pair (Q1,Q2) appearing in Example 6.6, and
by A® with an appropriate superscript the Moore determinants appearing in the cases below (e.g.
A4 is the Moore determinant of the polynomials given by the program in case 1.4). We show that
we can get a complete classification up to equivalence by studying the cases outlined above and
comparing the respective Moore determinants.

In Case 1, we let a be a square root of —1. For simplicity and consistency, we assume that
a = —p?° where 1 is the generator of %, appearing in Example 6.6. Then, the program [12, Program
6.8] returns the following subcases:

Case 1.4 S2 | 83 S4 S5 to t3 t4 t5
Ol1|la—1|0]l—a+1]a|—-1|a+1
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Case 1.4’ S92 | S3 S4 S5 to t3 tq t5
0O|1|—-a—-1|0}a+1l|—-a|—-1|—-a+1

In Case 1.A we get a space that is equivalent to {29. In fact, one can verify that, after applying the
homothety X ~ —(a 4 1)X the Moore determinant A4 is equal to AP
Since Case 1.A’ is obtained from Case 1.A by applying the transformation a — —a, and we have

that a® = —a, then it results that the polynomials appearing in Case 1.A’ are prompts for the space
D(Qy).
Case 1.B || s2 | s3] 84| S5 ta | t3 ta ts

—1|1|a|l4al—-al0|la—1]|a—1

Case 1.B/ S2 | 83| S4 S5 to t3 tq t5
—1|1|—-all—-afa|0|—(a+1)|—(a+1)

In Case 1.B, one gets the space {29 without the need to reparametrize. In fact, the zeroes of A
(resp. of B) in this case are the same as those of Py (resp. P) in the example. If we apply the
transformation a — —a, we land in Case 1.B’ which corresponds to the space ®({2).

Case 1.C S92 S3 S4 S5 tQ t3 t4 t5
a—1|1|-1ja—1||0|—-ala—1]0

Case 1.0/ S92 S3 | S4 S5 to t3 t4 t5
—(a+1) |1 |-1|—(a+1)||0]a|—(a+1)]0
In Case 1.C, one gets a space that is equivalent to {29, as one can see by applying the transformation

X — (a—1)X. If we apply the transformation a — —a, we land in Case 1.C” which then corresponds

to the space ®(22), as above.
In Case 2, let a be a root of X? — X2 +1. For simplicity and consistency, we assume that a =

-1

where y is the generator of F2, appearing in Example 6.5. Then we have that ®(a) = ﬁ = —a’—a—1
and ®?(a) = ﬁ = a? — 1. Program [12, Program 6.9] returns the following subcases:
Case 2.4 S2 | S3 | S4 S5 to t3 ty t5

—1[1]a®|—(a®+a+1)|[—-(a+1)|a?+a+1|a®—a|—(a®*—a+1)

Case 2.B S2 | 83 S4 S5 to t3 t4 t5
—1[1]|—-(@®+a)]al —-(a+1)][a?]—(a®2—a)|0

Case 2.C S2 | 83 S4 S5 to t3 t4 t5
—1[1]a+1|a®?—1]—-(a+1)[a®>-1][1|a®?—a—-1

In Case 2.A we get a vector space equivalent to ;. In fact, one can verify that, after applying
the homothety X — (u? + p+ 1)X = —(a® + 1) X, the Moore determinant A%4 is equal to Alll.
We can also verify that ®(A%4) has the same zeroes of A% and ®2(A%4) has the same zeroes of
A2%B . Hence, Case 2.C corresponds to ®(€2;) and Case 2.B corresponds to ®2(€2;).

Finally, in Case 3 let a be a root of X3 — X + 1. For simplicity and consistency, we assume
that a = p, the generator of Fy; appearing in Example 6.5. Then we have that ®(a) = a — 1 and
®2(a) = a + 1. Program [12, Program 6.10] returns the following subcases:

Case 3.4 S9 | 83 | S4 S5 to t3 ty t5
al1]1][—-(@@—a+1)||-(®2+a+1)|—(a+1)|a®+a|—(a®*+a+1)

Case 3.B S92 S3 S4 S5 to t3 t4 t5
—(@®>+a)|1|a®>—alal —a?]a-1]a*>—-1]d®
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Case 3.C S92 S3 S4 S5 to t3 t4 t5
—(@®—a+1)[1|a?+1][0] —(a®+a)|ad®|-a|a®>+a—1

In Case 3.4 we get a vector space equivalent to €; under the homothety X — (1 — a)X.

In Case 3.B we get a vector space equivalent to ®2(£2;). We can see this by applying ® and then
the homothety X — (a — 1)X to the coefficients of our polynomials, and noticing that the resulting
pair is a prompt for the space €2;.

Finally, if we apply the transformation ® to the coefficients of Py and P; of Example 6.5, we see
that we get the coefficients of the table of Case 3.C'. The pair (@1, @2) in this latter case then is a
prompt for the space ®(£1).

This exhausts all possible cases, and since the spaces €1, ®(Q1), (), Qa, and ®(Q2) make up
distinct equivalence classes of spaces L5 2, this concludes our proof of the classification theorem. [

Remark 6.13. We believe that the classification of spaces L2 and L1592 in this section is interesting
in itself, as the nature of these examples is quite different from anything previously known, for
example these spaces can not be obtained from standard spaces. Moreover, we remark that, by
applying étale pullbacks to these examples, we can generate spaces L3gq2 and Lysq 2 for every integer
d > 1, resulting in large classes of examples useful for future investigation.

APPENDIX A. MOORE DETERMINANTS

In this section, we collect several results on Moore determinants. With the exception of Lemma,
A.6, for which we provide a proof, these results are already known (from work of Elkies in [13] and
Fresnel-Matignon in [10]), and are therefore recalled without proof.

Let k be a field of characteristic p > 0, and denote by F' : k — k the Frobenius automorphism

x +— aP. The Moore determinant of an n-tuple a := (ay,...,a,) € k™ is defined as
a1 as ... an
D p P
ay a ... amn
An(g) =
pnfl n—1 n—1
ay as .. Gp

Remark A.1. Here we list the first elementary results on Moore determinants. By multilinearity of
determinants, for every a € k, we have that

Ap(aq) = PHHPTIAL(q).
Moreover, given an invertible matrix M € GL,(F,), we have ([13, p. 80]) that
An(aM) = Ap(a) det(M).

These relations are used in the proof of Proposition 4.5(iii). Finally, Moore shows the following
identity:

(A.2) An(g) = H H ce H (ai +€—10;—1 + -+ 61a1).
i=1 E¢,1€Fp €1 E]Fp
As a result, we have that A, (a) # 0 if, and only if, the a;’s are Fp-linearly independent.

Theorem A.3. For every n-tuple a € k™, and for every 1 < i < n, we define the n — 1-tuple

d; == (a1, ...,0i—1,Qi41,...,ay). Then, we have the formula
An (Anfl(@% R (_1)i_1Aifl(@)7 RN} (_1)n_1An71(d7n)) = An(@)1+p+...+pn72.
Proof. This is the special case m = 0 of [10, Theorem 4.1]. O
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Definition A.4. For every V C k is a F)-vector space of dimension n, the structural polynomial of

V is
Py(X) = [[(X - v) € k[X].
veV
It is the unique monic polynomial of degree p™ such that V is the set of zeroes of Py .

Lemma A.5. (c¢f. Proposition 2.2. of [10]) Let V C k be a Fp-vector space of dimension n. The

structural polynomial Py is additive and for every choice of basis v = (v1,...,v,) of V it satisfies

the identity

Apti(v, X)
Ay (v)

Proof. Consider Ap4+1(v, X) as a polynomial in k[X]. The development of the determinant along
the last column gives

Py(X) = = X" p o (—1)"A,(v)PTIX.

A1 (v, X) = Bp(@)XP" - 4 (1) Ay (0)P X,
which results in the second equality of the lemma. On the other hand, we have by definition that
Apt1(v,v) = 0 for every v € V| which proves the first equality. Additivity then follows from the
fundamental theorem of additive polynomials, as V' is an additive subgroup of k. O
Lemma A.6. Letn>1, m>1 and Y1,...,Y,, Xi,..., Xy, be variables over Fy,. Then
Ap(Ap+1 (Y1, X1, Xoy oo, Xin)y ooy A1 (Y, X1, Xoy oo, X)) =

(A7) = Am(le st Xm)p+p2+'..+pn_1An+m(}qa ) Ym X17 Xm)

n—1

Proof. We proceed by induction on n. If n = 1, we interpret the expression p + p? + ... +p as 0.
If n = 2, then the Lemma is a special case of Theorem A.3. Let us then assume n > 2 and that the
Lemma is satisfied when replacing n with n — 1.

We denote by X, the Fp-vector space (X1, Xa,..., Xp)F,, and by Px the structural polynomial
of X. It then follows from Lemma A.5 that

Ap(Apr1(Y1, X1, Xoy oo, Xin)y ooy Ap1 (Y, X1, Xoy oo, X)) =
Ap((=1)™Am(X)Prx (Y1), -+, (=1)" A (X) Px(Yn)) =
(= 1) A (X) PP AL (P (V2), -+, Pre(Yn)).
From this, we deduce that the identity (A.7) is equivalent to
(A.8) Apim (Y1, Yo, X1, . X)) = (=D)AL (X)AL(Py (Y1), -+, Px(Yy)).
Moreover, we remark that
An—&-m(}/lv cey Yna Xla Xm) = (_1)mAn+m(Y1a ) Yn—la le va Yn) =

(_1)mAn71+m(Y17"'7YTL*1’X17"aXm) H (Yn+v)a

vE(Y1, ., Yn—1,X1,,.Xm)F,

and then we can apply the identity (A.8) replacing n with n—1 (satisfied by the inductive hypothesis)
to show that (A.7) is equivalent to

An(Px(Y1),-+, Px(Yn)) = Ap1(Px(Y1), -+, Px(Yn-1)) I1 (Yo +v)
vE(Yl,..,)/nfl,Xl,..,Xm>
which, by applying again Lemma A.5 is equivalent to

11 (P (V) +w) = I1 (Y +v).

we(Px (Y1), ,Px (Yn-1))F, V€Y1, Yn—1,X1,,.Xm)F,
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Remark A.9. When m = 1 the identity of Lemma A.6 is already known. It appears for example in
work of Elkies [13, p.81] and it is used in the proof of Proposition 5.3.

To produce certain formulas that we need in Section 4, let us introduce the following determinants.

For every non-zero n-tuple € = (e1,...,¢€,) € Fy — 0 we define
€1 €9 .. €n 0
al as .. an X
P P P P
Aa, X) = ay as an X
n—1 n—1 n—1 n—1
ay as ab XP
and
€1 €2 e €n
al a9 PN (47%%
P P P
5§(Q) = al a2 . An,
n—2 n—2 n—2
al ab co.oah

Proposition A.10. (Proposition 2.3. of [10]) Let W C k be a F), vector space of dimension

n. Let a be an Fy-basis of W and a* = (aj,...,a}) be its dual baszs For every non-zero n-
tuple € = (61,.. ,€n) € F, — 0, we denote by ¢, the linear homomorphism W — [, given by
e 1=y €ar. Recall that we have defined Per o (X) = [ yeker p (X — w).

Then 0¢(a) 7& 0 and we have the identity )

AE 7X = — —

(A.11) Berg (X) = ;C(La)) XU (1) S ()P X
Moreover, denoting by e; the i-th element of the standard basis of Fy), we have the following formulas:
(A.12) Ag (e, X) = (-1)""An(d;, X) Vi=1,...,n

(A.13) Zez e (a, X) Z( D e A (di, X)

i=1
(A.14) a :Z Z Ez n— 1(@)

Proposition A.15 (Proposition 5.1. of [10]). Let k be an algebraically closed field containing Fy.
Let V(A,) :={(a1,...,an)|An(a) = 0}. Then the map

Q: k" S A

a—— (=D An1(dd);y

induces a surjective function k™ — V(A,,) — k™ — V(A,). This satisfies the property that
n— n—3

p?(a) = (—1)" T Ay (@) TP a)

Moreover, a,a’ are such that p(a) = ¢(a') if, and only if, a = 0a’ for some 0 satisfying

n—2

e —2
gLltpt-+p =1.

Finally, we prove two results that are not in [10] and that are used in Section 4.
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Lemma A.16. Let Xy, ..., X, be variables over ¥y, and for every0 <t < nletV, 4 = (X1, ..., Xpn_1)F,-
Then, we have that

An(Xla ceey XTL) - An—t(Xla ceey Xn—t)At(PVn_t(Xn—t+l)7 ceey PVn_t(Xn))u
where Py, ,(X) is the structural polynomial of V,,—; (see Definition A.4).

Proof. From Moore’s formula (A.2) we have

An(X)ZH H H (Xi+e1Xia+---+eaX))=A-B,

i=le;_1€F, e €Fp
where
n—t
AZ:H H H(Xi+€i—1Xi_1+...+€1Xl)
i=le;_1€F, e €F,
and
n
B = H H "'H(Xi_'_ei—lXi—l‘}‘"-—i-ele),
i=n—t+1e;_1€F e1€F,

Moore’s formula ensures that A = A,,_4(Xy,...,X,—¢), while the definition of the structural
polynomial gives that

B= H H T H Py, _, (XZ +e X1+ + 6n—t+1Xn—t+1)~

i=n—t+1 Eifler €En—t+1 GFP

By Lemma A.5, Py, , is an additive polynomial and therefore the above is also equal (after
reindexing) to

t
B = H H e H (Pv,_,(Xn—t+i) + €i-1Py,_ (Xn—tyi1) + -+ e Py, _, (Xn—t11)),

i=le;_1€Fp  e1€F,
and we can see from Moore’s formula that this is precisely equal to
Ay(Py, (Xn—t41), -, Py, (X3)),
which completes the proof of the claim. ]

Corollary A.17. Under the hypotheses of Lemma A.16, for everyn —t+ 1 <1i < n we have that

—

An—l(Xla oy 5(\1 ) Xn) — At_l(PVn—t (XN—t-‘rl)’ o Py, (XZ)7 oo Py, (X”))
An(Xla S Xn) At(Pant (Xn*tJrl)v ooy Pant (Xn))
Lemma A.18. Letn > 1, let M € GL,(F),) and let X1, ..., X, be variables over F,. Denote by

o —

Y, = An,l(Xi) and by YiM =A,_1 ((XM)Z) Then, we have
(}qM7 s 7YnM) =Y M,
where M¢ € GLy(F)y) is the cofactor matriz of M

Proof. This is proved with a direct computation. We write M = (mij)i]’ and, for simplicity, we show

only that YV = Y Mg, where Mg, is the first column of M*, the proof that YjM = Y My ; being
completely analogous. By definition, we have

n n
YIM = An—l <Z mi,2X27 DRI Z m%an)
i=1

i=1
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and, using the multi-linear properties of Moore determinants, this can be rewritten as

YlM = Z Mig2 - min,nAnfl(Xiza s 7X2n) = Z Mg2),2° " ma(n),nAnfl(Xo(Qﬁ s 7Xa(n))

27-~~7in Ueen

= Z (_1)sgn(a)m0(2)72 T mo(n),nya(l)a

O'EGn
where &,, is the symmetric group over the set with n elements (note that we used that m? ;=M
for getting rid of the exponents). Since for every i, the coefficient of Y; is the minor M;; of the
matrix M, it results that Y, = Y M. O
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