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Abstract. In this paper, we prove several new results on certain Fp-vector spaces of logarithmic
differential forms in characteristic p called spaces Lm+1,n. Expanding the previous work by the
first two authors, we prove positive and negative results for the existence of spaces Lm+1,n in many
situations, as well as a classification of all spaces L12,2 and L15,2 for p = 3. The novel tools used are
Moore determinants and computational algebra.

1. Introduction

Algebraic geometry in positive characteristic is a rich subject that has been intensively studied
ever since the foundations of algebraic geometry were rigorously established.1 As a result, a plethora
of positive characteristic methods have been developed. These mathematical tools not only unlock
novel insights into the geometry of algebraic varieties but also have surprising applications to
other disciplines. For example, they form the foundations for the development of advanced coding
techniques and cryptographic protocols used nowadays. Moreover, the richness of algebraic geometry
in positive characteristic has been also exploited to prove results in characteristic zero. Roughly
speaking, this is made possible by the use of two complementary procedures: lifting to characteristic 0,
that assigns an object in characteristic zero with a given object in positive characteristic, and reduction
modulo p, that assigns an object in positive characteristic with a given object in characteristic zero.

In this paper, we focus on a particular phenomenon in positive characteristic, namely the existence
of the so-called spaces Lm+1,n.

Definition. Given k an algebraically closed field of characteristic p > 0 and strictly positive integers
n,m ∈ N, a set Ω of differential forms on P1

k = k ∪ ∞ is called a space Lm+1,n if it satisfies the
following conditions

• The set Ω is a n-dimensional vector space over Fp;
• Every ω ∈ Ω− {0} is logarithmic;
• Every ω ∈ Ω− {0} has a unique zero at ∞ of order m− 1.

Classically, the motivation for studying spaces Lm+1,n arose from the following lifting problem:
let G ⊂ Autk k[[z]] be a finite order subgroup of k-automorphisms of the ring k[[z]] of formal power
series over k. It is said that G lifts to characteristic zero if there exists a finite extension R of the
ring of Witt vectors W (k) with uniformizer π and a commutative diagram

(1.1)
AutRR[[Z]]

G Autkk[[z]]

rj

i

1Most notably, studying varieties over finite fields was the main motivation that prompted Weil to write his seminal
book Foundations of Algebraic Geometry [1].
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where i is the inclusion and r is the reduction modulo π. The local lifting problem for curves is the
question of determining which embeddings G ⊂ Autk k[[z]] admit a lifting. This problem has now a
long tradition and can be studied from many angles: the interested reader is referred to the surveys
[2] and [3] for a thorough discussion. In this context, the spaces Lm+1,n arise in the elementary
abelian case, that is, when G ∼= (Z/pZ)n. This connection is now well established, thanks to the
results obtained in [4], [5] (for n = 1), [6] and [7] (for n > 1). Thanks to these investigations, we
know that the existence of a space Lm+1,n for a given triple (p, n,m) is equivalent to the existence of
a lifting of (Z/pZ)n with equidistant branch locus and m+1 fixed points.2 We also know that m+1
is necessarily of the form λpn−1 for some λ > 0, a fact that leads naturally to the following question

Question. For which triples (p, n, λ) does there exist a space Lλpn−1,n?

In this paper we make progress on this largely open question, as well as introduce tools that can
be used to see it in a new light. Let us recall what was known prior to this paper: if n = 2 and p = 2
there are spaces L2λ,2 for every λ > 0 ([7, Théorème 2.2.4]). If n = 2 and p ≥ 3 then there are no
spaces Lp,2 and no spaces L3p,2, while spaces L2p,2 exist if, and only if p = 3 ([7, Théorème 2.2.5]).
If n = 2 and λ ≥ 4 the only examples of spaces Lλp,2 that were known before this paper have the
special property that λ is a multiple of p− 1 and obey a strict geometric constraint. Similarly, in
the case n ≥ 3 the known examples (see Section 5.1) satisfy p− 1|λ and are of a very special nature.

Our contributions to the question above solve the problem of existence of spaces Lλpn−1,n in three
distinct cases:

• The case n = 2, p = 3 and λ = 4, 5;
• The case n = 2 and p > 3λ;
• The case n ≥ 2 and p = 2.

More precisely, we provide a complete classification of spaces Lλp,2 for p = 3 and λ = 4, 5, we show
that for p > 3λ there are no spaces Lλp,2. Moreover, we prove new results on the existence of spaces
Lλpn−1,n for n ≥ 3 that, when applied to the case p = 2, lead to construction of large classes of
spaces Lλ2n−1,n when λ is either even or congruent to 1 modulo 2n − 2. In proving the results above,
we make use of techniques that have not been exploited in this context before, and that we believe to
be of independent interest, such as computational commutative algebra, étale pullbacks, and Moore
determinants. The first main result presented in the paper is the case n = 2 and p > 3λ.

Theorem (cf. Theorem 3.7). There are no spaces Lλp,2 when p > 3λ.

The proof of this theorem relies on a result of Pagot3, that shows how the existence of Ω a space
Lλp,2 for fixed λ and p is equivalent to the existence of two polynomials Q1, Q2 ∈ k[X] of degree
λ satisfying three conditions. The first condition is that Q1 and Q2 are Fp-linearly independent.
The second condition is that the set of poles of Ω coincides with the set of zeroes of the polynomial
Q1Q

p
2 −Qp

1Q2. The third condition can be expressed as a multivariate polynomial system, whose
indeterminates are the coefficients of Q1 and Q2. This system is in general very complicated, but a
subsystem of necessary conditions can be extracted thanks to the fact that the nonzero elements of
Ω are logarithmic and hence their poles have residues in F×

p . In the context of our theorem, the
necessary conditions can be expressed in terms of the coefficients of Q1 and Q2 and become tractable
enough to get a contradiction under the assumptions of the theorem.

This result is a big progress towards the classification of spaces Lλp,2: thanks to it, the existence of
a space Lλp,2 for a fixed λ needs to be checked only at a finite number of primes, which in principle
can be done by solving the polynomial system in the coefficients of Q1 and Q2 given by Proposition
3.1. The use of computational tools, such as one of the many algorithms to compute Gröbner bases,

2See [8, Théorème 11] for the construction of a lifting with equidistant branch locus given a space Lm+1,n.
3Proposition 3.1, first appearing as [8, Proposition 7]
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is essential to perform this task, but not enough to conclude. In fact, the resulting computations are
of a high complexity and a straightforward implementation does not yield a solution in a reasonable
time when λ > 3. Hence, some simplifications are needed to reduce the number of variables in the
polynomial system under consideration. A first simplification is made possible by the fact that a
space Lλpn−1,n can be transformed by applying to P1

k a homography that fixes ∞. The resulting
space is again a space Lλpn−1,n that is said to be equivalent to the first. Another useful construction
is obtained by considering the action of the relative Frobenius morphism on a space Lλpn−1,n (see
Section 2.3). The resulting space is again a space Lλpn−1,n that is said to be Frobenius equivalent to
the first.

When p = 3 and n = 2, by performing the above simplifications and applying considerations of
symmetry under change of variables, we can find enough relations between the coefficients of Q1 and
Q2 to make the polynomial system treatable in the cases λ = 4 and λ = 5. In this way, we not only
find instances of, but we can also classify all possible spaces L12,2 and L15,2.

Theorem (cf. Theorem 6.2). Let p = 3, n = 2, and λ = 4. Up to equivalence, a pair (Q1, Q2) of
polynomials satisfies the conditions of Proposition 3.1 (and hence determines a space L12,2) if, and
only if, it is of the form

Q1 = a(X4 + (a4 − a2 − 1)X2 + a8)

Q2 = X4 − (a4 + a2 − 1)X2 + 1,

for some a ∈ k such that a2 /∈ F3.

Theorem (cf. Theorem 6.7). Let p = 3, n = 2, and λ = 5. Up to equivalence and Frobenius
equivalence, a pair (Q1, Q2) of polynomials satisfies the conditions of Proposition 3.1 (and hence
determines a space L15,2) if, and only if, it is either of the form

Q1 = (µ2 − µ− 1)X5 +X3 − (µ2 − µ− 1)X2 − µX

Q2 = −µX5 + (µ2 + µ− 1)X3 + (µ2 + µ)X2 + (µ2 − 1)X − (µ2 + µ+ 1),

where µ ∈ F27 is such that µ3 − µ+ 1 = 0, or of the form

Q1 = a(X5 −X3 −X2 + aX − (a+ 1))

Q2 = (−a− 1)(X5 − (a+ 1)X3 + (a+ 1)X2 +X + a),

where a ∈ F9 is such that a2 + 1 = 0.

In particular, we have infinite equivalence classes of spaces L12,2 and only finitely many equivalence
classes of spaces L15,2. Finding a geometric explanation of this phenomenon would be very interesting.

In the case p > 3 the above simplifications are not enough to conclude. However, a finer strategy
can be employed to obtain a classification of all spaces L4p,2 for all prime p’s, even though it requires
substantial more work. In fact, in this case Theorem 3.7 allows us to consider only the cases p = 3
(discussed above) and p = 5, 7, 11. In these cases, we can use a combination of elementary arguments
to find previously undiscovered relations between the zeroes of Q1Q

p
2 −Qp

1Q2. In almost all cases
(i.e. except when Q1 and Q2 are of a very specific form) these relations take the form of vanishing of
certain Schur polynomials, that can be turned, using Jacobi-Trudi relations, into the vanishing of
certain Toeplitz determinants involving symmetric polynomials in some of the zeroes. These new
relations are easier to work out and show that, for p = 5 all the spaces L20,2 are of a previously
known form, and for p = 7, 11 there are no spaces L4p,2. A discussion of the remaining outstanding
case necessitates additional arguments and the computation of Grobner bases, but can be achieved
and confirms that there are no spaces L4p,2 other than the previously known cases in general. The
write up of this result is in preparation.
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We then turn our attention to the case of spaces Lλpn−1,n. The crucial new tool that we use in
this setting is the Moore determinant ∆n(a) of a n-uple of elements a := (a1, . . . , an) in a field of
characteristic p. This is defined as the determinant of the associated Moore matrix, namely we have

∆n(a) :=

∣∣∣∣∣∣∣∣∣
a1 a2 . . . an
ap1 ap2 . . . apn
...

... . . .
...

ap
n−1

1 ap
n−1

2 . . . ap
n−1

n

∣∣∣∣∣∣∣∣∣ .
The Moore determinant is a basic object in arithmetic in characteristic p, due to its relationship with
the theory of additive polynomials (cf. [9, Chapter 1]). In this paper, we apply a mix of classical
and recent results (obtained in [10]) on Moore determinants to describe effectively the differential
forms belonging to a space Lλpn−1,n. Our exposition of Moore determinants is self-interested and
self-contained: we put all and only the results we need in the dedicated Appendix A, and include
there further, more complete, references for the interested reader.

Moore determinants allow us to prove two main new results about spaces Lλpn−1,n. These take
the form of a necessary and sufficient criterion for the existence of spaces Lλpn−1,n, which for n = 2
boils down to Proposition 3.1.

Theorem (cf. Theorems 4.7 and 4.8). Let n ≥ 2 and let Ω be a n-dimensional Fp-vector space of
differential forms on P1

k, generated by elements ω1, . . . , ωn. Then Ω is a space Lλpn−1,n if, and only
if, the following conditions are met:

(i) There exists a non-zero logarithmic form ω ∈ Ω.
(ii) There exist a n-uple of polynomials Q := (Q1, . . . , Qn) ∈ k[X]n such that

• The polynomials Qi are of degree λ for every i = 1, . . . , n.
• The leading coefficients q1, . . . , qn of Q1, . . . , Qn satisfy ∆n(q1, . . . , qn) ̸= 0.
• We have

ωi =
(−1)i−1∆n−1(Q̂i)

∆n(Q)
dX

for every i = 1, . . . , n, where Q̂i denotes the n− 1-uple obtained by removing Qi from Q.

This condition simplifies our task of classifying spaces Lλpn−1,n insofar as it gives us a practical
recipe to use the polynomials Qi’s to build a basis of Ω. In Section 4.2 we develop a constructive
strategy to build suitable Qi’s, that is fruitfully applied in the case p = 2 to create a large class of
new examples. Our main result in this sense is the following:

Theorem (cf. Theorem 4.26 and Corollary 4.28). Let λ be either even or λ ≡ 1 mod (2n − 2).
Then there exist infinitely many equivalence classes of spaces Lλ2n−1,n.

Then, we turn our attention to the examples of spaces Lλpn−1,n for n ≥ 3 that were known in the
literature prior to the present paper. We remark that all these spaces share a very special structure:
each of them is an étale pullback of a space L(p−1)pn−1,n whose set of poles is the set of nonzero
elements in a n-dimensional Fp-subvector space of k. We call standard any space L(p−1)pn−1,n whose
poles satisfy the property above, and we apply Theorems 4.7 and 4.8 in the special case of standard
spaces, shedding new light on their arithmetic properties. As a result, we are able to characterize
the subspaces of standard spaces as étale pullbacks of standard spaces of lower dimension.

Proposition (cf. Proposition 5.6). Let Ω be a standard L(p−1)pn−1,n space and let Ω̃ be a proper
r-dimensional subspace of Ω. Then, there exists a standard L(p−1)pr−1,r space Ω′ and a degree pn−r

morphism σ : P1
k → P1

k ramified only at ∞ such that Ω̃ is the pullback of Ω′ under σ.
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When p = 2, we can show that all standard L2n−1,n spaces and their étale pullbacks arise from
the construction of Section 4.2.

Finally, we remark that the spaces L12,2 and L15,2 discovered in this paper are, to our knowledge,
the first known examples of non-standard spaces Lλpn−1,n with p ≠ 2 that are not equivalent to
étale pullbacks of standard spaces. Since p = 3 in these examples, their étale pullbacks generate
examples of non-standard spaces L36d,2 and L45d,2 for every positive integer d. The spaces L45d,2

when d is odd can not be equivalent to étale pullbacks of standard spaces, by a simple argument of
pole counts, and therefore we have an infinite class of examples not arising from standard spaces.
We don’t know to what extent this generalizes to other values of p and n. More specifically, the
following questions remain open:

• Are there spaces Lλp,2 for p ≥ 5, that are not étale pullbacks of standard spaces?
• Are there spaces Lλpn−1,n for n ≥ 3, that are not étale pullbacks of standard spaces?

Answers to these questions would result in great progress in the understanding the role of étale
pullbacks in generating examples of spaces Lλpn−1,n, and more generally in the structure of these
spaces when p, λ, n vary.

Structure of the paper. In Section 2, we present known results and useful constructions on
Lλpn−1,n that are used in all the other sections. In Section 3, we recall an important characterization
of spaces Lλp,2, due to Pagot (Proposition 3.1), and we prove the non existence of spaces Lλp,2 when
p > 3λ. In Section 4, we generalize Proposition 3.1 to the case of spaces Lλpn−1,n and we apply this
to the case p = 2 to construct our new examples of spaces Lλ2n−1,n. In Section 5, we define and
study standard Lλpn−1,n-spaces. In Section 6, we fix p = 3 and provide a complete classification of
spaces L12,2 and L15,2. Finally, in Appendix A we collect all the results on Moore determinants that
are used throughout the paper (mostly in Sections 4 and 5).

Notation and conventions. Let k be an algebraically closed field of characteristic p > 0. Recall
that a differential form on P1

k can be written as ω = f(X)dX for f(X) ∈ k(X), the field of rational
fractions in one variable over k. Such a differential form is called logarithmic if it is of the form
ω = dF

F for some F ∈ k(X). We usually denote by Ω a space Lm+1,n and by {ω1, . . . , ωn} a basis
for this space. For a given subset S ⊂ Ω, we denote by P(S) the subset of k consisting of elements
that are poles of at least a non-zero differential form in S. If ω ∈ Ω− {0}, we write P(ω) for the
set of poles of ω. One deduces from the definition that the set P(ω) consists of m+ 1 simple poles.
Finally, given a finite set of logarithmic differential forms {ω1, . . . , ωn}, we denote by ⟨ω1, . . . , ωn⟩Fp

the Fp-vector space that they generate. Most of the times, this will not be a space Lm+1,n, but it
will be one under certain predetermined conditions.

2. Preliminaries

In this section, we collect the preliminary results later used to show existence, non-existence and
classification results of spaces Lm+1,n. We first recall known results on the number of poles in such
spaces, as well as proving new lemmas on the combinatorics of the arrangements of such poles. Then
we introduce useful constructions: Frobenius twists and étale pullbacks of spaces Lm+1,n. Finally,
we briefly discuss known results in the case n = 1. The main result in this section that was not
previously known is Corollary 2.10, stating that a space Lm+1,n is characterized by its set of poles.

2.1. The Jacobson-Cartier condition. Let us recall here the Jacobson-Cartier condition for
verifying that a meromorphic differential form on P1

k is logarithmic. Let ω = f(X)dX ∈ Ω(k(X)) be
such a form. Since k is perfect, we have that k(X) = ⊕p−1

i=0 k(X)pXi, and hence a unique writing

f(X) = ⊕p−1
i=0 fi(X)pXi.
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Note that the polynomial fp−1 is invariant by translation by any element a ∈ k. In fact, we can
also write f(X) = ⊕p−1

i=0 gi(X)p(X − a)i, and by comparing the coefficients we find that fp−1 = gp−1.
It is a classical result that ω is logarithmic if, and only if, f(X) = fp−1(X)4. In our case, that of
differential forms over the projective line, this fact has an elementary proof, that we provide below.

Proposition 2.1. Let ω = f(X)dX ∈ Ω(k(X)) with f(X) = ⊕p−1
i=0 fi(X)pXi be a non-zero differen-

tial form. Then ω = dF
F for some F ∈ k(X) if, and only if, f(X) = fp−1(X).

Proof. Let {x1, . . . xr} be the set of poles of ω, which is non-empty because ω ≠ 0. To have ω = dF
F

it is necessary and sufficient that the xi’s are simple and their residues are in F×
p . When this is the

case, ω =
∑r

i=1
ai

X−xi
dX. So, assuming that ω is logarithmic (and hence ai ∈ F×

p ), we find that

fp−1(X) =

(
r∑

i=1

ai
X − xi

)
p−1

=

r∑
i=1

(
ai

X − xi

)
p−1

=

r∑
i=1

ai
X − xi

= f(X).

Conversely, suppose that f(X) = fp−1(X). Then we can consider the pole expansion for the
meromophic function f(X), namely:

f(X) = E(X) +

r∑
i=1

gxi(X), where E(X) ∈ k[X] and gxi(X) :=
∑
j>0

apij
(X − xi)j

with aij ∈ k.

Our assumption that f(X) = fp−1(X) can be rewritten as

E(X) = Ep−1(X) and gxi(X) = (gxi)p−1(X).

So, if we write E(X) =
∑p−1

i=0 Ei(X)pXi with Ei(X) ∈ k[X] we have deg(E) = maxi(p degEi + i),

so that deg(E) = deg(Ep−1) implies E = 0. Similarly, by writing
apij

(X−xi)j
=

apij
(X−xi)qp+s for suitable

q and 0 ≤ s < p, we have that
apij

(X−xi)j
=

apij(X−xi)
p−s

(X−xi)(q+1)p . If s ̸= 1, then
(

apij
(X−xi)j

)
p−1

= 0, hence we

just need to consider the case s = 1, where we have
(

apij
(X−xi)j

)
p−1

=
aij

(X−xi)
1+

j−1
p

. The condition

gxi(X) = (gxi)p−1(X) implies then that apij = ai(1+(j−1)p) which is to say that ai1 ∈ Fp and aij = 0

for j > 1. Summarizing, we find that E(X) = 0 and gxi(X) = ai1
X−xi

with ai1 ∈ Fp for every i, which
is to say that ω is a logarithmic differential form. □

Corollary 2.2. Let ω = f(X)dX ∈ Ω(k(X)) be such that f(X) = 1
P (X) with P (X) ∈ k[X]. Then

ω = dF
F for some F ∈ k(X) if, and only if, the p − 1-th derivative

(
P p−1

)(p−1) of the polynomial
P p−1 is equal to −1.

Proof. By Proposition 2.1, we have that ω = dF
F if, and only if, f = fp−1. Since the p−1-th derivative

of f satisfies f (p−1) = (p − 1)!fpp−1 = −fpp−1, then it is equivalent to require that f (p−1) = −fp.

In the case where f(X) = 1
P (X) , we find f (p−1) =

(
P p−1

P p

)(p−1)
= (P p−1)

(p−1)

P p . On the other hand,

−fp = − 1
P p , and so the condition f = fp−1 becomes

(
P p−1

)(p−1)
= −1. □

4In the case of curves this result is due to Jacobson. The study of the correspondence f → fp−1 as an operation
over differential forms over curves is addressed in subsequent work of Tate, that was later generalized to higher
dimensions by Cartier. Because of this, such correspondence is often known under the name of Cartier operator. We
therefore deem it reasonable to refer to the result on curves as to the “Jacobson-Cartier” condition. We refer to [11,
§10, §11] for a discussion of the topic that brings all these different perspectives together.
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2.2. The combinatorics of poles of a space Lm+1,n. The condition that n logarithmic differential
forms ω1, . . . , ωn generate Ω a space Lm+1,n put additional restrictions. Recall that P(Ω) is the
set of poles of at least a differential form in Ω. Pagot proved the following result [8, Lemme 5 and
Lemme 6].

Lemma 2.3. Let Ω be a space Lm+1,n. Then, there is an integer λ > 0 such that m+ 1 = λpn−1.
Moreover, |P(Ω)| = λpn−1

p−1 . □

Thanks to this result, in the rest of the paper we can restrict to study spaces Lλpn−1,n for different
values of p and λ, knowing that this hypothesis does not constitute a loss of generality.

Let Ω be a space Lλpn−1,n, fix a basis {ω1, . . . , ωn} of Ω and pick a pole x ∈ P(Ω). We
denote by hi the residue of ωi at x for i = 1, . . . , n, setting hi = 0 if x is not a pole of ωi.
Let ω = a1ω1 + · · · + anωn ∈ Ω with ai ∈ Fp. Then we have that x ∈ P(ω) if, and only if,
a1h1 + · · ·+ anhn ≠ 0. As a result, the set H(x) = {

∑n
i=1 aiωi ∈ Ω :

∑n
i=1 aihi = 0} is a hyperplane

of Ω consisting of all the differential forms that do not have x as a pole. Conversely, given a
hyperplane H ⊂ Ω, we define XH := P(Ω)− P(H), the subset of P(Ω) consisting of all poles that
do not occur as poles of any element in H. If we denote by H(Ω) the set of hyperplanes of Ω, the
correspondence x 7→ H(x) defines a function H : P(Ω) → H(Ω) with the property that H−1(H) = XH

for every H ∈ H(Ω).

Lemma 2.4. We have that |XH | = λ for every H ∈ H(Ω). As a result, the map H is surjective and
it is injective if, and only if, λ = 1.

Proof. Note that a hyperplane H ∈ H(Ω) is a space L(λp)pn−2,n−1. By Lemma 2.3 we have that
|P(Ω)| = λpn−1

p−1 , |P(H)| = λpp
n−1−1
p−1 , and we know that P(H) ⊂ P(Ω). From this it follows that

|XH | = |P(Ω)− P(H)| = |P(Ω)| − |P(H)| = λ
pn − 1

p− 1
− λp

pn−1 − 1

p− 1
= λ

pn − 1− pn + p

p− 1
= λ.

□

The result of Lemma 2.4 can be rephrased by observing that P(Ω) = ∪HXH is a union of sets of
cardinality λ, indexed by the pn−1

p−1 hyperplanes of Ω. In the light of 2.3, we see that this is in fact a
disjoint union.

The following Corollary is essentially equivalent to [7, Lemme 2.2.2.]. We include here a proof
that uses the notation above for the reader’s convenience.

Corollary 2.5. Let Ω be a space Lλpn−1,n and let {ω1, . . . , ωn} be a basis of Ω. Then, for every
1 ≤ r ≤ n we have that |P(ω1) ∩ · · · ∩ P(ωr)| = λ(p− 1)r−1pn−r.

Proof. We begin by remarking that, for every ω ∈ Ω− {0} and H ∈ H(Ω) either H−1(H) ⊂ P(ω)
or H−1(H) ∩ P(ω) = ∅. As a result, P(ω1) ∩ · · · ∩ P(ωr) is a union of sets of the form XH , and
therefore P(ω1) ∩ · · · ∩ P(ωr) = H−1(H(P(ω1) ∩ · · · ∩ P(ωr))). We then have

|P(ω1) ∩ · · · ∩ P(ωr)| = λ|H
(
P(ω1) ∩ · · · ∩ P(ωr)

)
|.

We can then conclude with a hyperplane-counting argument: we have that H(P(ω1)) is the set of
hyperplanes of Ω not containing ω1. More in general, since P(ω1) ∩ · · · ∩ P(ωr) is a union of sets of
the form XH , we have that H(P(ω1) ∩ · · · ∩ P(ωr)) = H(P(ω1)) ∩ · · · ∩ H(P(ωr)). This latter is the
set of hyperplanes of Ω not containing ωi for any i ∈ {1, . . . , r} and so its cardinality is pn−r(p−1)r

p−1 .
As a result, we also have that

|P(ω1) ∩ · · · ∩ P(ωr)| = λpn−r(p− 1)r−1.

□
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When n = 2, the result above specializes to the following.

Corollary 2.6. Let Ω be a space Lλp,2, and let ω, ω′ ∈ Ω− {0}. Then,
(i) ⟨ω⟩Fp = ⟨ω′⟩Fp if, and only if, |P(ω) ∩ P(ω′)| = λp
(ii) ⟨ω, ω′⟩Fp = Ω if, and only if, |P(ω) ∩ P(ω′)| = λ(p− 1).

□

Let us now show that the set of poles of a space Lm+1,n completely characterizes such a space,
starting with the case n = 1.

Lemma 2.7. Let ω, ω′ be logarithmic differential forms on P1
k with a unique zero at ∞ of order

m− 1, and let P(ω) and P(ω′) be the respective set of poles. Then, P(ω) = P(ω′) if, and only if
⟨ω⟩Fp = ⟨ω′⟩Fp.

Proof. The non-trivial part is to prove that P(ω) = P(ω′) implies that the two forms generate the
same Fp-vector space. Let P(ω) = P(ω′) = {x0, . . . , xm} and let us show that there exists c ∈ F×

p

such that ω′ = cω. As these differential forms are logarithmic with no zeroes outside ∞, we have the
unique writings ω =

∑m
i=0

ai
X−xi

dX and ω′ =
∑m

i=0
bi

X−xi
dX, with ai, bi ∈ F×

p .

Suppose by contradiction that there is no c ∈ F×
p such that ai = cbi for every i. Then there is

a j ∈ F×
p such that ai + jbi = 0 for some but not all i’s. Then, the form ω + jω′ is a non-zero

logarithmic differential form with a zero of order at least m− 1 at infinity, and at the same time it
has at most m simple poles. This is not possible, since the degree of any (non-zero) meromorphic
differential form on P1

k is −2. □

Proposition 2.8. Let n ≥ 2, let Ω be a space Lλpn−1,n and let ω′ be a logarithmic differential form
having a unique zero at infinity of order λpn−1 − 2 and such that P(ω′) ⊂ P(Ω). Then ω′ ∈ Ω.

Proof. Suppose by contradiction that ω′ ̸∈ Ω. Let ω ∈ Ω− {0} be a non-zero differential form. We
begin our argument with a proof by contradiction that

(2.9) |P(ω) ∩ P(ω′)| ≤ λ(pn−1 − pn−2).

For j = 1, . . . , p− 1, we set Yj := {x ∈ P(ω) ∩ P(ω′) : resx(ω
′) = j · resx(ω)} in such a way that

P(ω) ∩ P(ω′) =

p−1⋃
j=1

Yj

is a disjoint union. If we assume by contradiction that |P(ω) ∩ P(ω′)| > λ(pn−1 − pn−2), then there
exists at least a value of j for which |Yj | > λ(pn−1−pn−2)

p−1 = λpn−2. For such a j, we set ωj := ω′ − jω.
Since ω′ ̸∈ Ω, we have that ωj ̸= 0 and then that ωj is a logarithmic differential form with

P(ωj) ∩ Yj = ∅. Moreover, since both ω and ω′ have a zero of order λpn−1 − 2 at ∞, then the order
of ∞ as a zero of ωj is at least λpn−1 − 2, resulting in |P(ωj)| ≥ λpn−1, because all the poles are
simple. By construction, we also have that P(ωj) = P(ω)∪P(ω′)− Yj . Combining this information,
we estimate the cardinality |P(ωj)| as

λpn−1 ≤ |P(ωj)| = |P(ω)|+ |P(ω′)| − |P(ω) ∩ P(ω′)| − |Yj | < 2λpn−1 − λ(pn−1 − pn−2)− λpn−2

= λpn−1,

leading to a contradiction and proving the validity of the inequality (2.9).
We then show that inequality (2.9) can not hold for every ω ∈ Ω using the hypothesis that ω′ ̸∈ Ω.

First of all, we fix a basis ω1, . . . , ωn of Ω, we consider the dual basis ω⋆
1, . . . , ω

⋆
n of Ω⋆ and we index
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every element of Ω as ωa :=
∑
aiωi for every a ∈ Fn

p . In this way, we have that ω′ ≠ ωa for every
a ∈ Fn

p . For all ϵ := ϵ1ω
⋆
1 + · · ·+ ϵnω

⋆
n ∈ P(Ω⋆), we set

Hϵ := {ωa ∈ Ω : ϵ(ωa) = 0},

Xϵ := XHϵ = {x ∈ P(Ω) : resx(ω) = 0 ∀ ω ∈ Hϵ}

and

Nϵ := |P(ω′) ∩Xϵ|.

Since P(ω′) ⊂ P(Ω), we have that P(ω′) =
⊔

ϵ(P(ω′) ∩Xϵ) and hence that
∑

ϵNϵ = λpn−1.

We note that, for every a ∈ P(Fn
p ) the set P(ωa) is the union

P(ωa) =
⋃

ϵ∈P(Ω⋆)
ϵ(ωa )̸=0

Xϵ,

and in particular it depends only on the class [a] ∈ P(Fn
p ). To conclude the proof, we count∑

[a]∈P(Fn
p )

∣∣P(ωa) ∩ P(ω′)
∣∣ in two different ways:

On the one hand, we have∑
[a]∈P(Fn

p )

∣∣P(ωa) ∩ P(ω′)
∣∣ = ∑

[a]∈P(Fn
p )

∑
ϵ∈P(Ω⋆)
ϵ(ωa )̸=0

Nϵ =
∑

ϵ∈P(Ω⋆)

∑
[a]∈P(Fn

p )

ϵ(ωa) ̸=0

Nϵ

=
∑

ϵ∈P(Ω⋆)

pn−1Nϵ = λpn−1pn−1 = λp2n−2.

On the other hand, since ω′ ≠ ωa for every a ∈ P(Fn
p ), we can apply the inequality (2.9) with

ω = ωa for every a ∈ P(Fn
p ) to get that∑

[a]∈P(Fn
p )

∣∣P(ωa) ∩ P(ω′)
∣∣ ≤ λ(pn−1 − pn−2)(pn−1 + · · ·+ 1) = λ(p2n−2 − pn−2).

We obtain the contradiction λp2n−2 ≤ λ(p2n−2 − pn−2) and we conclude that ω′ ∈ Ω.
□

From Lemma 2.7 and Proposition 2.8 we deduce the very useful corollary that a space Lλpn−1,n is
characterized by its set of poles.

Corollary 2.10. Let n ≥ 1 and let Ω and Ω′ be spaces Lλpn−1,n. Then Ω = Ω′ if, and only if,
P(Ω) = P(Ω′).

We conclude this section by establishing a notion of equivalence between two spaces Lλpn−1,n,
which will be employed in later sections.

Definition 2.11. If Ω,Ω′ are two spaces Lλpn−1,n, we say that they are equivalent if there is an
automorphism σ ∈ Autk(P1

k) such that σ(∞) = ∞ and Ω′ = σ⋆Ω.

An immediate consequence of Corollary 2.10 is that Ω is equivalent to Ω′ if, and only if, there
exist a ∈ k×, b ∈ k such that P(Ω′) = aP(Ω) + b.
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2.3. Frobenius action and étale pullbacks. Given a space Lλpn−1,n, there are two constructions
that we can apply to construct more spaces.

The first construction exploits the action of the relative Frobenius on a space Lλpn−1,n. Recall
that Ω(k(X)) denotes the k-algebra of meromorphic differential forms on P1

k. Consider the relative
Frobenius operator Φ : Ω(k(X)) → Ω(k(X)) acting on the coefficients of a form by raising them to
the power p:

Φ

(∑
aiX

i∑
biXi

dX

)
=

∑
apiX

i∑
bpiX

i
dX.

Then we have the following result:

Lemma 2.12. Let Ω be a space Lλpn−1,n. Then Φ(Ω) is again a space Lλpn−1,n. Moreover, for every
choice of p, λ, and n, Φ is bijective when restricted to the set of spaces Lλpn−1,n.

Proof. Let ω =
∑λpn−1

i=1
ai

X−xi
dX ∈ Ω with ai ∈ F×

p . Then Φ(ω) =
∑λpn−1

i=1
ai

X−xp
i
dX is clearly

logarithmic. Moreover, it has a unique zero at ∞ because this condition is equivalent to the first
line of the equations (2.15). Since Fp-linearly independent forms are sent to linearly independent
forms, we have that Φ(Ω) is a space Lλpn−1,n.

To show the bijectivity note that, since k is algebraically closed, the Frobenius is an automorphism
of k. Its inverse induces the inverse of Φ, which restricts naturally to the set of spaces Lλpn−1,n for
the reasons above. □

Concretely, the relative Frobenius acts on the points of P1
k by raising them to the p-th power. If

Ω is a space Lλpn−1,n, then one gets the poles of Φ(Ω) by raising to the p-th power the poles of Ω.
This condition determines uniquely the space Φ(Ω) thanks to Corollary 2.10.

The second construction exploits the properties of finite étale covers of the affine line in character-
istic p > 0. More precisely, we fix d > 0 and we recall that in this setting a finite étale morphism
A1
k → A1

k of degree dp is induced by a map k[X] → k[X] sending X to a polynomial of the form
γX + T (Xp) with γ ∈ k× and T ∈ k[X] a polynomial of degree d. This is equivalent to ask that X
is sent to a polynomial whose derivative is a non-zero constant. Such a morphism extends uniquely
to a degree dp cover ϕ : P1

k → P1
k branched only over ∞, and we can consider the pullback map

ϕ⋆ : Ω(k(X)) → Ω(k(X)).

Lemma 2.13. Let ϕ : P1
k → P1

k be the compactification of a finite étale morphism A1
k → A1

k of
degree dp. Let Ω = ⟨ω1, . . . , ωn⟩Fp be a space Lλpn−1,n. Then, the Fp-vector space generated by the
differential forms ϕ⋆(ω1), . . . , ϕ

⋆(ωn) is a space Ldλpn,n, called the étale pullback of Ω via ϕ.

Proof. The restriction of ϕ to A1
k is induced by a polynomial S(X) such that S′(X) = γ ∈ k×.

Set Z = S(X) and ωi =
dX

Pi(X) =
F ′
i (X)

Fi(X)dX. Then ϕ⋆(ωi) =
[Fi(S(X))]′

Fi(S(X)) dX and hence is logarithmic.
Moreover

ϕ⋆(ωi) =
dZ

Pi(Z)
=

γdX

Pi(S(X))
.

and hence it has a unique zero of order dλpn − 2 at infinity. Finally, ϕ⋆ is a linear operator, hence
we have

∑
i aiϕ

⋆(ωi) = ϕ⋆ (
∑

i aiωi). It follows that any Fp-linear combination of ϕ⋆(ωi) is also a
logarithmic differential form with a unique zero of order dλpn − 2 at infinity. □

2.4. Known results on spaces Lλ,1. It is easy to verify that every ℓ-dimensional subspace of a
space Lλpn−1,n is a space Lλpn−1,ℓ. It is therefore useful to have results in the case n = 1, as these
can provide significant information for studying the higher dimensions too. In this short section, we
recall the known results in dimension one that will be used in the rest of the paper.
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Proposition 2.14. Let ω ∈ Ω(k(X)) be a differential form on the projective line P1
k. The following

conditions are equivalent:
(i) The Fp-vector space ⟨ω⟩Fp is a space Lλ,1.
(ii) The differential form ω has precisely λ distinct simple poles x1, . . . , xλ and corresponding

residues a1, . . . , aλ in F×
p (which is equivalent to being logarithmic). Moreover, these poles

and residues satisfy the polynomial equations:

(2.15)
λ∑

i=1

aix
k
i = 0 for 0 ≤ k ≤ λ− 2.

(iii) We can write ω = 1
P (X)dX with P (X) ∈ k[X] of degree λ in such a way that the coefficient of

Xp−1 in the polynomial P p−1 is 1 and that the coefficient of Xµp−1 in the polynomial P p−1

vanishes for all 2 ≤ µ ≤ λ+ ⌊1−λ
p ⌋.

Proof. Let us assume (i). Then ω is logarithmic and has a unique zero of order λ− 2 at infinity. We
write ω =

∑λ
i=1

ai
X−xi

dX and we introduce a change of variable Z = 1
X . Then,

ω =

λ∑
i=1

−ai
Z(1− xiZ)

dZ =

λ∑
i=1

(
−ai
Z

+
−aixi
1− xiZ

)
dZ =

λ∑
i=1

−aixi
(1− xiZ)

dZ,

the first equality resulting from partial fraction expansion, and the second arising from the fact that
ω has no poles at infinity and then

∑λ
i=1 ai = 0. The further condition that the zero at infinity of ω

is of order λ− 2 results in the equality
λ∑

i=1

aixi
1− xiZ

dZ =
uZλ−2∏λ

i=1(1− xiZ)
dZ,

for some u ∈ k×. By developing the denominators in this equality in formal power series in the
variable Z, one obtains the following equations:

(2.16)



λ∑
i=1

aix
k
i = 0 for 0 ≤ k ≤ λ− 2,

λ∑
i=1

aix
λ−1
i = u,

λ∑
i=1

aix
λ+k−1
i = u · ck(x1, . . . , xλ) for k ≥ 1,

where ck is the k-th complete homogeneous symmetric polynomial. The first line show that the
system (2.15) is satisfied, while the second line ensures that the poles are distinct.

Conversely, assume (ii). Then, we have that ω is logarithmic thanks to the condition on the poles
and residues. Moreover, from the development in formal power series it follows that the equations in
(2.15) imply that the zero at infinity is of order ≥ λ−2. Since there are precisely λ distinct simple poles,
this is enough to conclude that there are no other zeroes and that the order at infinity is precisely λ−2.

The equivalence between (iii) and (i) follows from Corollary 2.2. □

Remark 2.17. The element u ∈ k× appearing in Equation (2.16) can be expressed in terms of the
polynomial P appearing in condition (iii) as u = 1

α , where α is the leading coefficient of P .

It is easy to construct logarithmic differential forms ω satisfying the conditions of Proposition
2.14, as the following examples show:
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Example 2.18. Let λ ∈ Z with λ > 1 and (λ − 1, p) = 1. Consider f(X) := Xλ−1−1
Xλ−1 and the

associated logarithmic differential form ω := df
f = (λ− 1) dX

Xλ−X
. Then, we have that ω = dX

P (X) for

P (X) = Xλ−X
λ−1 . There are λ simple poles and no zeroes outside ∞, then the unique zero at ∞ is of

order λ− 2 and ⟨ω⟩Fp is a space Lλ,1

It follows from Example 2.18 that spaces Lλ,1 exist for all (λ − 1, p) = 1. The converse is also
true: if p|(λ− 1) then by Proposition 2.14 (iii) the leading term of P p−1 vanishes, but this implies
that deg(P ) < λ, which is not possible. The paper [4] by Green and Matignon contains more results
on spaces Lλ,1, such as a description of all possible spaces Lλ,1 in the case λ < p+ 1. A simple but
fundamental example that fits in this case is the following:

Example 2.19. Let p ≥ 3 and f(X) :=
∏p−1

i=1 (X − i1k)
i ∈ k[X], where 1k ∈ k is the unity of the

field k. Then, Ω := ⟨dff ⟩Fp is a space Lp−1,1. In fact, by construction the non-zero forms in Ω are
logarithmic and their set of (simple) poles is {1, 2, . . . , p− 1}. At the pole i, the residue of ω is equal
to i. We can then verify that the equations (2.15) are satisfied:{∑p−1

i=1 i
k ≡ 0 mod p for 1 ≤ k ≤ p− 2∑p−1

i=1 i
p−1 ≡

∑p−1
i=1 1 ≡ −1 mod p

By Proposition 2.14, Ω is a space Lp−1,1. We can obtain the same result by rewriting the differential
form as ω = df

f = dX
1−Xp−1 , from which the computation of residues also follows.

Remark 2.20. Without the assumption m < p, a deeper overview of the possible m + 1-uples of
residues a (called Hurwitz data) is contained in Henrio’s Ph.D. thesis [5]. It is worth noting that
several questions about Hurwitz data remain unanswered (see also [8, §1.1]).
Remark 2.21. Let q = pt with t ≥ 1. In [10, Definition 3.2.] a generalization of spaces Lm+1,n to the
setting of Fq-vector spaces is introduced. Namely, a space Lq

m+1,n is defined as a Fq-vector space of
differential forms on P1

k whose nonzero elements have simple poles, a unique zero of order m − 1
at ∞ and residues in Fq. We remark that all the results proved in this section for spaces Lm+1,n

generalize to spaces Lq
m+1,n. In particular, the key Proposition 2.1 has a natural analogue, and if

one introduces the operator ∇ acting on the field k(X) by

∇ : f(X) 7→
(
f(X)(p−1)

)1/p
,

the Jacobson-Cartier condition (Corollary 2.2) is generalized over Fq by saying that a differential
form ω = dX

P (X) has simple poles and residues in Fq if, and only if, ∇t(P (X)q−1) = (−1)t. As in
Proposition 2.14, it is therefore possible to express the fact that ω generates a space Lq

m+1,1 as a
condition on the coefficients of P (X)q−1. More precisely, the condition states that the coefficient of
Xq−1 is (−1)t and that the coefficients of Xµq−1 vanish for every µ ≥ 2.

More generally, it is not difficult to adapt the majority of the results in the rest of the papers
to spaces Lq

m+1,n. The main idea is to change the key definition of the Moore determinant of an
n-tuple a := (a1, . . . , an) ∈ kn into

∆n(a) :=

∣∣∣∣∣∣∣∣∣
a1 a2 . . . an
aq1 aq2 . . . aqn
...

... . . .
...

aq
n−1

1 aq
n−1

2 . . . aq
n−1

n

∣∣∣∣∣∣∣∣∣
as already considered in [10]. The vanishing of this Moore determinant is a necessary and sufficient
condition for Fq-linear dependence of the elements of a and key Theorem 4.8 restated in terms of
q-Moore determinants and spaces Lq

m+1,n holds with a very similar proof.
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However, we have decided not to state our results in this full generality and the case q = p remains
the focus of our study: in fact, only in this setting the elements of a space Lq

m+1,n are logarithmic,
while we do not have a similar interpretation otherwise. This property is crucial to solve a concrete
question about lifting local actions of elementary abelian groups (see [8, Théorème 11]), while it
remains unknown what geometric interpretation or other use might have the existence of a space
Lq
m+1,n for q not prime.

3. An obstruction to the existence of spaces Lλp,2

We now consider the case n = 2, where we recall results established by Pagot and show that, for
p > 3λ there are no spaces Lλp,2.

3.1. Known results on spaces Lλp,2. We recall the following fundamental result by Pagot ([8,
Proposition 7]). A proof is included, which contains elements that are crucial for the main result of
this section, as well as for the generalization that we propose in Section 4.

Proposition 3.1. Let ω1, ω2 ∈ Ω(k(X)). Then the Fp-vector space Ω generated by ω1 and ω2

is a space Lλp,2 if and only if there exist two polynomials Q1, Q2 ∈ k[X] satisfying the following
conditions:

(i) deg(iQ1 + jQ2) = λ, for every [i : j] ∈ P1(Fp)

(ii) ω1 =
Q2dX

Q1Q
p
2 −Qp

1Q2
and ω2 =

−Q1dX

Q1Q
p
2 −Qp

1Q2

(iii) The p − 1-th derivative
(
(Qp

1 −Q1Q
p−1
2 )p−1

)(p−1)
of the polynomial (Qp

1 − Q1Q
p−1
2 )p−1 is

equal to −1.

Proof. Suppose that Ω is a space Lλp,2. Let us fix a basis (ω1, ω2) of Ω, and remark that the set of
poles of an element iω1 + jω2 ∈ Ω depends only on the corresponding [i : j] ∈ P1(Fp). Let us then
denote by X[i:j] the set of poles of differential forms in Ω that are not poles of iω1 + jω2. By the
results of section 2.2, every X[i:j] consists of λ elements and the set consisting of the X[i:j] for all
[i : j] ∈ P1(Fp) is a partition of the set of λ(p+ 1) poles of Ω. Let us consider the polynomials

P[i:j](X) =
∏

x∈X[i:j]

(X − x) and P (X) =
∏

[i:j]∈P1(Fp)

P[i:j](X).

Since iω1 + jω2 has a unique zero at infinity and poles outside X[i:j], we need that

iω1 + jω2 =
cijP[i:j](X)

P (X)
dX

for nonzero constants cij ∈ k that satisfy the condition

cijP[i:j](X) = ic10P[1:0](X) + jc01P[0:1](X).

Since all the P[i:j] are monic polynomials, this means in particular that cij = ic10 + jc01. Let us set
a = c10

c01
and note that a /∈ Fp, otherwise we would have c(p−1)a = 0, which is not possible, as ω1

and ω2 are assumed Fp-linearly independent. As a result, since k is algebraically closed, there is an
element c ∈ k× satisfying cp = − 1

c01(ap−a) . Let us set

Q1 := −cP[0:1] and Q2 := acP[1:0].

Then, iQ2 − jQ1 = c(iaP[1:0] + jP[0:1]) = c
cij
c01
P[i:j], which is a polynomial of degree λ.

Moreover, we have Q1Q
p
2 − Qp

1Q2 = −cp+1(ap − a)P = c
c01
P and hence ω1 =

Q2dX

Q1Q
p
2 −Qp

1Q2
and
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ω2 =
−Q1dX

Q1Q
p
2 −Qp

1Q2
, as required by condition (ii). Finally, condition (iii) in the statement is also

satisfied, by virtue of Corollary 2.2.
Conversely, let us start with Q1 and Q2 satisfying the three conditions of the proposition and show

that they give rise to a space Lλp,2. First let us show that the differential form ω1 =
Q2dX

Q1Q
p
2−Qp

1Q2
is

logarithmic if, and only if ω2 =
−Q1dX

Q1Q
p
2−Qp

1Q2
is logarithmic. We have that(

Qp
1Q2 −Q1Q

p
2

)p
= Qp

1Q2

(
Qp

1Q2 −Q1Q
p
2

)p−1 −Q1Q
p
2

(
Qp

1Q2 −Q1Q
p
2

)p−1

= Qp
1Q

p
2

(
Qp

1 −Q1Q
p−1
2

)p−1 −Qp
1Q

p
2

(
Qp−1

1 Q2 −Qp
2

)p−1
.

Since the derivative of the left hand side is 0, we have that the p− 1-th derivative of the right hand

side also vanishes, and therefore that
((
Qp

1 −Q1Q
p−1
2

)p−1
)(p−1)

=
((
Qp−1

1 Q2 −Qp
2

)p−1
)(p−1)

. This
implies that we only need to check via Corollary 2.2 that ω2 is logarithmic to ensure that ω1 is
logarithmic too. In fact, this stays true if we replace ω1 with iω1 + jω2 since (Qp

1Q2 − Q1Q
p
2) =

Qp
1(iQ1 +Q2)−Q1(iQ1 +Q2)

p. Hence, it suffices to have condition (iii) for the differential forms
iω1 + jω2 to be logarithmic for every i and j. In particular, these have simple poles. To prove that
the Fp-vector space generated by ω1 and ω2 is of dimension 2, it suffices to remark that, by (i), there
are λ poles of ω1 that are not poles of ω2, so that ω2 can not be a multiple of ω1. Finally, condition
(ii) is enough to ensure that both ω1 and ω2 have ∞ as their only zero. □

Remark 3.2. The polynomial (Q1Q
p
2 − Qp

1Q2) appearing in the denominators of ω1, ω2 is called
the Moore determinant and denoted by ∆2(Q1, Q2). This is the determinant of the Moore matrix(
Q1 Q2

Qp
1 Qp

2

)
. Its appearance is far from a coincidence: as we will see in Section 4, Moore determinants

of higher order have a fundamental role in the generalizations of Pagot’s result for spaces Lλpn−1,n.
Moreover, results on Moore determinants will be helpful to simplify some proofs, even in the case of
dimension 2. For this reason, we have collected the results we need on Moore determinants in the
Appendix A.

In light of the result of the Proposition 3.1, we introduce the following definition, which will be
extensively used in the classification of spaces L12,2 and L15,2:

Definition 3.3. Let Q1, Q2 ∈ k[X] be polynomials of degree λ such that deg(iQ1 + jQ2) = λ, for
every [i : j] ∈ P1(Fp). Define the associated differential forms

ω1 :=
dX(

Q1Q
p−1
2 −Qp

1

) and ω2 :=
dX(

Q2Q
p−1
1 −Qp

2

) .
We say that the pair (Q1, Q2) gives rise to the pair (ω1, ω2). Moreover, if there exists c ∈ k× such
that the pair (cQ1, cQ2) gives rise to (ω1

cp ,
ω2
cp ) a basis of Ω a space Lλp,2, then we say that the pair

(Q1, Q2) is a prompt for the space Ω.

Remark 3.4. By Proposition 3.1, a pair (Q1, Q2) of polynomials of degree λ is a prompt for a space
Lλp,2 if, and only if, Q1 and Q2 have leading coefficients that are Fp-independent, and are such

that
(
(Qp

1 −Q1Q
p−1
2 )p−1

)(p−1)
is a non-zero constant d ∈ k×. The number c then needs to satisfy

d(cp)p−1 = −1, and hence it is uniquely determined up to multiplication by a p− 1-th root of unity.

Convention 3.5. If we have polynomials Q1 and Q2 satisfying the conditions (i) and (ii) of Proposition
3.1, we can write (Qp

1 − Q1Q
p−1
2 )p−1(X) =

∑
riX

i, and apply Proposition 2.14 to deduce that
condition (iii) is equivalent to the equalities rp−1 = 1 and rkp−1 = 0 for k = 2, . . . , λ(p− 1). The
ri’s are polynomials in the coefficients of Q1 and Q2, and the equalities above will be used in Section
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6 to classify certain spaces Lλp,2. In order to simplify a frequently used notation, we set Rk := rkp−1

for k = 1, . . . , λ(p− 1).

Lemma 3.6. Let Q1, Q2 ∈ k[X] be polynomials of degree λ with

Q1(X) = a

(
Xλ +

λ∑
i=1

(−1)isiX
λ−i

)

Q2(X) = b

(
Xλ +

λ∑
i=1

(−1)itiX
λ−i

)
.

If the pair (Q1, Q2) is a prompt for a space Lλp,2, then we have s1 = t1.

Proof. We have that Q1 and Q2 satisfy condition (iii) of Proposition 3.1 and hence the polynomials
Rk of Convention 3.5 vanish for k > 1. In particular, this is true for Rλ(p−1), the coefficient of
degree λ(p − 1)p − 1 of the polynomial (Qp

1 − Q1Q
p−1
2 )p−1(X). To compute Rλ(p−1), let us write

(Qp
1 − Q1Q

p−1
2 )p−1 = Xλ(p−1)p

[(
Q1

Xλ

)p−1
Q2

Xλ −
(

Q2

Xλ

)p]p−1

, introduce the variable Z = 1
X and

compute the coefficient of Z in the expression in brackets above. We have:(
Q1

Xλ

)p−1 Q2

Xλ
−
(
Q2

Xλ

)p

≡ ap−1b(1− s1Z)
p−1(1− t1Z)− bp(1− tp1Z

p) mod Z2

≡ b
(
ap−1(1− (t1 − s1)Z − bp−1

)
mod Z2.

From this, we deduce that((
Q1
Xλ

)p−1 Q2
Xλ−

(
Q2
Xλ

)p
)p−1

≡ bp−1
(
ap−1(1− (t1 − s1)Z)− bp−1

)p−1
mod Z2

≡ bp−1
(
(ap−1 − bp−1)p−1 + ap−1(ap−1 − bp−1)p−2(t1 − s1)Z

)
mod Z2.

We see then that Rλ(p−1) = bp−1ap−1(ap−1 − bp−1)p−2(t1 − s1) = 0. Since a, b are nonzero and
Fp-linearly independent, then we have that s1 = t1. □

3.2. A new generic obstruction to the existence of spaces Lλp,2. It is a result of Pagot (cf.
[8, Theorème 1 and Theorème 2]) that spaces Lp,2 and L3p,2 exist only for p = 2 and spaces L2p,2

exist only for p = 2, 3. In this section, we show that there are no spaces Lλp,2 if p is large enough
with respect to λ, vastly improving on the previously known situation. The genericity in the title of
the section refers then to the fact that our result holds for all but finitely many primes once λ is
fixed. This allows for the finite remaining cases to be checked with a computer, since it suffices to
check the existence of solutions of a polynomial system (see Convention 3.5). For p = 3 and λ = 4, 5,
this is done in Section 6.

Let us now state our result. To simplify the demonstration, we exclude from the statement the
case λ = 1, which has a known short proof (see [8, Théorème 2, Part 1]). By contrast, the proof
in the other known cases λ = 2, 3 consists of several pages and the argument below consistently
simplifies it.

Theorem 3.7. Let p > 3λ. Then there are no spaces Lλp,2.

To prove the theorem, we need to recall some notation and establish two fundamental lemmas.
If we have a space Lλp,2 generated by a basis(ω1, ω2) and we consider the polynomials Q1 and Q2

giving rise to (ω1, ω2), we recall from the proof of Proposition 3.1 that, for every [i : j] ∈ P1(Fp),
P[i:j] denotes the monic polynomial whose zeroes are those of iQ2 − jQ1, and that a denotes the
quotient of the leading terms of Q1 and Q2, which satisfies a /∈ Fp. We are now ready to establish
our lemmas:
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Lemma 3.8. For every t ∈ k−{−a}, let Pt :=
aP[1:0]+tP[0:1]

a+t and denote by Disc(Pt) its discriminant.
Then there exists a polynomial R(X) ∈ k[X] such that:

(i) We have Disc(Pt) =
R(t)

(a+t)2λ−3 and deg(R(X)) ≤ 2λ− 3.
(ii) Let p > 3λ. Then the element −ap ∈ k is a zero of order ≥ λ+ 3 of R(X).

Proof. We will first prove item (i), and then use it as one of the ingredients for the proof of (ii).
Proof of (i): Let ai be the coefficient of degree i in the polynomial Pt. The discriminant Disc(Pt)

is the determinant of the Sylvester matrix

aλ aλ−1 aλ−2 · · · a1 a0 0 · · · 0
0 aλ aλ−1 · · · a2 a1 a0 · · · 0
...

...
...

...
...

...
. . .

...
0 0 0 · · · 0 aλ aλ−1 · · · a0
λaλ (λ− 1)aλ−1 (λ− 2)aλ−2 · · · a1 0 0 · · · 0
0 λaλ (λ− 1)aλ−1 · · · 2a2 a1 0 · · · 0
...

...
...

...
...

...
. . .

...
0 0 0 · · · λaλ (λ− 1)aλ−1 (λ− 2)aλ−2 · · · a1


.

Since both aλ and aλ−1 are independent of t (the former being 1 and the latter as a result of Lemma
3.6), the first two columns of this matrix are always the same for every t. As a result, we are
left with at most 2λ− 3 rows that contain quantities of the form pij(t)

a+t , where pij(t) is either zero
or a polynomial of degree 1. Applying Leibniz formula for the determinant, we then obtain that
Disc(Pt) =

R(t)
(a+t)2λ−3 for some R(t) of degree at most 2λ− 3 as desired.

Proof of (ii): Consider the differential form ω1 =
Q2dX

Q1Q
p
2−Qp

1Q2
. Remark that the poles of ω1 are

the zeroes of the polynomial Qp
1 −Qp−1

2 Q1 =
∏p−1

j=0 (Q1 − jQ2). Hence, for every pole x of ω1, there
exists a number i ∈ {0, . . . , p− 1} such that x is a zero of iQ2 −Q1. The residue of ω1 at x can then
be computed as follows:

resω1(x) =
−1(

Qp
1 −Qp−1

2 Q1

)′

(x)

=
1

(iQ2 −Q1)′(x)
∏

j ̸=i(jQ2 −Q1)(x)
=

1

(iQ2 −Q1)′(x)(−Qp−1
2 (x))

.

For every i = 0, . . . , p− 1, we recall from the proof of Proposition 3.1 that iQ2 −Q1 = c(a+ i)P[i:1],
and we observe that P[i:1] coincides with Pi as in the statement of the Lemma. We can then rewrite
the identity above as

resω1(x) = − 1

c(a+ i)P ′
i (x)Q2(x)p−1

.

We can then consider the product Hi of the residues at all the poles that are roots of Pi

Hi :=
∏

x∈Z(Pi)

resω1(x) =
(−1)λ

cλ(a+ i)λ
∏

x∈Z(Pi)
P

′
i (x)

∏
x∈Z(Pi)

Qp−1
2 (x)

.

If we denote by Res(•, •) the resultant of two polynomials, we can rewrite the above as

Hi =
(c(a+ i))λ(p−2)

(−1)
λ(λ+1)

2 Disc(Pi)Res(iQ2 −Q1, Q2)p−1
= (−1)

λ(λ+1)
2

(c(a+ i))λ(p−2)

Disc(Pi)Res(−Q1, Q2)p−1
.

By Lemma 3.8 (i), we can express the discriminant Disc(Pi) in terms of the polynomial R(X) to
obtain that Hi = δ (a+i)λp−3

R(i) , where we have set δ := (−1)
λ(λ+1)

2
cλ(p−2)

Res(−Q1,Q2)p−1 for ease of notation,
since this is independent of i.
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Since the differential form ω1 is logarithmic, we have that Hi ∈ F×
p and in particular that Hp−1

i = 1.
The following equations then hold for every i ∈ {0, . . . , p− 1}:

δp−1(a+ i)(λp−3)(p−1) = R(i)p−1

δp−1(a+ i)(λp
2−(λ+3)p+3)R(i) = R(i)p

δp−1(a+ i)λp
2
(a+ i)3R(i) = R(i)p(a+ i)(λ+3)p

δp−1(ap
2
+ i)λ(a+ i)3R(i) = Rp(i)(a

p + i)(λ+3),

where Rp(X) denotes the polynomial obtained from R(X) by raising its coefficients to the p-th
power. We thus have obtained the equation

δp−1(ap
2
+ i)λ(a+ i)3R(i)−Rp(i)(a

p + i)(λ+3) = 0,

which is a polynomial equation of degree at most 3λ in i that is satisfied for every i = 0, . . . , p− 1.
Since we have that p > 3λ, this is actually an equality of univariate polynomials, namely we have

δp−1(ap
2
+X)λ(a+X)3R(X) = Rp(X)(ap +X)(λ+3)

in the ring k[X]. The right hand side of the equation admits −ap as root of order at least λ+ 3.
Since ap ̸= a and ap ≠ ap

2 we conclude that R(X) has −ap as root of order at least λ+3, as well. □

Remark 3.9. In spite of its fairly elementary proof, Lemma 3.8 (i) is already quite powerful. Combining
the lower bound on the order of −ap as a zero of R(X) given in (ii) and the upper bound on the
degree of R(X) given by (i) one gets that 2λ − 3 ≥ λ + 3, which gives λ ≥ 6. It follows that no
further argument is needed to prove Theorem 3.7 when λ ≤ 5.

Lemma 3.10. Let k be an algebraically closed field of characteristic p > 0. Let P,Q be coprime
polynomials in k[X] such that 0 ≤ deg(Q) < deg(P ) < p and consider the polynomial function

z 7→ D(z) := Disc(P − zQ) ∈ k[z].

Let ZD be the set of zeroes of D and Zδ be the set of zeroes of
(
P
Q

)′
where in both sets zeroes are

counted with multiplicity. Then the correspondence

F : Zδ → ZD

x 7→ P (x)

Q(x)

is a well defined bijective function.

Proof. For every t ∈ k, we denote by Zt be the set of zeroes of P − tQ (counted with multiplicity).
The condition deg(Q) < deg(P ) < p ensures that ZD, Zδ and Zt are all finite sets, as they are sets
of roots of non-zero polynomials.
We have that D(t) = c0Res(P − tQ, P ′ − tQ′), where c0 ∈ k does not depend on t. and we can then
write

D(t) = c1
∏
x∈Zt

(P ′ − tQ′)(x),

for c1 ∈ k× not depending on t. We have that gcd(P,Q) = 1, which guarantees that
∏

x∈Zt
Q(x) ̸= 0,

and we can then write

D(t) = c1
1∏

x∈Zt
Q(x)

∏
x∈Zt

(
P ′(x)Q(x)−tQ′(x)Q(x)

)
= c2

1

Res(P − tQ,Q)
Res(P ′Q−tQ′Q,P−tQ),
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where c2 ∈ k× is independent of t.
We now set N := P ′Q− PQ′ and denote by ZN its set of zeroes (counted with multiplicity). By

using this notation and properties of resultants, we transform the equation above into

D(t) = c2
1

Res(P,Q)
Res(P ′Q− PQ′, P − tQ) = c3

∏
x∈ZN

(P − tQ)(x),

where c3 ∈ k× is independent of t. Then, we define the following sets: the set ZN,Q of common
zeroes of N and Q (counted with multiplicities) and the set cZN,Q of zeroes of N that are not zeroes
of Q. We note that, if x ∈ ZN,Q then it is also a zero of Q′: as a result, its multiplicity as a zero of Q
is at least two, and precisely one more than the multiplicity of x as a zero of N . From this, it follows
that ZN = ZN,Q ⊔ cZN,Q. On the other hand, if x ∈ cZN,Q we can use the fact that

(
P
Q

)′
= N

Q2 to

deduce that the multiplicity of x as a zero of N is the same as the multiplicity as a zero of
(
P
Q

)′
. It

follows from this last consideration that Zδ =
cZN,Q. In particular, Zδ ∩ ZQ = ∅ and the function F

is well defined.
The above equation then gets rewritten as

D(t) = c3
∏

x∈ZN,Q

(P − tQ)(x)
∏

x∈cZN,Q

(P − tQ)(x)

= c3
∏

x∈ZN,Q

P (x)
∏

x∈cZN,Q

(P − tQ)(x)

= c4
∏

x∈cZN,Q

(P − tQ)(x)

= c4
∏

x∈cZN,Q

Q(x)
∏

x∈cZN,Q

(
P (x)

Q(x)
− t

)

= c5
∏

x∈cZN,Q

(
P (x)

Q(x)
− t

)
,

where c4, c5 ∈ k× are independent of t. It then follows that the function F is surjective onto ZD.
From the equation, it also follows that |ZD| = |cZN,Q|. Since Zδ =

cZN,Q, then Zδ and ZD have the
same cardinality and F is bijective. □

Proof of Theorem 3.7. Assume by contradiction that there is a space Lλp,2 with p > 3λ. We set
P := aP[1:0] − apP[0:1] and Q := a(P[1:0] − P[0:1]) and we remark that these satisfy the conditions of
Lemma 3.10. As a result, the zeroes of z 7→ D(z) = Disc(P − zQ) are all of the form P (x)

Q(x) for x a

zero of
(
P
Q

)′
. In particular, z = 0 is a zero of D of order at most deg(P ′) = λ− 1, as it corresponds

to a zero x of
(
P
Q

)′
that also satisfies P (x) = 0 (and therefore also P ′(x) = 0).

Let us now give a lower bound to the order of 0 as a zero of D and see that it is incompatible with
the one above. To do this, we apply the function D to a new variable z = t+ap

t+a . In this way, we have

D(z) = Disc

(
P − (t+ ap)

(t+ a)
Q

)
= Disc

(
(t+ a)P − (t+ ap)Q

(t+ a)

)
= Disc

(
(a− ap)(aP[1:0] + tP[0:1])

(t+ a)

)
= Disc

(
(a− ap)Pt

)
= (a− ap)2λ−1Disc(Pt).
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By Lemma 3.8 (i), this last expression can be written in terms of R(t), giving

D(z) = (a− ap)2λ−1 R(t)

(a+ t)2λ−3
.

By Lemma 3.8 (ii), −ap is a zero of order at least λ+ 3 of the polynomial function t 7→ R(t) and,
since the expression of z in t is a linear fractional transformation, we have that 0 is a zero of the
same order of the polynomial z 7→ D(z). This gives the desired contradiction and concludes the
proof of the theorem. □

4. Conditions for the existence of spaces Lλpn−1,n

In this section, we prove a generalization of Proposition 3.1 that applies to spaces Lλpn−1,n for
any n ≥ 2 and discuss some of its consequences. As anticipated in 3.2, our strategy makes a crucial
use of Moore determinants. Definition and results about Moore determinants that we use in this
section are recalled in Appendix A. For every n-tuple of the form X := (X1, . . . , Xn), we denote by
∆n(X) the associated Moore determinant. Moreover, we denote by X̂i the n− 1-uple obtained from
X by removing Xi and by ∆n−1(X̂i) the associated Moore determinant.

We develop our results in the following setting: we let Q1, . . . , Qn ∈ k[X] be polynomials of
degree λ ≥ 1 and denote by qi the leading coefficient of Qi for 1 ≤ i ≤ n. We write P := ∆n(Q),
Pi := (−1)i−1∆n−1(Q̂i) and Pϵ :=

∑
i ϵiPi for every ϵ ∈ Fn

p − {0}.

Lemma 4.1. The polynomial P and the n-tuple P = (P1, . . . , Pn) satisfy the relation

∆n(P ) = P 1+p+···+pn−2
,

Proof. This is a direct corollary of Theorem A.3. □

If we assume that ∆n(q) ̸= 0, then the q′is are Fp-linearly independent. This entails that
degP = (1 + p + p2 + ... + pn−1)λ and degPϵ = (1 + p + p2 + ... + pn−2)λ, since their leading
coefficients are ∆n(q) and

∑
i ϵi∆n−1(q̂i) respectively. The first is nonzero by assumption, the second

by virtue of [10, Corollary 2.1]

Proposition 4.2. Assume that ∆n(q) ̸= 0. Then, we have that Pϵ|P for every ϵ ∈ Fn
p − {0}.

Proof. We first note that we have

Pϵ =

n∑
i=1

(−1)i−1ϵi∆n−1(Q̂i) =

∣∣∣∣∣∣∣∣∣∣∣

ϵ1 ϵ2 . . . ϵn
Q1 Q2 . . . Qn

Qp
1 Qp

2 . . . Qp
n

...
...

. . .
...

Qpn−2

1 Qpn−2

2 . . . Qpn−2

n

∣∣∣∣∣∣∣∣∣∣∣
,

a determinant that we denote by δϵ(Q) as in Appendix A.
Let W := ⟨Q1, . . . , Qn⟩Fp . Since ∆n(q) ̸= 0, then the Qi’s are Fp-linearly independent, hence

dimW = n. Let {Q⋆
1, . . . , Q

⋆
n} be the basis of W ⋆ which is dual to {Q1, . . . , Qn} and denote by

φϵ ∈W ⋆ the Fp-linear form
∑n

i=1(−1)i−1ϵiQ
⋆
i . Then by Formula (A.11) we have∏

Q∈kerφϵ−{0}

Q = (−1)n−1δϵ(Q)p−1 = (−1)n−1P p−1
ϵ .

We choose the following system of representatives of the projectivization P(W ) of W :

S(W ) :=

n⋃
i=1

(Qi + FpQi−1 + · · ·+ FpQ1) .
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and for every subspace V ⊂W we denote by S(V ) the intersection V ∩ S(W ). It is a system of rep-
resentatives of Proj(V ). A counting argument shows that

∏
Q∈V−{0}Q = (−1)dimV (

∏
Q∈S(V )Q)p−1,

which combined with the above gives the identity P p−1
ϵ =

(∏
Q∈S(kerφϵ)

Q
)p−1

. We have then
that there exists µ ∈ F×

p such that Pϵ = µ
∏

Q∈S(kerφϵ)
Q. By Equation (A.2), we have that

P = ∆n(Q) =
∏

Q∈S(W )Q. Since S(ker(φϵ)) ⊂ S(W ) it follows that Pϵ|P . □

Remark 4.3. Proposition 4.2 shows that the expression P
Pi

is a polynomial. We observe that it is
an additive polynomial in the variable Qi. Let us prove this for i = n, from which the other cases
follow. First of all, from (A.2) we get that

P =

n∏
i=1

∏
ϵi−1∈Fp

· · ·
∏

ϵ1∈Fp

(Qi + ϵi−1Qi−1 + · · ·+ ϵ1Q1)

and that

Pn = (−1)n−1
n−1∏
i=1

∏
ϵi−1∈Fp

· · ·
∏

ϵ1∈Fp

(Qi + ϵi−1Qi−1 + · · ·+ ϵ1Q1).

Putting these two equations together results in the formula
P

Pn
= (−1)n−1

∏
ϵn−1∈Fp

· · ·
∏

ϵ1∈Fp

(Qn + ϵn−1Qn−1 + · · ·+ ϵ1Q1).

If we denote by Qn−1 the Fp-vector space ⟨Q1, Q2, . . . , Qn−1⟩Fp the formula above is rewritten as

P

Pn
= (−1)n−1PQn−1(Qn),

where PQn−1 is the structural polynomial of Qn−1 of Definition A.4, which is additive in the variable
Qn.

4.1. The main theorems. We now have all the tools to prove the two main results of this section
(Theorems 4.7 and 4.8). Let us first establish some general results on the relationship between the
Qi’s and some spaces of differential forms that we can build from them:

Definition 4.4. Let Q := (Q1, . . . , Qn) ∈ k[X]n be a n-tuple of polynomials of degree λ ≥ 1 with
leading coefficients qi satisfying ∆n(q) ̸= 0. We write P := ∆n(Q) and Pi := (−1)i−1∆n−1(Q̂i). We
define differential forms ωi :=

Pi
P dX and the space Ω := ⟨ω1, . . . , ωn⟩Fp . We say that the n-tuple Q

gives rise to the basis (ω1, . . . , ωn).

By Proposition 4.2 we have that for all ϵ ∈ Fn
p − {0} the polynomial Pϵ divides P and from

Definition 4.4 we see that

Pϵ

P
dX = ϵ1ω1 + · · ·+ ϵnωn.

This entails that all the nonzero differential forms in Ω have a unique zero of order λpn−1 − 2 at
infinity. However, they are not in general logarithmic. In the following, we begin an investigation of
conditions for Ω to be a space Lλpn−1,n that culminates in Theorem 4.7.

For every M ∈ GLn(Fp) we denote by (QM)1, . . . , (QM)n the components of the vector QM
obtained by applying the matrix M to Q. We note that all the entries (QM)i’s are polynomials
of degree λ with leading coefficients that are Fp-independent. We associate with this n-tuple the

differential forms ωM
i := (−1)i−1∆n−1

(
̂(QM)i

)
∆n(QM) dX and the space Ω′ := ⟨ωM

1 , . . . , ω
M
n ⟩Fp .
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Proposition 4.5. Assume the notation of Definition 4.4.
4.5(i) For every M ∈ GLn(Fp) we have that

(ωM
1 , . . . , ω

M
n ) = (ω1, . . . , ωn)(M

−1)t,

where (M−1)t ∈ GLn(Fp) is the transpose of the inverse of M . In particular, Ω′ = Ω.
4.5(ii) Let Q := (Q1, . . . , Qn) and T := (T1, . . . , Tn) be n-tuples of polynomials in k[X] giving rise

to the same basis (ω1, . . . , ωn). Then Q = T .
4.5(iii) Let Q := (Q1, . . . , Qn) and T := (T1, . . . , Tn) be n-tuples of polynomials in k[X] giving rise

to bases of the same space Ω. Then, there exists a matrix M ∈ GLn(Fp) such that T = QM.

Proof. (i) For every i, j ∈ {1, . . . , n} we denote by Mi,j the (i, j)-th minor of the matrix M .
We then have that ∆n−1((̂QM)

j
) =

∑n
i=1Mi,j∆n−1(Q̂i) using Fp-multilinearity and the

alternating property of ∆n−1. Then, using the fact that ∆n(QM) = ∆n(Q) det(M) and that
M is invertible, we get

ωM
j :=

(−1)j+1∆n−1((̂QM)
j
)

∆n(QM)
dX =

(−1)j+1
∑n

i=1Mi,j∆n−1(Q̂i)

∆n(QM)
dX =

∑n
i=1 (−1)i+jMi,jPi

∆n(QM)
dX

=
1

det(M)

n∑
i=1

(−1)i+jMi,jPi

P
dX =

n∑
i=1

(−1)i+j

det(M)
Mi,jωi.

In other words, (ωM
1 , . . . , ω

M
n ) = (ω1, . . . , ωn)(M

−1)t. We have then that ωM
1 , . . . , ω

M
n is

a basis of Ω for every invertible matrix M ∈ GLn(Fp).
(ii) and (iii) Let ωi,Q := (−1)i−1∆n−1(Q̂i)

∆n(Q) dX and ωi,T := (−1)i−1∆n−1(T̂i)
∆n(T ) dX. Since T and Q both arise

from the space Ω we have that there exists a matrix N ∈ GLn(Fp) such that

(ω1,Q, . . . , ωn,Q)N = (ω1,T , . . . , ωn,T )

Then, by part (i), one has that the n-tuple Q(N−1)t gives rise to the basis (ω1,T , . . . , ωn,T ).
Let M := (N−1)t and let us show that QM = T : this will both prove (ii) (in which case
N =M = I) and (iii). From the fact that QM and T give rise to the same basis we get∆n−1

(
(̂QM)

1

)
∆n(QM)

, . . . ,
(−1)n−1∆n−1

(
(̂QM)

n

)
∆n(QM)

 =

(
∆n−1(T̂1)

∆n(T )
, . . . ,

(−1)n−1∆n−1(T̂n)

∆n(T )

)
.

We can then apply the Moore determinant to the terms of this equality and use Theorem
A.3 to get that

∆n(QM)p
n−1

= ∆n(T )
pn−1

,

which implies that ∆n(QM) = ∆n(T ). Hence, we have that

(−1)i−1∆n−1((̂QM)i) = (−1)i−1∆n−1(T̂i) for every i = 1, . . . , n

which we know by Proposition A.15 to be equivalent to the fact that QM = θT for
some θ ∈ k(X)alg with θ1+p+···+pn−2

= 1. But since ∆n(QM) = ∆n(T ), we have that
θ1+···+pn−1

= 1 and hence θpn−1
= 1, that is, θ = 1.

□

For a space Lλpn−1,n, we will show in Theorem 4.8 that we can always associate polynomials
Q1, . . . , Qn giving rise to a basis as in Definition 4.4. In this context, Proposition 4.5(iii) says that
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two choices of such a n-tuple are necessarily related by multiplication of an invertible matrix with
entries in Fp.

Let us now prove another useful proposition, first recalling from Definition A.4, that the structural
polynomial of a Fp-vector space V is defined as PV (X) :=

∏
v∈V (X − v) ∈ k[X].

Proposition 4.6. Let Ω = ⟨ω1, . . . , ωn⟩Fp be as in definition 4.4. For every 1 ≤ t ≤ n, let Ωt ⊂ Ω
be the Fp-subspace of Ω generated by {ωn−t+1, . . . , ωn} and let Qn−t = ⟨Q1, . . . , Qn−t⟩Fp . Then, the
t-uple of polynomials

(
PQn−t(Qn−t+1), . . . , PQn−t(Qn)

)
gives rise to the basis (−1)n−t(ωn−t+1, ..., ωn

)
of Ωt.

Proof. If we specialize Corollary A.17 to the case Xi = Qi, we get, for every n− t+ 1 ≤ i ≤ n, that

∆n−1(Q̂i)

∆n(Q)
=

∆t−1(PQn−t(Qn−t+1), . . . , ̂PQn−t(Qi), . . . , PQn−t(Qn))

∆t(PQn−t(Qn−t+1), . . . , PQn−t(Qn))
.

As a result, the t-tuple (PQn−t(Qn−t+1), . . . , PQn−t(Qn)) gives rise to the basis of Ωt given by the
t-uple

(
(−1)n−tωn−t+1, . . . , (−1)n−tωn

)
. □

Theorem 4.7. Let Ω be a space of differential forms constructed as in Definition 4.4. If there exists
a non-zero ω ∈ Ω that is a logarithmic differential form, then Ω is a space Lλpn−1,n.

Proof. Lemma 4.1 ensures that ∆n(P ) ̸= 0, hence the Pi’s are Fp-linearly independent and then
Ω = ⟨ω1, . . . , ωn⟩Fp is a vector space of dimension n of differential forms that have a unique zero at
∞ (recall that by Proposition 4.2 we have that Pϵ|P ).

Up to a change of basis of Ω, we can assume that ω = ωn. We then need to show that, if ωn is
a logarithmic differential form then all the forms in Ω are logarithmic. We start by claiming the
following: if ωn is logarithmic, then ⟨ωn−1, ωn⟩Fp is a space Lλpn−1,2. For this, we recall from the proof

of Proposition 3.1 that it is sufficient to find polynomials R1 and R2 such that ωn =
R1dX

Rp
1R2 −R1R

p
2

and ωn−1 =
R2dX

R1R
p
2 −Rp

1R2
. This is done by applying Proposition 4.6 to the case t = 2, and setting

R1 = PQn−2(Qn−1) and R2 = PQn−2(Qn).
It follows that ωn−1 is also a logarithmic differential form. Using the same argument, we can show

that ωi is logarithmic for every i = 1, . . . , n− 1 and then that every form in Ω is logarithmic, which
entails that Ω is a space Lλpn−1,n.

To see that P = ∆n(Q) has simple roots, note that its degree is precisely λpn−1
p−1 , and that by

construction its zeroes are the elements of P(Ω), which we know by Lemma 2.3 to be a set of
cardinality λpn−1

p−1 . The roots then need to be simple. □

The reciprocal of Theorem 4.7 also holds, completing the generalization of Proposition 3.1:

Theorem 4.8. Let Ω be a space Lλpn−1,n with n ≥ 2. Then, there exist polynomials Q1, · · · , Qn ∈ k[X]

of degree λ such that, writing P := ∆n(Q) and Pi := (−1)i−1∆n−1(Q̂i), we have that Pi|P and
Ω = ⟨ω1, . . . , ωn⟩Fp with ωi =

Pi
P dX.

Proof. The case n = 2 is provided by Proposition 3.1, so we can proceed by induction: we fix n ≥ 3
and assume that we have the result of the theorem in dimension up to n− 1.
Let (ω1, . . . , ωn) be a basis of Ω, and let P (X) =

∏
x∈P(Ω)

(X−x). Then we can find P1, . . . , Pn ∈ k[X]

such that ωi =
Pi
P dX. By Lemma 2.3 the degree of P is λ(1 + p+ · · ·+ pn−1) and then deg(Pi) =

λ(1 + p+ · · ·+ pn−2). By [10, Proposition 4.1] specialized at the case q = p (cf. also the remark in
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[8, p. 68]) we have that ∆n(P1, . . . , Pn) = γP 1+p+···+pn−2 for some γ ∈ k×. By possibly multiplying
P and the Pi’s by µ ∈ k× satisfying µpn−1

γ = 1, we can assume that

(4.9) ∆n(P1, . . . , Pn) = P 1+p+···+pn−2
.

We now remark that the space ⟨ω1, . . . , ωn−1⟩Fp is a space Lλpn−1,n−1 and then by inductive hypothesis

there exist S1, . . . , Sn−1 ∈ k[X] of degree λp such that
Pi

P
= (−1)i−1∆n−2(Ŝi)

∆n−1(S)
, which means that

Pi = (−1)i−1∆n−2(Ŝi)
P

∆n−1(S)
. We then have that

(4.10) ∆n−1(P1, . . . , Pn−1) = ∆n−1((−1)i−1∆n−2(Ŝi))
P 1+p+···+pn−2

∆n−1(S)1+p+···+pn−2 =
P 1+p+···+pn−2

∆n−1(S)p
n−2 ,

where the last equality is obtained by applying Theorem A.3.
To conclude, we need to show that there exist Q1, Q2, · · · , Qn ∈ k[X] of degree λ such that

P = ∆n(Q) and Pi = (−1)i−1∆n−1(Q̂i). Let φ : kn −→ kn be the map defined by (φ(a))i =

(−1)i−1∆n−1(âi). Then by Proposition A.15 (since ∆n(P ) ̸= 0) there exist n-tuples Q,R of elements
of k(X)alg satisfying φ(R) = Q, φ(Q) = P , and

(4.11) Pi = (−1)n−1∆n(R)
1+p+···+pn−3

Rpn−2

i .

We ought to show that the entries of Q are polynomials with coefficients in k. From equation (4.11)
we can deduce the following identities

∆n−1(P1, . . . , Pn−1) = (−1)n−1(∆n(R))
(1+p+···+pn−3)(1+p+···+pn−2)∆n−1(R

pn−2

1 , Rpn−2

2 , . . . , Rpn−2

n−1 )

(4.12)

∆n(P ) = (−1)n(n−1)∆n(R)
(1+p+···+pn−3)(1+p+···+pn−1)∆n(R)

pn−2
= ∆n(R)

(1+p+···+pn−2)2 .(4.13)

Combining (4.13) with (4.9) gives

(4.14) ∆n(R)
1+p+···+pn−2

= θP

for some θ ∈ k such that θ1+p+···+pn−2
= 1.

Moreover, we have that Qn = (−1)n−1∆n−1(R1, . . . , Rn−1), and then

Qpn−2

n = (−1)n−1∆n−1(R
pn−2

1 , . . . , Rpn−2

n−1 ) =
∆n−1(P1, . . . , Pn−1)

∆n(R)(1+p+···+pn−2)(1+p+···+pn−3)
=

=
∆n−1(P1, . . . , Pn−1)

(θP )1+p+···+pn−3 =
P 1+p+···+pn−2

(θP )1+p+···+pn−3∆n−1(S)p
n−2 =

P pn−2

θ1+p+···+pn−3∆n−1(S)p
n−2 ,

where the equalities are obtained by applying equations (4.12), (4.14) and (4.10). Finally, using the
fact that θ1+p+···+pn−2

= 1, we get that

Qn =
θP

∆n−1(S)
,

which is a polynomial of degree λ thanks to the fact that the zeroes of ∆n−1(S) are simple and
correspond to the set of poles of the space ⟨ω1, . . . , ωn−1⟩Fp (see Theorem 4.7). Moreover, by Lemma
2.4, we have that deg(Qn) = λ. In a completely analogous way, we can show that the Qi’s are
polynomials of degree λ also for 1 ≤ i ≤ n− 1. □

Finally, we conclude the section with two results that relate the poles of a space Lλpn−1,n and the
zeroes of linear combinations of the polynomial Qi’s.
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Corollary 4.15. Let Ω = ⟨ω1, . . . , ωn⟩Fp be a space Lλpn−1,n and let Q1, . . . , Qn be the n-uple of poly-
nomials arising from Theorem 4.8. Then, for every 1 ≤ t ≤ n the subspace Ωt = ⟨ωn−t+1, . . . , ωn⟩Fp

is such that

P(Ωt) = P(Ω)−
⋃

ϵ∈Fn−t
p −{0}

Z

(
n−t∑
i=1

ϵiQi

)
.

Proof. By Proposition 4.6, we have that P(Ωt) = Z(St) where

St = ∆t(PQn−t(Qn−t+1), . . . , PQn−t(Qn)),

where PQn−t is the structural polynomial of ⟨Q1, . . . , Qn−t⟩Fp . Since PQn−t is an additive polynomial,
we have that

St =

n∏
i=n−t+1

∏
ϵi−1∈Fp

· · ·
∏

ϵn−t+1∈Fp

(PQn−t(Qi + ϵi−1Qi−1 + · · ·+ ϵn−t+1Qn−t+1)) =

n∏
i=n−t+1

∏
ϵi−1∈Fp

· · ·
∏

ϵn−t+1∈Fp

∏
Q∈Qn−t

(Q+Qi + ϵi−1Qi−1 + · · ·+ ϵn−t+1Qn−t+1),

and the fact that the zeroes of ∆n(Q) are simple (see Theorem 4.7) ensures that the zeroes of St are
precisely those zeroes of ∆n(Q) that are not zeroes of any Q ∈ Qn−t − {0}. This is equivalent to say
that

P(Ωt) = P(Ω)−
⋃

ϵ∈Fn−t
p −{0}

Z

(
n−t∑
i=1

ϵiQi

)
.

□

Corollary 4.16. Let Ω = ⟨ω1, . . . , ωn⟩Fp be a space Lλpn−1,n and let Q1, . . . , Qn be the n-uple of
polynomials arising from Theorem 4.8 for this basis.

Denote by qi the leading coefficient of Qi. Then we have the equality of Moore determinants

∆n(Q1, . . . , Qn) = α∆t(PQn−t(Qn−t+1), . . . , PQn−t(Qn))∆n−t(Q1, . . . , Qn−t),

where

α =
∆n(q1, . . . , qn)

∆t(Pq(qn−t+1), . . . , Pq(qn))∆n−t(q1, . . . , qn−t)
∈ k×

and Pq
t
the structural polynomial of the vector space ⟨q1, . . . , qn−t⟩Fp.

Proof. We know that the zeroes of ∆n(Q) are simple and consist of the set P(Ω), and by Proposition
4.6 the zeroes of ∆t(PQn−t(Qn−t+1), . . . , PQn−t(Qn)) are simple and consist of the set P(Ωt) with
Ωt = ⟨ωn−t+1, . . . , ωn⟩Fp . We may then apply Corollary 4.15 to see that the set of zeroes of the
polynomials on both sides of the equation are equal, and that these zeroes are all simple. The
corollary then follows from a comparison of the leading coefficients of these polynomials. □

We conclude this part with a result that describes the n-uples of polynomials giving rise to a basis
of an étale pullback of a space Lλpn−1,n.

Proposition 4.17. Let Ω = ⟨ω1, . . . , ωn⟩Fp be a space Lλpn−1,n and let Q1, . . . , Qn be the n-uple
of polynomials arising from Theorem 4.8. Let S(X) ∈ k[X] with S′(X) ∈ k× and let σ⋆(Ω) be the
pullback of Ω with respect to the morphism P1

k
σ→ P1

k induced by X 7→ S(X) (cf. Lemma 2.13). Then
the polynomials arising from Theorem 4.8 for σ⋆(Ω) are

(
ηQ1(S), . . . , ηQn(S)

)
with ηpn−1

= 1
S′(X) .

In particular, we have that P(σ⋆(Ω)) = {a ∈ k | S(a) ∈ P(Ω)}.
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Proof. From the equation ωi =
(−1)i−1∆n−1(Q̂i)

∆n(Q) dX it follows that

σ⋆(ωi) = (−1)i−1
∆n−1(Q̂i(S))

∆n(Q(S))
S′(X)dX = (−1)i−1

∆n−1(η̂Qi(S))

∆n(ηQ(S))
dX

where ηpn−1
= 1

S′(X) . □

4.2. Polynomial conditions for the existence of spaces Lλpn−1,n. The results of Theorems
4.7 and 4.8 show that the existence of a space Lλpn−1,n is equivalent to the existence of a n-uple
Q ∈ k[X]n satisfying certain conditions. In analogy with the case n = 2, Proposition 2.14 (iii) gives
us a way to check this by solving the following system of polynomial equations (note that in this
situation the number of poles is λpn−1, and the number of equations is computed accordingly)

(4.18)

coeff
((

P
Pn

)p−1
, Xp−1

)
= 1

coeff
((

P
Pn

)p−1
, Xµp−1

)
= 0, 2 ≤ µ ≤ λpn−2(p− 1).

In terms of the Qi’s, we have from Remark 4.3 that

P

Pn
= (−1)n−1

∏
ϵ∈Fn−1

p

(Qn + ϵn−1Qn−1 + ϵn−2Qn−2 + · · ·+ ϵ1Q1),

which in particular implies that the coefficients of
(

P
Pn

)p−1
are polynomial expressions in the

coefficients of the Qi’s. In what follows, we aim to describe these polynomial expressions more
precisely. We begin by stating and proving the following proposition, which is independent of
previous results obtained in this paper. This result is interesting also because it leads to a direct
proof (i.e. not relying on the case n = 2) of Theorem 4.7.

Proposition 4.19. Let In := Fn
p . For every element ϵ ∈ In, let s(ϵ) =

∑n
i=1 ϵi. If

A :=
∏

ϵ∈In−1

(Xn + ϵn−1Xn−1 + ϵn−2Xn−2 + · · ·+ ϵ1X1)
p−1

and

B :=
∏
ϵ∈In
s(ϵ)̸=0

(ϵnXn + ϵn−1Xn−1 + ϵn−2Xn−2 + · · ·+ ϵ1X1) ,

then

A+B =
∏

ϵ∈In−1

s(ϵ)̸=−1

(Xn + ϵn−1Xn−1 + ϵn−2Xn−2 + · · ·+ ϵ1X1)
p .

In particular, we have that A ≡ −B mod k[X]p.

Proof. Let us write B = B1B2 with

B1 :=
∏
ϵ∈In

s(ϵ)̸=0,ϵn ̸=0

(ϵnXn + ϵn−1Xn−1 + · · ·+ ϵ1X1) and B2 =
∏

ϵ∈In−1

s(ϵ)̸=0

(ϵn−1Xn−1 + · · ·+ ϵ1X1) .
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Let us show that the polynomial B1 contains the common factors between A and B: we can rewrite
this polynomial as

B1 =
∏

ϵn∈F×
p

∏
ϵ∈In−1

s(ϵ)̸=−ϵn

(ϵnXn + ϵn−1Xn−1 + · · ·+ ϵ1X1)

=
∏

ϵn∈F×
p

ϵ(p−1)pn−2

n

∏
ϵ∈In−1

s(ϵ)̸=−ϵn

(
Xn +

ϵn−1

ϵn
Xn−1 + · · ·+ ϵ1

ϵn
X1

)

=
∏

ϵn∈F×
p

∏
ϵ∈In−1

s(ϵ)̸=−1

(Xn + ϵn−1Xn−1 + · · ·+ ϵ1X1)

=
∏

ϵ∈In−1

s(ϵ)̸=−1

(Xn + ϵn−1Xn−1 + · · ·+ ϵ1X1)
p−1 ,

and this shows that A+B = B1C with

C :=
∏

ϵ∈In−1

s(ϵ)=−1

(Xn + ϵn−1Xn−1 + · · ·+ ϵ1X1)
p−1 +B2.

In order to conclude, we need to show that

C =
∏

ϵ∈In−1

s(ϵ)̸=−1

(Xn + ϵn−1Xn−1 + · · ·+ ϵ1X1) ,

which is equivalent to consider C as a monic univariate polynomial of degree (p − 1)pn−2 in the
variable Xn and show that its set of roots is {δn−1Xn−1 + · · · + δ1X1 : δ ∈ In−1, s(δ) ̸= 1}. To
verify this, for every δ ∈ In−1 with s(δ) ̸= 1 we set c := s(δ) − 1 and we substitute Xn with
δn−1Xn−1 + · · ·+ δ1X1 in the expression of C −B2. This gives∏
ϵ∈In−1

s(ϵ)=−1

(δn−1Xn−1 + · · ·+ δ1X1 + ϵn−1Xn−1 + · · ·+ ϵ1X1)
p−1 =

∏
ϵ∈In−1

s(ϵ)=c

(ϵn−1Xn−1 + · · ·+ ϵ1X1)
p−1 =

=
∏

ϵn∈F×
p

ϵpn−2

n

∏
ϵ∈In−1

s(ϵ)=c

(ϵn−1

ϵn
Xn−1 + · · ·+ ϵ1

ϵn
X1

) =
∏

ϵn∈F×
p

ϵn ∏
ϵ∈In−1

s(ϵ)= c
ϵn

(ϵn−1Xn−1 + · · ·+ ϵ1X1)


= −

∏
ϵ∈In−1

s(ϵ) ̸=0

(ϵn−1Xn−1 + · · ·+ ϵ1X1) = −B2.

As a result, δn−1Xn−1+ · · ·+ δ1X1 is a zero of C ∈ k[X1, . . . , Xn−1][Xn]for every δ ∈ In−1 satisfying
s(δ) ̸= 1. □

Remark 4.20. As a corollary of Proposition 4.19 we get a new proof of Theorem 4.7, which is of quite
a different nature than the one given in Section 4.1. More precisely, employing the same notation as
in the Theorem, the non-trivial part is to show that, if the form ωn is logarithmic, then the forms ωi

are logarithmic for every i = 1, . . . , n. We then need to prove that, if
(

P
Pn

)p−1
satisfies the system

of equations (4.18) then
(

P
Pi

)p−1
also satisfies (4.18) for every i. In fact, we can apply Remark 4.3
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to show that
(

P
Pi

)p−1
is, up to a sign, equal to A(Qi, Q1, . . . , Q̂i, . . . , Qn). From this, it follows that(

P
Pi

)p−1
can be obtained from

(
P
Pn

)p−1
by applying a permutation of the Qi’s.

On the other hand, Proposition 4.19 shows that the coefficients of A appearing in equations (4.18)

are the same as those of −B, which is symmetric in the Qi’s, hence we have that
(

P
Pn

)p−1
satisfies

(4.18) if, and only if
(

P
Pi

)p−1
satisfies (4.18).

4.2.1. Many new examples of spaces Lλ2n−1,n. As an application of Proposition 4.19, we construct
for all values of n ≥ 2 new large classes of examples of spaces Lλ2n−1,n in characteristic 2. In this
case, we have that p− 1 = 1, and the equations (4.18) are equivalent to the condition

A(Q1, . . . , Qn)−X ∈ k[X]2.

We can describe the coefficients of A(Q1, . . . , Qn) appearing in (4.18) in more detail.

Proposition 4.21. Let p = 2 and let An be the alternating group on n letters. Then, we have

A(X1, . . . , Xn) ≡
∑
σ∈An

Xσ(1)Xσ(2)X
2
σ(3) · · ·X

2n−2

σ(n) mod k[X]2.

Proof. The polynomial A is homogeneous of degree 2n−1, and is additive in the variable Xn. By
Proposition 4.19, its reduction modulo k[X]2 is invariant with respect to any permutation of the
Xi’s, and hence it is additive in Xi for every i. As a result, the monomials appearing in A mod
k[X]2 are all of the form

∏n
i=1 αiX

ai
i with ai ∈ {2j , 0 ≤ j ≤ 2n−2} satisfying

∑n
i=1 ai = 2n−1. Since

we are studying only the terms that are not squares, at least one of the ai’s needs to be equal to
1. We claim that the conditions above uniquely determine the exponents ai. More precisely, let
us assume for simplicity that we have a1 ≤ · · · ≤ an. We claim that then we have a1 = 1, a2 = 1,
a3 = 2, a4 = 22, . . . , an = 2n−2.

Proof of the claim. Since the ai’s are powers of 2, in order to show the claim it is enough to show
that ai ≤ 2i−2 for all i = 2, . . . , n. We can do this by finite induction on i: we certainly need to
have a2 = 1 since the sum of all the terms is even. We then assume that, for every j ≤ i, we have
aj ≤ 2j−2. It follows that

2n−1 − ai+1 − · · · − an = a1 + · · ·+ ai ≤ 2i−1.

Applying the 2-adic valuation v2, we have that

v2(2
n−1 − ai+1 − · · · − an) = v2(a1 + · · ·+ ai) ≤ i− 1.

Applying the non-archimedean triangular inequality gives

v2(2
n−1 − ai+1 − · · · − an) = v2(ai+1 + · · ·+ an) ≥ v2(ai+1),

which allows us to conclude that v2(ai+1) ≤ j − 1, that is ai+1 ≤ 2i−1. □

As a result of the claim, the monomials appearing in A mod k[X]2 are precisely the required ones.
We now have to show that the coefficients are all equal to 1. By symmetry, it is enough to show
that the coefficient of

(∏n−2
i=1 X

2n−i−1

i

)
Xn−1Xn in the polynomial A is equal to 1. To produce such

a term, we pick X1 from all the 2n−2 factors where it appears (those with ϵ1 = 1), we pick X2 from
the 2n−3 factors where X2 appears (those with ϵ1 = 0, ϵ2 = 1), and so on, until we remain with the
expression Xn(Xn−1+Xn) from which we need to pick the monomial Xn−1Xn. Since this is the only
process that produces the monomial

(∏n−2
i=1 X

2n−i−1

i

)
Xn−1Xn, its coefficient in A is equal to 1. □
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Corollary 4.22. Let p = 2 and let Q ∈ k[X]n be a n-uple giving rise to a basis of a space Ω as in
Definition 4.4. Then Ω is a space Lλ2n−1,n if, and only if

det(Q′, Q,Q2, . . . , Q2n−2
) = 1.

Proof. As a direct consequence of Proposition 4.21, we have that the system of equations (4.18) is
equivalent to

(∑
σ∈An

Qσ(1)Qσ(2)Q
2
σ(3) · · ·Q

2n−2

σ(n)

)
−X ∈ k[X]2, which is equivalent to(∑

σ∈An

Qσ(1)Qσ(2)Q
2
σ(3) · · ·Q

2n−2

σ(n)

)′

= 1.

By denoting τ ∈ Sn the transposition exchanging 1 and 2, we can express the left hand side of this
equation in the desired determinantal form. In fact, we have that( ∑
σ∈An

Qσ(1)Qσ(2)Q
2
σ(3) · · ·Q

2n−2

σ(n)

)′
=
∑
σ∈An

Q′
σ(1)Qσ(2)Q

2
σ(3) · · ·Q

2n−2

σ(n) +
∑
σ∈An

Qσ(1)Q
′
σ(2)Q

2
σ(3) · · ·Q

2n−2

σ(n)

=
∑
σ∈An

Q′
σ(1)Qσ(2)Q

2
σ(3) · · ·Q

2n−2

σ(n) +
∑
σ∈An

Q′
στ(1)Qστ(2)Q

2
στ(3) · · ·Q

2n−2

στ(n)

=
∑
σ∈An

Q′
σ(1)Qσ(2)Q

2
σ(3) · · ·Q

2n−2

σ(n) +
∑

σ∈Sn−An

Q′
σ(1)Qσ(2)Q

2
σ(3) · · ·Q

2n−2

σ(n)

=
∑
σ∈Sn

Q′
σ(1)Qσ(2)Q

2
σ(3) · · ·Q

2n−2

σ(n) = det(Q′, Q,Q2, . . . , Q2n−2
).

□

If n = 2, Corollary 4.22 leads to a complete classification of spaces L2λ,2 in characteristic 2. In fact,
there are unique polynomials U1, U2, V1, V2 ∈ k[X] such that Q1 = U2

1 +XV 2
1 and Q2 = U2

2 +XV 2
2 .

With these notations, we have Q′
1 = V 2

1 and Q′
2 = V 2

2 , and hence

det

(
Q′

1 Q1

Q′
2 Q2

)
= det

(
V 2
1 U2

1 +XV 2
1

V 2
2 U2

2 +XV 2
2

)
= det

(
V 2
1 U2

1

V 2
2 U2

2

)
= (V1U2 + U1V2)

2 .

The condition imposed by Corollary 4.22 then is equivalent to

V1U2 + U1V2 = 1.

If λ is odd, then the polynomials V1, V2 have degree λ−1
2 . By Bézout’s theorem, if V1 and V2 are

coprime, then there exists a unique pair (U1, U2) with deg(Ui) <
λ−1
2 satisfying the above condition.

If we pick (V1, V2) such that V1 + V2 has also degree λ−1
2 , and we let (U1, U2) be the pair given by

Bézout’s theorem, then by Corollary 4.22 the polynomials U2
1 +XV 2

1 and U2
2 +XV 2

2 give rise to a
basis of a space L2λ,2. If we relax the condition deg(Ui) <

λ−1
2 , then we have other pairs that satisfy

Bezout’s theorem: these can be obtained from the minimal one (U1, U2) as (U1 + aV1, U2 + aV2) for
a ∈ k.
If λ is even, then the argument above works by choosing coprime U1, U2 ∈ k[X] of degree λ

2 with
U1+U2 of degree λ

2 and applying Bézout’s theorem to find V1, V2. This shows that spaces L2λ,2 exist
for every λ and in large abundance. While this is already known by work of Pagot [7, Théorème
2.2.4], the approach relying on Corollary 4.22 is of a different nature.

For n > 2, this approach is in principle not enough to give a complete classification, but we can
extract sufficient conditions for the existence of spaces L2n−1λ,n that lead to the discovery of new
large classes of examples for every n.
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Proposition 4.23. Let p = 2 and n ≥ 3. Let Q ∈ k[X]n be a n-uple giving rise to a basis of a space
Ω as in Definition 4.4. For every i = 1, . . . , n let Ui, Vi ∈ k[X] be such that Qi = U2

i +XV 2
i and

that they satisfy the system of equations

(4.24)

{
det(U, V , U2, . . . , U2n−2

) = 1

det
(
U, V , ((1 + ϵ3)U + ϵ3V )2, . . . , ((1 + ϵn)U + ϵnV )2

n−2
)
= 0,

where (ϵ3, . . . , ϵn) runs over all elements of Fn−2
2 − {0}. Then Ω is a space Lλ2n−1,n.

Proof. We need to show that, if U and V satisfy (4.24), then Q satisfy the condition of Corollary

4.22. This latter is equivalent to det
(
V 2, U2, Q2, . . . , Q2n−2

)
= 1, which is in turn equivalent to

det
(
V ,U,Q, . . . , Q2n−3

)
= det

(
V ,U, U2 +XV 2, . . . , U2n−2

+XV 2n−2
)
= 1.

By linearity of determinants, the above condition can be expressed as a polynomial condition in X,
namely ∑

(ϵ3,...,ϵn)∈Fn−2
2

det
(
U, V , ((1 + ϵ3)U + ϵ3V )2, . . . , ((1 + ϵn)U + ϵnV )2

n−2
)
·X(

∑
i ϵi2

i−3) = 1.

If the system (4.24) is satisfied, then the non-constant coefficients of the polynomial above vanish
and the constant term is equal to 1. Hence we can apply Corollary 4.22 to get that Ω is a space
Lλ2n−1,n. □

Proposition 4.25. Let n ≥ 3. Let U1, . . . , Un and V1, . . . , Vn be polynomials in k[X] and α, β ∈ k(X)
such that:

(i) U = αV + βV 2

(ii) β2n−1−1 ·∆n(V ) = 1.
Then U and V satisfy the system of equations (4.24).

Proof. The proof consists of two steps:
• We first check that U and V satisfy the first line of (4.24): by repeatedly using condition (i)

we find that

det(U, V , U2, U4 . . . , U2n−2
) = det(βV 2, V , U2, U4, . . . , U2n−2

)

= β det(V 2, V , β2V 4, U4, . . . , U2n−2
)

= β3 det(V 2, V , V 4, β4V 8, . . . , U2n−2
)

= β7 det(V 2, V , V 4, V 8, . . . , U2n−2
)

= . . .

= β2
n−1−1 det(V 2, V , V 4, V 8, . . . , V 2n−2

) = β2
n−1−1 ·∆n(V ) = 1.

• We then check the equations in the second line of (4.24): for each (ϵ3, . . . , ϵn) ∈ Fn−2
2 −{0} we

let k ∈ {3, . . . , n} be the smallest number such that ϵk ̸= 0. Since we need every ϵi with i < k

to be equal to 0, the vectors
(
U, V , ((1 + ϵ3)U + ϵ3V )2, . . . , ((1 + ϵk)U + ϵkV )2

k−2
)

forming

the first k columns inside the determinant can be rewritten as
(
U, V , U2, . . . , U2k−1

, V 2k−2
)
.

By condition (i), we have that all these column vectors belong to the k− 1 dimensional space
generated by V , . . . , V 2k−2

and hence

det
(
U, V , U2, . . . , U2k−1

, V 2k−2
, . . . , ((1 + ϵn)U + ϵnV )2

n−2
)
= 0.
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As this is true for every (ϵ3, . . . , ϵn) ∈ Fn−2
2 − {0}, we have that all the equations in the

second line of (4.24) are satisfied.
□

Theorem 4.26. Let k be an algebraically closed field of characteristic 2 and n ≥ 3.
Let W := (W1, . . . ,Wn) ⊂ k[X]n be a n-uple of polynomials such that all the nonzero elements of
⟨W1, . . . ,Wn⟩F2 are pairwise coprime and of the same degree, denoted by d (in particular, we have
that ∆n(W ) ̸= 0). If we set Vi := ∆n−1(Ŵi) for every i = 1, . . . , n, then there exists a rational
function α ∈ 1

∆n(W )k[X] satisfying the following properties:

(i) The rational function

Qi :=
V 4
i

∆n(W )2
+ (X + α2)V 2

i

is a polynomial for every i = 1, . . . , n.
(ii) The n-uple Q = (Q1, . . . , Qn) ∈ k[X]n gives rise to a basis of a space L2n−1λ,n.

Moreover, given such an α, the set of all rational functions satisfying (i) and (ii) is {α+R|R ∈ k[X]}.

Proof. We set β = 1
∆n(W ) and remark that the expression of Qi given at the point (i) is equal to

U2
i +XV 2

i where Ui := αVi + βV 2
i . As a result, to prove the theorem we need to define α ∈ k(X)

such that both the conditions of Proposition 4.25 are met. In fact, by virtue of that Proposition, it
follows that Q satisfies Proposition 4.23 and then gives rise to a basis of a space L2n−1λ,n.

We begin by observing that the hypothesis that Vi = ∆n−1(Ŵi) for every i, combined with
Theorem A.3 implies that

∆n(V ) = ∆n(W )2
n−1−1.

Hence condition (ii) of Proposition 4.25 is met. It then remains to find an appropriate α ∈ k(X)
such that αVi + βV 2

i is a polynomial for every i = 1, . . . , n.
We denote by W the space ⟨W1, . . . ,Wn⟩F2 and for every subspace W′ ⊂ W we consider its

structural polynomial PW′(Y ) :=
∏

W∈W′(Y −W ) ∈ k(X)[Y ] (cf. Definition A.4). We then consider
the spaces

Wi := ⟨W1, . . . , Ŵi, . . . ,Wn⟩F2 for every i = 1, . . . , n,

and note that every polynomial in Wi +Wi divides PWi(Wi) by definition. Conversely, if W ∈ W
divides PWi(Wi) then W ∈ Wi + Wi. In fact, it is clear that W has a factor in common with
a polynomial W ′ ∈ Wi + Wi and since any two distinct elements in W − {0} are coprime, then
W =W ′.

We then apply Lemma A.5 to get that βVi =
∆n−1(Ŵi)

∆n(W ) = 1
PWi

(Wi)
. If we write α = βγ with

γ ∈ k[X], we then have that

Ui = αVi + βV 2
i = βVi(γ + Vi) =

γ + Vi
PWi(Wi)

.

We now find the desired γ as a solution of a system of congruences in k[X] with coprime moduli:
for every W ∈ ⟨W1, . . . ,Wn⟩ − {0}, we let kW := min{k ∈ N :W ∈ ⟨W1, . . . ,Wk⟩} and we consider
the set of congruences

(4.27) {γ ≡ VkW mod W |W ∈ W− {0}} .

We claim that this system is equivalent to the condition that PWi(Wi) divides γ + Vi for every
i ∈ {1, . . . , n}. In fact, let i ≠ j and set Wij := Wi ∩ Wj . If W ∈ ⟨W1, . . . ,Wn⟩ − {0} is
a common divisor of PWi(Wi) and PWj (Wj) for i ̸= j, then by the observation above W ∈
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(Wi +Wi) ∩ (Wj +Wj) =Wi +Wj +Wij . Therefore, W divides also PWij (Wi +Wj). Combining
the additivity of PWij with Lemma A.5, we have

PWij (Wi +Wj) = PWij (Wi) + PWij (Wj) =
Vi + Vj

∆n−2(W1, . . . , Ŵi, . . . , Ŵj , . . . ,Wn)
,

which implies that W divides Vi + Vj . As a result, every solution γ to (4.27) satisfies

γ ≡ Vj mod W for all pairs (j,W ) with W |PWj (Wj).

This ensures that γ ≡ Vi mod PWi(Wi) for every i ∈ {1, . . . , n}.
Since the elements of W− {0} are pairwise coprime, we can apply the Chinese reminder theorem

to find a unique solution γ ∈ k[X] to (4.27) such that deg(γ) < d(2n−1). Moreover, all the solutions
to (4.27) are of the form γ +R∆n(W ), for R ∈ k[X]. As a consequence, α satisfies (i) and (ii) if,
and only if, α+R satisfies (i) and (ii).

In summary, for every choice of the polynomials W1, . . . ,Wn, and of a solution of (4.27), this
construction gives rise to a unique n-uple of polynomials U1, . . . , Un satisfying Proposition 4.25.
Since the nonzero elements of W are all of the same degree, and R is fixed, then also the resulting
Qi = U2

i +XV 2
i are such that all the nonzero polynomials in ⟨Q1, . . . , Qn⟩F2 are all of the same

degree, denoted by λ. The n-uple Q satisfies the conditions of Proposition 4.23 and then gives rise
to a basis of a space Lλ2n−1,n. □

We want to investigate the parameter space of spaces Lλ2n−1,n arising from the construction of
Theorem 4.26. For this, we use the notion of equivalence between spaces Lλ2n−1,n introduced in
Definition 2.11. For every d ≥ 0, let Wd ⊂ (k[X])n be the quasi-affine variety consisting of elements
(W1, . . . ,Wn) of the same degree d such that all the non-zero elements of W := ⟨W1, . . . ,Wn⟩F2 are
of degree d and pairwise coprime. This is defined inside the space of coefficients k(d+1)n by the
inequation

∆n(w1, . . . , wn)
∏

W,W ′∈W−{0}

Res(W,W ′) ̸= 0,

where, for every i = 1, . . . , n, wi is the leading term of Wi. Then the construction of Theorem 4.26
associates with every element of (W1, . . . ,Wn, R) ∈ Wd×k[X] a n−uple of polynomials (Q1, . . . , Qn)
giving rise to a basis of a space Lλ2n−1,n. More precisely, the construction yields Qi = U2

i +XV
2
i with

Vi = ∆n−1(Ŵi) and Ui = (α+R)Vi +
V 2
i

∆n(W ) , where α denotes the unique proper rational function
(i.e. of the form γ

∆n(W ) with γ ∈ k[X] such that deg(γ) < deg(∆n(W ))) satisfying conditions (i) and
(ii) in Theorem 4.26.

Corollary 4.28. Let n ≥ 3, d ≥ 0 and let Ω and Ω′ be the spaces Lλ2n−1,n arising respectively
from elements (W1, . . . ,Wn, R) and (W ′

1, . . . ,W
′
n, R

′) ∈ Wd × k[X] as in Theorem 4.26. Then the
following hold:

(i) We have Ω = Ω′ if, and only if, R = R′ and ⟨W ′
1, . . . ,W

′
n⟩F2 = ⟨W1, . . . ,Wn⟩F2.

(ii) We have that Ω is equivalent to Ω′ if, and only if, there exists b ∈ k such that

⟨W ′
1, . . . ,W

′
n⟩F2 = ⟨W1(X + b2), . . . ,Wn(X + b2)⟩F2 and R′ = R+ b.

(iii) If λ ≡ 1 mod (2n−2), then there exist infinitely many equivalence classes of spaces Lλ2n−1,n.
They arise from elements (W1, . . . ,Wn, R) ∈ Wd × k[X] such that R is constant.

(iv) If λ is even, then there exist infinitely many equivalence classes of spaces Lλ2n−1,n. They
arise from elements (W1, . . . ,Wn, R) ∈ Wd × k[X] such that deg(R) ≥ 1.

Proof. Let Q = (Q1, . . . , Qn) be the n-uple arising from (W1, . . . ,Wn, R) and Q′ = (Q′
1, . . . , Q

′
n) be

the n-uple arising from (W ′
1, . . . ,W

′
n, R

′). We recall that the writings

(4.29) Qi = U2
i +XV 2

i and Q′
i = U ′2

i +XV ′2
i
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are unique, and call U,U ′, V , V ′ the n-uples arising from these. We now prove separately the
statements of the corollary:

(i) We first show that to have Ω = Ω′ it is necessary and sufficient to find a matrix M ∈ GLn(F2)
such that VM = V ′ and UM = U ′. In fact, by Proposition 4.5(i) and 4.5(iii) Ω = Ω′ if,
and only if, there exists M ∈ GLn(F2) such that Q′ = QM . By uniqueness of 4.29, this
is equivalent to have (U ′)2 = (U2)M and (V ′)2 = (V 2)M , and, since the entries of M are
elements of F2, it is equivalent to have that U ′ = UM and V ′ = VM .

We then prove the two implications stated above:
• Let R = R′ and ⟨W ′

1, . . . ,W
′
n⟩F2 = ⟨W1, . . . ,Wn⟩F2 , so that there is M ∈ GL2(F2) such

that W ′ =WM . Then by Lemma A.18, we have that V ′ = VM c. Since R = R′, this
implies that we also have that U ′ = UM c and hence Ω = Ω′.

• Conversely, suppose that U ′ = UM and V ′ = VM for some M ∈ GLn(F2). Then,
applying M−1 on both sides of the equation

U ′ = (α′ +R′)V ′ +
(V ′)2

∆n(W ′)

results in U = (α′ +R′)V + V 2

∆n(W ′) . We also have that U = (α+R)V + V 2

∆n(W ) , so that

(α+R) +
V

∆n(W )
= (α′ +R′) +

V

∆n(W ′)
.

By rearranging the terms, we get that(
1

∆n(W )
− 1

∆n(W ′)

)
· Vi = (α′ +R′)− (α+R) ∀ i = 1, . . . , n

and since Vi ̸= Vj if i ̸= j, and n ≥ 3, we deduce that ∆n(W ) = ∆n(W
′) and

α+R = α′ +R′.
Note that V = φ(W ) and V ′ = φ(W ′), where φ is the map defined in Proposition A.15.
Then, by applying this proposition, we have that

φ(V ) = ∆n(W )2
n−2−1W 2n−2

and φ(V ′) = ∆n(W
′)2

n−2−1W ′2n−2

.

Since V ′ = VM , then we can apply Lemma A.18 and get φ(V ′) = φ(V )M c, which,
combined with the equality ∆n(W ) = ∆n(W

′) results in

W ′2n−2

=W 2n−2
M c,

proving that ⟨W1, . . . ,Wn⟩F2 = ⟨W ′
1, . . . ,W

′
n⟩F2 . Finally, from α+R = α′ +R′ and the

fact that there is a unique proper rational function in the set {α + R|R ∈ k[X]}, we
obtain that α = α′ and R = R′.

(ii) If W ′ and R′ are as in the statement, then it is easy to see that they give rise to Ω′ equivalent
to Ω, as we can see by applying the construction that Q′

i(X) = Qi(X+b2) for all i = 1, . . . , n.
Conversely, assume that there exist a ∈ k× and b ∈ k such that Qi(aX + b2) = Q′

i(X).
We can see that

Qi(aX + b2) = Ui(aX + b2)2 + b2Vi(aX + b2)2 + aXVi(aX + b2)2

= [Ui(aX + b2) + bVi(aX + b2)]2 +X[
√
aVi(aX + b2)]2,

resulting in the relations{
U ′
i(X) = Ui(aX + b2) + bVi(aX + b2)

V ′
i (X) =

√
aVi(aX + b2).
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From the latter of these, combined with Proposition A.15, we get that

W ′
i (X) = θa

1
2(2n−1−1)Wi(aX + b2)

for θ ∈ k such that θ2n−1−1 = 1. In particular, we have that

∆n(W
′) = θ2

n−1a
2n−1

2(2n−1−1)∆n(W (aX + b2)).

We now compute U ′
i in two different ways. On the one hand, we have

U ′
i = Ui(aX + b2) + bVi(aX + b2) = (α+R+ b)Vi(aX + b2) +

Vi(aX + b2)2

∆n(W (aX + b2))

=
(α+R+ b)√

a
V ′
i (X) +

a−1V ′
i (X)2

θ1−2na
1−2n

2(2n−1−1)∆n(W ′)
=

(α+R+ b)√
a

V ′
i (X) + θ2

n−1a
1

2n−2
V ′
i (X)2

∆n(W ′)
.

On the other hand, we have

U ′
i = (α′ +R′)V ′

i (X) +
V ′
i (X)2

∆n(W ′)

and since this both computations are true for all i, an argument analogue to the one used
to prove (i) shows that θ2n−1a

1
2n−2 = θa

1
2n−2 = 1. But we have that θ2n−2 = θ2(2

n−1−1) = 1
and hence a = 1. As a result, α+R+ b = α′ +R′ and hence α = α′ and R′ = R+ b.

We have shown so far that applying the construction of Theorem 4.26 to the n+ 1-uple(
W1(X + b2), . . . ,Wn(X + b2), R+ b

)
produces (Q′

1, . . . , Q
′
n) giving rise to a basis of Ω′

equivalent to Ω. By applying part (i) we conclude that the same Ω′ can only arise from
(W ′

1, . . . ,W
′
n, R

′) with

⟨W ′
1, . . . ,W

′
n⟩F2 = ⟨W1(X + b2), . . . ,Wn(X + b2)⟩F2 and R′ = R+ b.

(iii) If R is constant, we have

λ = 1 + 2deg Vi = 1 + 2d(2n−1 − 1) = 1 + d(2n − 2).

For every λ ≡ 1 mod 2n − 2 we can then construct infinite equivalence classes of spaces
Lλ2n−1,n by picking d = λ−1

2n−2 and all possible n-uples (W1, . . . ,Wn) ∈ Wd.
(iv) If R is not constant, then deg(Ui) > deg(Vi) and λ is even. In fact, any even value of λ can

be achieved in this way, simply by choosing W1, . . . ,Wn to be constant and R to be of degree
λ
2 .

□

Remark 4.30. Even though in Theorem 4.26 we assumed n ≥ 3, the construction of the n-uple Q in
its proof makes sense also for n = 2. Namely, for every pair (W1,W2) ∈ Wd one can set V1 = W2,
V2 =W1 and fix a solution γ to the congruences

γ ≡ V1 mod V2

γ ≡ V1 mod V1 + V2

γ ≡ V2 mod V1.

By considering

U1 =
(γ + V1)

V2(V1 + V2)
and U2 =

(γ + V2)

V1(V1 + V2)
,

one produces a pair (U2
1 +XV 2

1 , U
2
2 +XV 2

2 ) giving rise to a space L2λ,2. We can show that this
construction recovers all the spaces L2λ,2. In fact, starting from pairs U, V satisfying Bezout’s
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identity U1V2 + V1U2 = 1 (cf. the discussion following Corollary 4.22 to see that these define all
possible spaces L2λ,2), we have that {

U1V2 ≡ 1 mod V1

U2V1 ≡ 1 mod V2.

Using these, we verify that the polynomial

γ = V 2
1 U2 + V 2

2 U1 = V1 + V2U1(V1 + V2) = V2 + U2V1(V1 + V2)

solves the congruences (4.27) and yields

U1 =
(γ + V1)

V2(V1 + V2)
and U2 =

(γ + V2)

V1(V1 + V2)

as above. For every choice of U and V we can find such a γ: hence we can recover in this way all
the spaces L2λ,2.

Remark 4.31. We remark that, if Ω a space L2n−1λ,n is arising from an element (W1, . . . ,Wn, R) ∈
Wd×k[X] as in Theorem 4.26, then every étale pullback of Ω also arise from this construction. More
precisely, let S(X) ∈ k[X] with S′(X) = 1 and let σ⋆(Ω) be the pullback of Ω with respect to the
morphism σ ∈ End(P1

k) induced by X 7→ S(X) (cf. Lemma 2.13). Then, we know by Proposition
4.17 that (Q1(S(X)), . . . , Qn(S(X))) is the n-uple arising from Theorem 4.8 for σ⋆(Ω). One verifies
that Qi(S(X)) = (Ui(S(X)) +RVi(S(X))2 +XVi(S(X))2, and as a result one proves that σ⋆(Ω) is
the space arising from (W1 ◦ S, . . . ,Wn ◦ S,R+ S −X).

5. Standard L(p−1)pn−1,n spaces and their subspaces

In this section, we analyze certain spaces Lλpn−1,n for λ = p− 1 that appear implicitly in [6]. In
that paper, they are instrumental to lift to characteristic zero certain local actions of elementary
abelian groups and they have since been made explicit in [8] as well as in [10], in a generalized form.
Due to their relevance, and for the fact that they were among the first examples of spaces Lλpn−1,n to
be discovered, we choose to give these spaces a name and we call them standard L(p−1)pn−1,n spaces.
In the first subsection, we explain how to construct these spaces using Theorem 4.8. Namely, we
find sufficient conditions for a set of polynomial Q1, . . . , Qn as in the theorem to produce a standard
space. In the second subsection, we show that we can construct all the subspaces of a given standard
space using étale pullbacks of other standard spaces.

5.1. Standard spaces. We begin by giving the definition of a standard Lpn−1(p−1),n space. We
recall from Corollary 2.10 that the set of poles of a space Lλpn−1,n characterizes the space itself.

Definition 5.1. A standard Lpn−1(p−1),n space Ω is a space Lpn−1(p−1),n such that there exists a
n-uple a := (a1, a2, · · · , an) ∈ kn with ∆n(a) ̸= 0 for which P(Ω) = ⟨a1, a2, · · · , an⟩Fp − {0}.

For i ∈ {1, . . . , n} and a as above, let

(5.2) ωi :=
∑

(ϵ1,...,ϵn)∈Fp
n

ϵi
X −

∑n
j=1 ϵjaj

dX.

Then ⟨ω1, . . . , ωn⟩Fp is a standard space by [10, Proposition 3.1]. This shows that, for every a ∈ kn

whose entries are Fp-linearly independent, there exists a standard space whose set of poles is
⟨a1, a2, · · · , an⟩Fp − {0}.

We can recover a description of standard spaces using the polynomials Qi’s of Theorem 4.8, as we
establish in the following proposition
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Proposition 5.3. Let ω1, . . . , ωn be defined by the identities (5.2), and let

Qi := µ
∆2(ai, X)

X
= µ(aiX

p−1 − api )

with µpn−1
= −1

∆n(a)p−1 . Then we have ωi =
Pi
P dX where P := ∆n(Q) and Pi := (−1)i−1∆n−1(Q̂i).

Proof. First, we compute

Pi

P
= (−1)i−1

(
X

µ

)pn−1
∆n−1( ̂∆2(ai, X))

∆n(∆2(a1, X), . . . ,∆2(an, X))
,

which combined with Lemma A.6 (for m = 1) gives

Pi

P
=

1

µpn−1

(−1)i−1∆n(âi, X)

∆n+1(a,X)
.

Using [10, Proposition 3.1], we can write

ωi = −∆n(a)
p−1 (−1)i−1∆n(âi, X)

∆n+1(a,X)
dX ∀ i = 1, . . . , n,

and this proves the proposition. □

Example 5.4. Let n = 2 and choose a1 = 1, a2 ∈ Fp2 − Fp.
Then we have

ω1 =

p−1∑
i=0

(
1

X − (1 + ia2)
+

2

X − (2 + ia2)
+ · · ·+ p− 1

X − (p− 1 + ia2)

)
dX

ω2 =

p−1∑
i=0

(
1

X − (i+ a2)
+

2

X − (i+ 2a2)
+ · · ·+ p− 1

X − (i+ (p− 1)a2)

)
dX.

Each ωi has p(p − 1) poles. The poles in P(Ω) are all the elements of the multiplicative group
F×
p2

and those in common between ω1 and ω2 are those elements of Fp2 that neither belong to the
one-dimensional Fp-vector space generated by 1 nor to the one generated by a2.

Remark 5.5. Let us fix a n-tuple a ∈ kn such that ∆n(a) ̸= 0 and let us denote by A := ⟨a1, . . . , an⟩Fp

the Fp-vector space generated by a and by A⋆ its dual. We can make several remarks:
(i) If Ω is the standard space with P(Ω) = A− {0}, there is a natural pairing

ψ : Ω×A Fp

(ω, x)

{
resx(ω) if x ̸= 0,

0 if x = 0.

We remark that this is a perfect pairing.
In fact, writing x = ϵ1a1 + · · ·+ ϵnan, we deduce from equation (5.2) that

resx

(∑
i

αiωi

)
=
∑
i

αiϵi,

which shows that ψ is bilinear and that ψ(ωi, aj) = δij , the Kronecker symbol. Hence ψ
is perfect and, as a result, the homomorphism ω to x 7→ ψ(ω, x) defines an isomorphism
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ι : Ω ∼= A⋆. We can explicitly describe the inverse of ι as follows: for all φ ∈ A⋆ − {0} define
the differential form ωφ :=

∑
a∈A

φ(a)dX
X−a . Then the isomorphism

ι′ : A⋆ Ω

φ

{
ωφ if φ ̸= 0,

0 if φ = 0.

satisfies ι ◦ ι′ = id and ι′ ◦ ι = id.
(ii) Using Definition 5.1 it is easy to show that the Frobenius twist of the standard Lλpn−1,n

space associated to the vector space A = ⟨a1, . . . , an⟩Fp is the standard space associated to
Φ(A) = ⟨ap1, . . . , a

p
n⟩Fp .

(iii) We can apply a translation to a standard space Ω to get a space Lpn−1(p−1),n equivalent to
Ω, in the sense of the definition at the beginning of Section 6. This will not be in general a
standard space.

5.2. Subspaces of standard spaces via étale pullbacks. Let A be a n-dimensional Fp-vector
subspace of k. The construction of Section 5.1 results in a map

A→ Ω(A)

associating with it the standard Lpn−1(p−1),n space whose set of poles is A−{0}. It is easy to see that
every subspace of Ω(A) of dimension t < n is a space Lpn−1(p−1),t, and that it can not be equivalent
to a standard space.

However, we have seen in Lemma 2.13 how to find spaces Lλdpn,n starting from spaces Lλpn−1,n

via the pullback of the differential forms under suitable morphisms of degree dp. In this section, we
characterize the subspaces of the standard spaces constructed in §5.1 as étale pullbacks of standard
spaces of lower dimension. More precisely, let n > 1, 1 ≤ t ≤ n and A := ⟨a1, · · · , an⟩Fp ⊂ k with
a := (a1, a2, · · · , an) such that ∆n(a) ̸= 0. Let An−t = ⟨a1, ..., an−t⟩Fp , As

n−t = ⟨an−t+1, ..., an⟩Fp and
let PAn−t be the structural polynomial of An−t (cf. Definition A.4). For every n−t+1 ≤ i ≤ n, we set
ãi := PAn−t(ai). Then, by Lemma A.16 we have that ∆t(ã) ̸= 0 and hence Ãs

n−t = ⟨ãn−t+1, ..., ..., ãn⟩
is a Fp vector space of dimension t. Let Ω(A) be the standard space associated with A and let

ωi =
∑

(ϵ1,...,ϵn)∈Fn
p

ϵi
X −

∑n
j=1 ϵjaj

dX, 1 ≤ i ≤ n

be the elements of its usual basis. Let Q1, . . . , Qn be the n-uple of polynomials arising from Theorem
4.8, which we know by proposition 5.3 to satisfy Qi = µ∆2(ai,X)

X with µpn−1
= −1

∆n(a)p−1 . Similarly,
we let

ω̃i =
∑

(ϵn−t+1,...,ϵn)∈Ft
p

ϵi
X −

∑n
j=n−t+1 ϵj ãj

dX, n− t+ 1 ≤ i ≤ n

be the elements of the usual basis of the standard Lpt−1(p−1),t-space Ω(Ãs
n−t). Finally, we let

Q̃n−t+1, . . . , Q̃n be the t-uple of polynomials arising from Theorem 4.8, which satisfy Q̃i = µ̃∆2(ãi,X)
X

with µ̃pt−1
= −1

∆t(ãn−t+1,...,ãn)p−1 .

Proposition 5.6. Consider the subspace Ωs = ⟨ωn−t+1, . . . , ωn⟩Fp ⊂ Ω(A).

(i) We have that Ωs = σ⋆(Ω(Ãs
n−t)). More precisely, for every n− t+ 1 ≤ i ≤ n, ωi is equal to

σ⋆(ω̃i), the pullback of ω̃i with respect to the morphism P1
k

σ→ P1
k induced by X 7→ PAn−t(X).
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(ii) The t-uple of polynomials arising from Theorem 4.8 for the basis (σ⋆ω̃n−t+1, ..., σ
⋆ω̃n) of

Ωs = σ⋆(Ω(Ãs
n−t)) is given by

ηQ̃n−t+1(PAn−t), . . . , ηQ̃n(PAn−t),

with η satisfying ηpt−1
= 1

P ′
An−t

= (−1)n−t

∆n−t(a1,...,an−t)p−1 .

These polynomials satisfy the condition

(−1)n−tηQ̃i(PAn−t) = PQn−t(Qi) ∀ n− t+ 1 ≤ i ≤ n,

where PQn−t is the structural polynomial of the Fp-vector space Qn−t := ⟨Q1, ..., Qn−t⟩Fp.

Proof. (i) By Lemma A.5, we have that P ′
An−t

(X) = (−1)n−t∆n−t(a1, . . . , an−t)
p−1 ∈ k×, so

that the morphism σ gives rise to an etale pullback as in Section 2.3. Since the degree of
PAn−t is pn−t, it follows that σ⋆(Ω(Ãs

n−t)) is a space L(p−1)pn−1,t. For every n− t+1 ≤ i ≤ n,
we remark that ω̃i =

dFi
Fi

with

Fi(X) =
∏

(ϵn−t+1,...,ϵn)∈Ft
p

(X −
n∑

j=n−t+1

ϵj ãj)
ϵi =

∏
(ϵn−t+1,...,ϵn)∈Ft

p

(X −
n∑

j=n−t+1

ϵjPAn−t(aj))
ϵi .

By using additivity of PAn−t , we have that

Fi(PAn−t(X)) =
∏

(ϵn−t+1,...,ϵn)∈Ft
p

PAn−t(X −
n∑

j=n−t+1

ϵjaj)

ϵi

=
∏

a∈An−t

∏
(ϵn−t+1,...,ϵn)∈Ft

p

(X − (a+

n∑
j=n−t+1

ϵjaj))
ϵi

=
∏

(ϵ1,...,ϵn)∈Fn
p

(X − (a+
n∑

j=n−t+1

ϵjaj))
ϵi .

As a result, σ⋆(ω̃i) =
dFi(PAn−t

)

Fi(PAn−t
) has the same set of poles as ωi, and each pole has the same

residue for both forms. By applying Lemma 2.7, we conclude that σ⋆(ω̃i) = ωi.
(ii) By Proposition 4.17, the t-uple of polynomials arising from Theorem 4.8 for the ba-

sis (σ⋆ω̃n−t+1, ..., σ
⋆ω̃n) of σ⋆(Ω(Ãs

n−t)) is ηQ̃n−t+1(PAn−t), . . . , ηQ̃n(PAn−t), with ηp
t−1

=
1

P ′
An−t

= (−1)n−t

∆n−t(a1,...,an−t)p−1 , as stated.

From Proposition 4.6, we have that the t-uple of polynomials arising from Theorem 4.8
for the basis

(
(−1)n−tωn−t+1, ..., (−1)n−tωn

)
of Ωs is

(
PQn−t(Qn−t+1), . . . , PQn−t(Qn)

)
. We

can apply Proposition 4.5(i) to find that the t-uple of polynomials arising from Theorem
4.8 for the basis

(
ωn−t+1, ..., ωn

)
of Ωs is

(
(−1)n−tPQn−t(Qn−t+1), . . . , (−1)n−tPQn−t(Qn)

)
.

Since by (i) we know that σ⋆(ω̃i) = ωi, and Proposition 4.5(ii) ensures the uniqueness of the
t-uples of polynomials arising from Theorem 4.8 for the same basis, we have that

(−1)n−tηQ̃i(PAn−t) = PQn−t(Qi) ∀ n− t+ 1 ≤ i ≤ n.

□

Example 5.7. Let n = 3, and t = 2. Choose A′ := ⟨α, β⟩Fp ⊂ k of dimension 2 and consider the
corresponding standard Lp(p−1),2 space Ω(A′). Let a1 ∈ k×, and define S(X) := Xp − ap−1

1 X.
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Since k is algebraically closed, we can choose a solution a2 to the equation S(X) = α, as well as a
solution a3 to the equation S(X) = β. We remark that

S(f1a1 + f2a2 + f3a3) = f2S(a2) + f3S(a3) = f2α+ f3β ∀ f1, f2, f3 ∈ Fp,

and this vanishes only when f2 = f3 = 0. In particular, if (f2, f3) ̸= (0, 0) then f1a1 + f2a2 + f3a3 ̸=
0. We then have that ∆3(a1, a2, a3) ̸= 0, so we can consider the standard space Ω(A) with
A := ⟨a1, a2, a3⟩Fp and Proposition 5.6 tells us that the pullback of Ω(A′) with respect to the
morphism induced by X 7→ S(X) is a two dimensional subspace of Ω(A).

Note that, by making different choices of a2, a3 we still end up with the same vector space A.
Hence, the datum of the space A′ together with the element a1 ∈ k× is enough to determine the
space A.

Proposition 5.6 proves that subspaces of standard spaces can be realized as étale pullbacks of
standard spaces. While a complete characterization of the spaces that can be obtained as étale
pullbacks of standard spaces is outside the scope of this paper, we include here a lemma that gives a
necessary condition for a space Lλpn−1,n to be equivalent to such a pullback.

Lemma 5.8. Let Ω be a space Lλpn−1,n obtained as in Lemma 2.13 via an étale pullback of Ω1 a
space Lλ1pn−1,n. If Ω can also obtained via an étale pullback of Ω2, a Lλ2pn−1,n space with λ1 < λ2
then p|λ2.

Proof. For i = 1, 2 let Si be the polynomial defining the étale pullback of Ωi. We write

S1(X) = ad1X
d1p + ad1−1X

(d1−1)p + · · ·+ γ1X + a0

S2(X) = bd2X
d2p + bd2−1X

(d2−1)p + · · ·+ γ2X + b0

with non-zero leading coefficients. Let Q11, . . . , Qn1 be a n-uple of polynomials giving rise to a basis
of Ω1. Then by Proposition 4.17, up to multiplying by a constant, Q11(S1(X)), . . . , Qn1(S1(X)) give
rise to a basis of Ω. Similarly, if Q12, . . . , Qn2 give rise to a basis of Ω2 then (up to multiplying
by a constant) Q12(S2(X)), . . . , Qn2(S2(X)) give rise to a basis of Ω, as well. Up to changing the
basis of Ω2, we can assume that the bases of Ω produced in the two cases are the same, and then
apply Proposition 4.5(ii) to get that Qj1(S1(X)) = ηQj2(S2(X)) for every j = 1, . . . , n and η ∈ k×.
By definition we have deg(Qj1) = λ1 and deg(Qj2) = λ2, and the condition λ1 < λ2 implies that
d1 > d2, since we ought to have λ1d1 = λ2d2.

Assume by contradiction that gcd(p, λ2) = 1. Then deg(Q′
j2) = λ2 − 1, and since S2(X)′ is a

constant we have that

deg([Qj2(S2(X))]′) = deg(Q′
j2(S2(X))) = (λ2 − 1)d2p.

At the same time,

deg([Qj1(S1(X))]′) = deg(Q′
j1(S1(X))) ≤ (λ1 − 1)d1p < (λ2 − 1)d2p.

But deg(Qj1(S1(X))) = deg(Qj2(S2(X))) and hence a contradiction arises. □

A direct consequence of Lemma 5.8 is that a space obtained as a pullback of a space Lλpn−1,n

with (p, λ) = 1 and λ > p − 1 will never be equivalent to the pullback of a standard space. For
example, the spaces L12,2 and L15,2 constructed in Section 6 give rise by étale pullbacks to certain
spaces L36d,2 and L45d,2 for every positive integer d, and the lemma ensures that these spaces are
never equivalent to étale pullbacks of standard spaces.
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5.2.1. Standard spaces for p = 2. When p = 2, the standard L2n−1,n-spaces can be also obtained
using the techniques of section 4.2.1: by Proposition 5.3 we have that any such space is generated by
a basis arising from Q1, . . . , Qn with

Qi := µaiX + µa2i = V 2
i X + U2

i

for Vi = (µai)
1/2 and Ui = µ1/2ai. We then have that Ui = µ−1/2V 2

i and then the condition (i) of
Proposition 4.25 is met by setting α = 0 and β = µ−1/2. Recall that µ2n−1

= 1
∆n(a)

. We then have
that

β2
n−1−1∆n(V ) =

∆n((µa1)
1/2, . . . , (µan)

1/2)

(µ1/2)2n−1−1
= (µ1/2)2

n−1
∆n(a)

1/2 = 1,

and hence condition (ii) of Proposition 4.25 is also met. By using Proposition A.15, we know that
there exist elements W1, . . . ,Wn with ∆n(W ) ̸= 0 giving rise to this space via the construction of
Theorem 4.26.

Conversely, for every n-uple of elements W1, . . . ,Wn ∈ k× such that ∆n(W ) ̸= 0 one can set
Vi = ∆n−1(Ŵi) ∈ k× and Ui =

V 2
i

∆n(W ) ∈ k×, and show that the resulting

Qi = U2
i +XV 2

i = V 2
i X +

(
V 2
i

∆n(W )

)2

give rise to a basis of a space L2n−1,n whose set of poles is the set of non-zero vectors in ⟨a21, . . . , a2n⟩Fp

with ai := Vi
∆n(W ) . By definition, this is a standard space.

Finally, we observe that we can also obtain étale pullbacks of standard spaces using the the
techniques of section 4.2.1. In fact, by Remark 4.31, we can realise étale pullbacks of standard
spaces with respect to X 7→ S(X) with S′(X) = 1 using the the techniques of section 4.2.1. All étale
pullbacks of standard spaces are equivalent to an étale pullback with S′(X) = 1, so we can realise in
this way at least one member from each equivalence class.

6. Classification of spaces L12,2 and L15,2 over F3

The aim of this section is to completely classify spaces L12,2 and L15,2 up to equivalence and
Frobenius equivalence in the case where p = 3. We recall that the spaces L3,2, L6,2 and L9,2 (p = 3)
are classified by Pagot in [8], so the results of this section are a natural prosecution of that work. By
exhibiting the existence of a space L15,2, we provide the first known example of a space Lλp,2 where
p− 1 does not divide λ. This section relies on computations of Gröbner bases to solve polynomial
systems in characteristic 3. The supporting Macaulay2 code can be found in a public repository5, in
a form that can be easily replicated using other computer algebra systems.

6.1. Classification of spaces L12,2. Let p = 3 and λ = 4. We set

Q1 := a(X4 − s1X
3 + s2X

2 − s3X + s4)

Q2 := X4 − t1X
3 + t2X

2 − t3X + t4,

and we look for conditions such that the pair (Q1, Q2) is a prompt for a space L12,2. To
this aim, we consider the expressions Rk’s of Convention 3.5 as polynomials with coefficients in
{a, s1, . . . , s4, t1, . . . , t4} and look for a solution to the system of equations

(6.1)

{
R1(a, si, ti) ̸= 0,

Rk(a, si, ti) = 0 for k = 2, . . . , 8.

The main result of this section is the following:

5available at the url https://github.com/DanieleTurchetti/equidistant
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Theorem 6.2. Let k be an algebraically closed field containing F3 and let a ∈ k be such that a2 ̸∈ F3.
Then, the pair (Q1,a, Q2,a) with

Q1,a := a(X4 + (a4 − a2 − 1)X2 + a8)

Q2,a := X4 − (a4 + a2 − 1)X2 + 1,

is a prompt for a space L12,2 in Ω(k(X)) denoted by Ωa. Conversely, if Ω ⊂ Ω(k(X)) is a space
L12,2 then there exists a ∈ k with a2 ̸∈ F3 such that Ω is equivalent to Ωa.

Proof. We prove the two statements separately.
• Let (Q1,a, Q2,a) be as in the statement. We can verify that(

(Q3
1,a −Q1,aQ

2
2,a)

2
)′′

= −(a3 − a)10(a2 + 1)5.

Since we assumed that a2 ̸∈ F3, this is non-zero. We can then apply Proposition 3.1 and
Remark 3.4 to get that the pair (Q1,a, Q2,a) is a prompt for a space L12,2. In the rest of the
proof, we will denote this space by Ωa.

• Let Ω ⊂ Ω(k(X)) be a space L12,2, and let (A,B) be a pair of polynomials in k[X] of the
form

Q1 := a(X4 − s1X
3 + s2X

2 − s3X + s4)

Q2 := X4 − t1X
3 + t2X

2 − t3X + t4,

such that (Q1, Q2) is a prompt for Ω. Then, we can apply the following successive reductions
to get a situation where the coefficients si’s and ti’s can be retrieved computationally :

‘s1 = t1 = 0’: We know by Lemma 3.6 that s1 = t1 and applying the translation X → X + s1 allows
us to suppose s1 = t1 = 0.

‘s3 = t3 = 0’: Suppose that this is not the case. Then, up to replacing Q1 with aQ2 and Q2 with 1
aQ1,

we can suppose that s3 ̸= 0. Let α ∈ k such that α3 = s−1
3 and apply the transformation

X → αX to get that s3 = 1. Then one finds that the system (6.1) has no solution (see
[12, Program 6.1]), giving rise to a contradiction.

‘s4 = a8, t4 = 1’: A computation of Gröbner basis under the reductions above (see [12, Program 6.2])
returns the condition s4 = a8t4. Since t3 = 0 we know that t4 ̸= 0 otherwise the
polynomial B would have multiple roots. We can then pick β ∈ k such that β4 = t−1

4
and apply the transformation X → βX to get that t4 = 1.

The reductions above leave us with polynomials of the form

Q1 := a(X4 + s2X
2 + a8)

Q2 := X4 + t2X
2 + 1.

Let us simplify the notation by setting s := s2 and t := t2, and compute these coefficients.
Now, [12, Program 6.3] can compute a Grobner basis of the system (6.1). By inspecting the
first element of the basis, we conclude that we have at most six possible expressions for s:

s =


±(a4 + a2 − a+ 1)

±(a4 − a2 − 1)

±(a4 + a2 + a+ 1)

Let us show how the situation can be further simplified: first, we note that the transformation
X → iX with i2 = −1 produces a new pair (S1, S2) with

S1 := a(X4 − s2X
2 + a8)

S2 := X4 − t2X
2 + 1.
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Then, we note that the pair (−Q1, Q2) produces the same space L12,2. Hence, if we can find
a solution to the system (6.1) for a pair (a, s) we also have a solution for pairs (−a, s),(a,−s),
and (−a,−s), which reduces our search to the following two situations:

Case 1: s = a4 − a2 − 1. In this case, Program [12, Program 6.4] returns t = −(a4 + a2 − 1)
(under the condition that s ̸= 0), and then we find that Q1 = Q1,a and Q2 = Q2,a, as
required. If s = 0, then the program returns t2 = a2+1 = a4, which gives the two values
t = ±a2 = ±(a4 + a2 − 1). Note that these two values correspond to equivalent spaces,
under the transformation X 7→ iX. We conclude that, in Case 1, the pair (Q1, Q2) is a
prompt for a space equivalent to Ωa.

Case 2: s = a4+a2+a+1. In this case, Program [12, Program 6.5] returns t = −(a4−a3+a2+1)
(under the condition that s ̸= 0).
We now compare the pair (Q1, Q2) obtained with the pair (Q1,a−1, Q2,a−1) which is a
prompt for the space Ωa−1, namely

Q1,a−1 = (a− 1)
(
X4 + (a4 − a3 − a2 + a− 1)X2 + (a− 1)8

)
Q2,a−1 = X4 − (a4 − a3 + a2 + 1)X2 + 1.

One verifies that Q3
1Q2−Q1Q

3
2 = Q3

1,a−1Q2,a−1−Q1,a−1Q
3
2,a−1. Hence the pair (Q1, Q2)

is a prompt for a space L12,2 with the same set of poles as Ωa−1. By Corollary 2.10,
we have then that (Q1, Q2) is a prompt for Ωa−1. If s = 0, the program returns
t2 = −a3 − a2 − a− 1, giving the two values t = ±(a3 + a) = ±(a4 − a3 + a2 + 1), that
correspond to equivalent spaces under the transformation X → iX. Hence in Case 2
the pair (Q1, Q2) is a prompt for a space equivalent to Ωa−1.

□

We can be more explicit about the spaces Ωa classified in the theorem, and compute their residues
and their writing in logarithmic form. This is the content of the following result.

Corollary 6.3. Let k be an algebraically closed field containing F3. Let a ∈ k be such that
(a3 − a)(a2 + 1) ̸= 0 and fix i, j ∈ k such that i2 = −1 and j2 = a2 + 1. Then the space Ωa is
generated by df1

f1
and df2

f2
with

f1 =
∏

ϵ1=±1
ϵ2=±1

(X − (ϵ1(a− 1)j + ϵ2ai))
ϵ1
∏

ϵ1=±1
ϵ2=±1

(X − (ϵ1(a+ 1)j + ϵ2ai))
ϵ1
∏

ϵ1=±1
ϵ2=±1

(
X − (ϵ1aj + ϵ2(a

2 − 1))
)ϵ1

and

f2 =
∏

ϵ1=±1
ϵ2=±1

(X − (ϵ1(a− 1)j + ϵ2ai))
−ϵ1

∏
ϵ1=±1
ϵ2=±1

(X − (ϵ1(a+ 1)j + ϵ2ai))
ϵ1
∏

ϵ1=±1
ϵ2=±1

(
X − (ϵ1j + ϵ2(a

2 − 1))
)ϵ1 .

In particular, the set of poles and residues of these generators are:
x res1(x) res2(x)

j + a2 − 1 0 1
j − a2 + 1 0 1
−j + a2 − 1 0 −1
−j − a2 + 1 0 −1
(a− 1)j + ai 1 −1
(a− 1)j − ai 1 −1
−(a− 1)j + ai −1 1
−(a− 1)j − ai −1 1

x res1(x) res2(x)

(a+ 1)j + ai 1 1
(a+ 1)j − ai 1 1
−(a+ 1)j + ai −1 −1
−(a+ 1)j − ai −1 −1
aj + (a2 − 1) 1 0
aj − (a2 − 1) 1 0
−aj + (a2 − 1) −1 0
−aj − (a2 − 1) −1 0
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Proof. We start by computing the zeroes of the polynomials Q1,a, Q1,a + Q2,a, Q1,a − Q2,a, Q2,a,
which can be easily done by applying the formulas for solving biquadratic equations. We find that

Z(Q1,a) = {j + a2 − 1, j − a2 + 1,−j + a2 − 1,−j − a2 + 1},

Z(Q1,a +Q2,a) = {(a− 1)j + ai, (a− 1)j − ai,−(a− 1)j + ai,−(a− 1)j − ai}

Z(Q1,a −Q2,a) = {(a+ 1)j + ai, (a+ 1)j − ai,−(a− 1)j + ai,−(a− 1)j − ai}, and

Z(Q2,a) = {aj + (a2 − 1), aj − (a2 − 1),−aj + (a2 − 1),−aj − (a2 − 1)},
as expected. By Theorem 6.2 and Remark 3.4 we know that Ωa is generated by the differential forms
ω1 :=

Q1,adX

c3(Q3
1,aQ2,a−Q1,aQ3

2,a)
and ω2 :=

Q2,adX

c3(Q3
1,aQ2,a−Q1,aQ3

2,a)
with c6(a2+1)5(a3−a)10 = 1. To compute

the residues of these forms at their poles, we remark that c3 = ± 1
(a2+1)5/2(a3−a)5

= ± 1
j5(a3−a)5

.
For each x ∈ Z(Q1,a) ∪ Z(Q1,a +Q2,a) ∪ Z(Q1,a −Q2,a) ∪ Z(Q2,a) we can compute the quantities
(Q2

1,aQ2,a − Q3
2,a)

′(x) and (Q3
1,a − Q1,aQ

2
2,a)

′(x) and check when they are equal to ±j5(a3 − a)5.
Up to possibly replacing j with −j, and using the formulas res1(x) = 1

c3(Q2
1,aQ2,a−Q3

2,a)
′(x)

and

res2(x) =
1

c3(Q3
1,a−Q1,aQ2

2,a)
′(x)

, we get the table of residues above, or equivalently that ω1 =
df1
f1

and

ω2 =
df2
f2

with f1, f2 as in the statement. □

Remark 6.4. In the light of the results of Section 5.1, it is natural to wonder if the description of
subspaces of standard spaces given by Proposition 5.6 has an analogue in the case of spaces that are
not standard. Namely, given a space Lλpn−1,n that is not standard, and assuming that p|λ, one can
ask whether its t-dimensional subspaces for t < n can be obtained as étale pullbacks of some space
Lµpt−1,t.

The classification of spaces L12,2 achieved in this section shows that the answer to this question
is negative, at least at the level of generality stated above. More precisely, for every value of a no
one dimensional subspace of Ωa can be obtained as a non-trivial étale pullback of some other space.
First, note that we only need to check this for degree 6 pullbacks of spaces L2,1, as there are no
spaces L4,1. Then, we remark that any space L2,1 is equivalent to a standard space, whose set of
poles is of the form {x,−x}.

The étale pullback ϕ⋆(ω) is then up to a constant of the form dX
S(X)2−x2 for S(X) of degree 6 such

that S′(X) ∈ k×. In particular, S(X)2 − x2 has always a non zero term of degree 7. If we fix a
differential form ω ∈ Ωa, and we consider the polynomial whose zeroes are the poles of ω, we see
that it has only terms of even degree. As a result, it is not possible to obtain ω via an étale pullback
of a differential form in a space L2,1.

6.2. Classification of spaces L15,2. Let p = 3 and λ = 5. In the first part of the section, we
exhibit explicitly two vector spaces L15,2, one whose poles are all in F27 and another one whose poles
are all in F81.

Example 6.5. Let F27 be the finite field with 27 elements, and let us write F27 = F3[µ], with
µ3 − µ+ 1=0. We have that µ13 = −1, and then µ is a generator of the cyclic multiplicative group
F×
27. Following the notation used in the proof of Proposition 3.1, we define a subset of F27 indexed

by the elements of P1(F3) = {0, 1, 2,∞}:
X0 = {µ2 − µ, µ+ 1,−µ2 − µ− 1, µ, 0} = {µ4, µ9, µ19, µ, 0}
X1 = {−µ2 + µ− 1,−µ2,−µ2 − µ+ 1,−µ2 − 1, µ2 + 1} = {µ5, µ15, µ24, µ8, µ21}
X2 = {−µ2 + 1,−1, µ2 − µ+ 1, µ2 − 1,−µ2 + µ} = {µ25, µ13, µ18, µ12, µ17}
X∞ = {µ2 + µ, µ− 1, µ2, µ2 − µ− 1,−µ− 1} = {µ10, µ3, µ2, µ7, µ22}.
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To these sets, we associate the corresponding polynomials of F27[X]:
P0(X) =

∏
x∈X0

(X − x) = X5 − (µ2 + µ+ 1)X3 −X2 + (µ2 − µ− 1)X

P1(X) =
∏

x∈X1
(X − x) = X5 − (µ2 − 1)X3 − (µ2 − µ+ 1)X2 − (µ+ 1)X − (µ2 + 1)

P2(X) =
∏

x∈X2
(X − x) = X5 + (µ2 − µ− 1)X3 + (µ+ 1)X2 + (µ2 − 1)X − (µ2 − µ− 1)

P∞(X) =
∏

x∈X∞
(X − x) = X5 − (µ2 + µ)X3 − (µ+ 1)X2 − (µ2 + µ− 1)X − (µ2 − µ+ 1).

Now, let
Q1(X) := (µ2 − µ− 1)P0(X) and Q2(X) := −µP∞(X).

One verifies that the second derivative of the polynomial (Q3
1 −Q1Q

2
2)

2 is equal to −1. Moreover,
since (µ2 −µ− 1)± (−µ) /∈ F3, the degree of iQ1 + jQ2 is equal to 4 for every [i : j] ∈ P1(F3). Then,

we can set ω1 =
Q1

Q3
1Q2 −Q1Q3

2

dX and ω2 =
Q2

Q3
1Q2 −Q1Q3

2

dX and apply Proposition 3.1 to show

that Ω1 := ⟨ω1, ω2⟩ is a F3-vector space L15,2.
To write the generators of this spaces in logarithmic form, we need to compute their residues at

the poles. In order to do this, we denote by Z1 the set of zeroes of Q2
1Q2 − Q3

2, by Z2 the set of
zeroes of Q3

1 −Q1Q
2
2, and we introduce the functions res1 : Z1 → F×

3 and res2(x) : Z2 → F×
3 defined

by resi(x) := resx(ωi). Then, we compute them thanks to the formulas res1(x) = 1
(Q2

1Q2−Q3
2)

′(x)
and

res2(x) =
1

(Q3
1−Q1Q2

2)
′(x)

We find the following table of values:

x res1(x) res2(x)

µ4 0 1
µ9 0 1
µ19 0 1
µ 0 −1
0 0 −1
µ5 −1 1
µ15 1 −1
µ24 1 −1
µ8 1 −1
µ21 1 −1

x res1(x) res2(x)

µ25 −1 −1
µ13 1 1
µ18 −1 −1
µ12 1 1
µ17 −1 −1
µ10 1 0
µ3 1 0
µ2 −1 0
µ7 −1 0
µ22 1 0

Then, ω1 =
dF1
F1

and ω2 =
dF2
F2

with

F1(X) =
∏
x∈Z1

(X − x)res1(x) and F2(X) =
∏
x∈Z2

(X − x)res2(x).

Example 6.6. Let F81 be the finite field with 81 elements, and let us write F81 = F3[µ], with
µ4 + µ3 − µ2 − µ − 1 = 0.6 We have that µ40 = −1, and then µ is a generator of the cyclic
multiplicative group F×

81. In analogy with Example 6.5, we define for every element of P1(F3) a
subset of F81 as follows: 

X0 = {µ7, µ30, µ51, µ59, µ63}
X1 = {µ26, µ50, µ52, µ68, µ74}
X2 = {µ34, µ60, µ66, µ70, 0}
X∞ = {µ10, µ11, µ19, µ20, µ40}

.

Then, we associate to these sets the corresponding monic polynomials. In this case, it turns out
that they have coefficients in F9. More specifically, we set a = −µ20 ∈ F9 and one can verify that we

6This is equivalent to write F81 = F3[α] for a choice of α satisfying α4 + α2 − 1 = 0 and set µ = α3 + α− 1.
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have: 
P0 =

∏
x∈X0

(X − x) = X5 −X3 −X2 + aX − (a+ 1)

P1 =
∏

x∈X1
(X − x) = X5 − aX3 + (a− 1)X − (a− 1)

P2 =
∏

x∈X2
(X − x) = X5 − (a− 1)X2 − (a− 1)X

P∞ =
∏

x∈X∞
(X − x) = X5 − (a+ 1)X3 + (a+ 1)X2 +X + a

.

Then, we set
Q1(X) := aP0(X) and Q2(X) := −(a+ 1)P∞(X),

and we can verify that the second derivative of the polynomial (Q3
1−Q1Q

2
2)

2 is equal to −1. Moreover,

the degree of iQ1+jQ2 is equal to 5 for every [i : j] ∈ P1(F3). Hence, if we set ω1 =
Q1

Q3
1Q2 −Q1Q3

2

dX

and ω2 =
Q2

Q3
1Q2 −Q1Q3

2

dX and apply Proposition 3.1 this shows that Ω2 := ⟨ω1, ω2⟩ is a space

L15,2.
As in Example 6.5, we can easily compute the residues of ω1 and ω2 at their poles, and get the

following table.
x res1(x) res2(x)

µ7 0 −1
µ30 0 −1
µ51 0 −1
µ59 0 −1
µ63 0 −1
µ26 1 −1
µ50 −1 1
µ52 −1 1
µ68 −1 1
µ74 1 −1

x res1(x) res2(x)

µ34 −1 −1
µ60 1 1
µ66 −1 −1
µ70 1 1
0 1 1
µ10 1 0
µ11 1 0
µ19 1 0
µ20 1 0
µ40 −1 0

As in the previous example we have ω1 =
dF1
F1

and ω2 =
dF2
F2

with

F1(X) =
∏
x∈Z1

(X − x)res1(x) and F2(X) =
∏
x∈Z2

(X − x)res2(x).

Our main result of this section says that the examples above are essentially the only spaces L15,2.

Theorem 6.7. Let k be an algebraically closed field containing F3 and let Φ : Ω(k(X)) → Ω(k(X))
be the relative Frobenius operator. Every Ω ⊂ Ω(k(X)) vector space L15,2 is equivalent to one of the
following spaces, each representing a distinct equivalence class: Ω1 (defined in Example 6.5), Φ(Ω1),
Φ2(Ω1), Ω2 (defined in Example 6.6), or Φ(Ω2).

To prove the theorem, we set

Q1 := a(X5 − s1X
4 + s2X

3 − s3X
2 + s4X − s5)

and
Q2 := X5 − t1X

4 + t2X
3 − t3X

2 + t4X − t5.

Then, we consider the expressions Rk’s of Convention 3.5 as polynomials with coefficients in
{a, s1, . . . , s5, t1, . . . , t5} and we aim to find a solution to the system of equations

(6.8)

{
R1(a, si, ti) ̸= 0,

Rk(a, si, ti) = 0 for k = 2, . . . , 10.
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The existence of a space L15,2 gives rise to a solution to the system (6.8) (see Convention 3.5).
Conversely a solution to (6.8) produces a space L15,2. In fact, such a solution would imply that
the second derivative of (Q3

1 − Q1Q
2
2)

2 is equal to the nonzero constant −R1(a, si, ti). Then,
Proposition 3.1 and Remark 3.4 tell us that we can build a space L15,2 from Q1 and Q2 by setting

ω1 =
Q1

Q3
1Q2 −Q1Q3

2

dX and ω2 =
Q2

Q3
1Q2 −Q1Q3

2

dX, and considering the space ⟨ω1, ω2⟩.

Unfortunately, solving (6.8) is not an easy task even when assisted by a computer (a brute-force
calculation of Gröbner basis turns out to be hopeless without further assumptions), so we need to
simplify the equations before we go further with our strategy. To this aim, we apply Lemma 3.6,
we set s1 = t1 and we reparametrize P1

k in such a way to have s1 = t1 = 0. Then, we obtain the
following result.

Lemma 6.9. Let (Q1, Q2) be a pair of polynomials as above, and suppose that they yield a solution
of the system (6.8). Then, either s3 ̸= 0 or t3 ̸= 0.

Proof. We can show this using a Gröbner basis computation: Program [12, Program 6.6] computes
the ideal generated by all the relations in (6.8) assuming s1 = t1 = 0 and s3 = t3 = 0, and checks
that this is the whole ring. As a result, the system has no solution, and we either have s3 ≠ 0 or
t3 ̸= 0. □

Thanks to Lemma 6.9, we can suppose that s3 ̸= 0, and use our last degree of freedom to
reparametrize P1

k in such a way that s3 = 1. This is the content of our next Lemma.

Lemma 6.10. Let (Q1, Q2) be a pair of polynomials as above and suppose that they yield a solution
of the system (6.8), hence being a prompt for a space L15,2 denoted by Ω. Then, there exists a pair
(Q♯

1, Q
♯
2) whose coefficients satisfy s1 = t1 = 0, s3 = 1 and (6.8). In particular, (Q♯

1, Q
♯
2) is a prompt

for a space equivalent to Ω.

Proof. We know by Lemma 3.6 that s1 = t1 and applying the translation X → X + s1 allows us to
suppose s1 = t1 = 0. To get to s3 = 1, we apply Lemma 6.9 to get to the situation where s3 ̸= 0,
which we can do up to possibly swapping Q1 and Q2. Then, we consider α ∈ k such that α3 = s−1

3
and we apply the transformation X → αX. Under this transformation we have

P ♯
0(X) =

∏
x∈X[1:0]

(X − αx) = X5 + α2s2X
3 − α3s3X

2 + α4s4X − α5s5.

and
P ♯
∞(X) =

∏
x∈X[0:1]

(X − αx) = X5 + α2t2X
3 − α3t3X

2 + α4t4X − α5t5,

so that the coefficient of X2 in P ′
0(X) is -1 as needed. Since (Q1, Q2) is a prompt for a space L15,2

and we applied a homothety to the zeroes of Q3
1Q2 −Q1Q

3
2, then by setting Q♯

1 = a♯P ♯
0 for a suitable

nonzero constant a♯ and Q♯
2 = P ♯

∞ we have that (Q♯
1, Q

♯
2) is a prompt for a space L15,2 that is

equivalent to Ω. In particular, the coefficients of Q♯
1 and Q♯

2 satisfy the system (6.8). □

Lemma 6.10 allows us then to consider without loss of generality the situation where s1 = t1 = 0
and s3 = 1. Recall that we denoted by a the leading coefficient of the polynomial Q1. The following
lemma shows that one can obtain the same space by applying a suitable substitution only to the
parameter a.

Lemma 6.11. Let (Q1, Q2) be a pair of polynomials with

Q1 := a(X5 + s2X
3 −X2 + s4X − s5)
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and
Q2 := X5 + t2X

3 − t3X
2 + t4X − t5

which is a prompt for a space L15,2, denoted by Ω. For every α ∈ {−1, 1
a+1 ,−

1
a+1 ,

1
a−1 ,−

1
a−1} there

exists a pair (Q♯
1, Q

♯
2) which is a prompt for the same space Ω such that Q♯

2 is monic and Q♯
1 = αQ1.

Proof. By Definition 3.3, there exists a constant c ∈ k× such that the space Ω is generated by ω1

and ω2 with ω1 :=
dX

c3(Q2
1Q2−Q3

2)
and ω2 :=

dX
c3(Q3

1−Q1Q2
2)

. We consider the following situations:

(i) Let (ω1,−ω2) be another basis of Ω and pick a pair (Q♯
1, Q

♯
2) associated with it. Since −ω2

has the same poles as ω2, then Q♯
2 = Q2. We see then that Q♯

1 = −Q1.
(ii) Let (ω1, ω1 + ω2) be another basis of Ω and pick a pair (Q♯

1, Q
♯
2) associated with it. By

looking at the poles of ω1 + ω2 we see that Q♯
2 = Q1+Q2

a+1 . The leading coefficient of Q♯
1 is

computed as the ratio of leading coefficient of Q1 by the one of Q1 +Q2. In other words,
Q♯

1 =
Q1

a+1 .

The coefficients − 1
a+1 ,

1
a−1 , and − 1

a−1 can be obtained by composing the changes of basis of (i) and
(ii). □

Remark 6.12. The transformations of the leading coefficients described in Lemma 6.11 are the unique
possible if we want to keep the simplifications made previously. In fact, we are not allowed to change
the zeroes of A as this would change the parameter s3 in the general case.

Proof of Theorem 6.7. Using the simplifications above, we are now ready to prove the main theorem.
More precisely, we use Lemma 6.10 to assume that s1 = t1 = 0 and s3 = 1. Then, the program [12,
Program 6.7] tells us that any solution to the system (6.8) needs to satisfy the following condition
on the parameter a:

(a3−a2−a−1)(a3−a+1)(a2+1)(a3−a2+1)(a3+a2−a+1)(a3−a2+a+1)(a3−a−1)(a2+a−1)(a3+a2−1)(a3+a2+a−1)(a2−a−1)=0.

By applying Lemma 6.11 we can consider only an irreducible polynomial for each orbit under the
group action on (Q1, Q2) generated by a 7→ −a and a 7→ a

a+1 . Namely, we are left with studying the
following cases:
Case 1: a2 + 1 = 0
Case 2: a3 − a2 + 1 = 0
Case 3: a3 − a+ 1 = 0.

In all these cases, the successive elements of a Gröbner basis for the system (6.8) can be computed,
and show us all the possibilities for the coefficients of Q1 and Q2. Let ∆2(Q1, Q2) = Q3

1Q2 −Q1Q
3
2

be the Moore determinant of (Q1, Q2). We remark that, if (Q1, Q2) and (S1, S2) are prompts for
spaces L15,2 and ∆2(Q1, Q2) = ∆2(S1, S2), then they actually are prompts for the same space by
virtue of Corollary 2.10. Let us denote by ∆[1] the Moore determinant of the pair (Q1, Q2) appearing
in Example 6.5, by ∆[2] the Moore determinant of the pair (Q1, Q2) appearing in Example 6.6, and
by ∆• with an appropriate superscript the Moore determinants appearing in the cases below (e.g.
∆1.A is the Moore determinant of the polynomials given by the program in case 1.A). We show that
we can get a complete classification up to equivalence by studying the cases outlined above and
comparing the respective Moore determinants.

In Case 1, we let a be a square root of −1. For simplicity and consistency, we assume that
a = −µ20 where µ is the generator of F×

81 appearing in Example 6.6. Then, the program [12, Program
6.8] returns the following subcases:

Case 1.A s2 s3 s4 s5 t2 t3 t4 t5
0 1 a− 1 0 −a+ 1 a −1 a+ 1
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Case 1.A′ s2 s3 s4 s5 t2 t3 t4 t5
0 1 −a− 1 0 a+ 1 −a −1 −a+ 1

In Case 1.A we get a space that is equivalent to Ω2. In fact, one can verify that, after applying the
homothety X 7→ −(a+ 1)X the Moore determinant ∆1.A is equal to ∆[2].

Since Case 1.A′ is obtained from Case 1.A by applying the transformation a 7→ −a, and we have
that a3 = −a, then it results that the polynomials appearing in Case 1.A′ are prompts for the space
Φ(Ω2).

Case 1.B s2 s3 s4 s5 t2 t3 t4 t5
−1 1 a 1 + a −a 0 a− 1 a− 1

Case 1.B′ s2 s3 s4 s5 t2 t3 t4 t5
−1 1 −a 1− a a 0 −(a+ 1) −(a+ 1)

In Case 1.B, one gets the space Ω2 without the need to reparametrize. In fact, the zeroes of A
(resp. of B) in this case are the same as those of P0 (resp. P1) in the example. If we apply the
transformation a 7→ −a, we land in Case 1.B′ which corresponds to the space Φ(Ω2).

Case 1.C s2 s3 s4 s5 t2 t3 t4 t5
a− 1 1 −1 a− 1 0 −a a− 1 0

Case 1.C ′ s2 s3 s4 s5 t2 t3 t4 t5
−(a+ 1) 1 −1 −(a+ 1) 0 a −(a+ 1) 0

In Case 1.C, one gets a space that is equivalent to Ω2, as one can see by applying the transformation
X 7→ (a−1)X. If we apply the transformation a 7→ −a, we land in Case 1.C ′ which then corresponds
to the space Φ(Ω2), as above.

In Case 2, let a be a root of X3−X2+1. For simplicity and consistency, we assume that a = µ−1

where µ is the generator of F×
27 appearing in Example 6.5. Then we have that Φ(a) = 1

µ+1 = −a2−a−1

and Φ2(a) = 1
µ−1 = a2 − 1. Program [12, Program 6.9] returns the following subcases:

Case 2.A s2 s3 s4 s5 t2 t3 t4 t5
−1 1 a2 −(a2 + a+ 1) −(a+ 1) a2 + a+ 1 a2 − a −(a2 − a+ 1)

Case 2.B s2 s3 s4 s5 t2 t3 t4 t5
−1 1 −(a2 + a) a −(a+ 1) a2 −(a2 − a) 0

Case 2.C s2 s3 s4 s5 t2 t3 t4 t5
−1 1 a+ 1 a2 − 1 −(a+ 1) a2 − 1 1 a2 − a− 1

In Case 2.A we get a vector space equivalent to Ω1. In fact, one can verify that, after applying
the homothety X 7→ (µ2 + µ+ 1)X = −(a2 + 1)X, the Moore determinant ∆2.A is equal to ∆[1].
We can also verify that Φ(∆2.A) has the same zeroes of ∆2.C and Φ2(∆2.A) has the same zeroes of
∆2.B. Hence, Case 2.C corresponds to Φ(Ω1) and Case 2.B corresponds to Φ2(Ω1).

Finally, in Case 3 let a be a root of X3 − X + 1. For simplicity and consistency, we assume
that a = µ, the generator of F×

27 appearing in Example 6.5. Then we have that Φ(a) = a− 1 and
Φ2(a) = a+ 1. Program [12, Program 6.10] returns the following subcases:

Case 3.A s2 s3 s4 s5 t2 t3 t4 t5
a 1 1 −(a2 − a+ 1) −(a2 + a+ 1) −(a+ 1) a2 + a −(a2 + a+ 1)

Case 3.B s2 s3 s4 s5 t2 t3 t4 t5
−(a2 + a) 1 a2 − a a −a2 a− 1 a2 − 1 a2
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Case 3.C s2 s3 s4 s5 t2 t3 t4 t5
−(a2 − a+ 1) 1 a2 + 1 0 −(a2 + a) a2 −a a2 + a− 1

In Case 3.A we get a vector space equivalent to Ω1 under the homothety X 7→ (1− a)X.
In Case 3.B we get a vector space equivalent to Φ2(Ω1). We can see this by applying Φ and then

the homothety X 7→ (a− 1)X to the coefficients of our polynomials, and noticing that the resulting
pair is a prompt for the space Ω1.

Finally, if we apply the transformation Φ to the coefficients of P0 and P1 of Example 6.5, we see
that we get the coefficients of the table of Case 3.C. The pair (Q1, Q2) in this latter case then is a
prompt for the space Φ(Ω1).

This exhausts all possible cases, and since the spaces Ω1, Φ(Ω1), Φ2(Ω1), Ω2, and Φ(Ω2) make up
distinct equivalence classes of spaces L15,2, this concludes our proof of the classification theorem. □

Remark 6.13. We believe that the classification of spaces L12,2 and L15,2 in this section is interesting
in itself, as the nature of these examples is quite different from anything previously known, for
example these spaces can not be obtained from standard spaces. Moreover, we remark that, by
applying étale pullbacks to these examples, we can generate spaces L36d,2 and L45d,2 for every integer
d ≥ 1, resulting in large classes of examples useful for future investigation.

Appendix A. Moore determinants

In this section, we collect several results on Moore determinants. With the exception of Lemma
A.6, for which we provide a proof, these results are already known (from work of Elkies in [13] and
Fresnel-Matignon in [10]), and are therefore recalled without proof.

Let k be a field of characteristic p > 0, and denote by F : k → k the Frobenius automorphism
x 7→ xp. The Moore determinant of an n-tuple a := (a1, . . . , an) ∈ kn is defined as

∆n(a) :=

∣∣∣∣∣∣∣∣∣
a1 a2 . . . an
ap1 ap2 . . . apn
...

... . . .
...

ap
n−1

1 ap
n−1

2 . . . ap
n−1

n

∣∣∣∣∣∣∣∣∣ .
Remark A.1. Here we list the first elementary results on Moore determinants. By multilinearity of
determinants, for every α ∈ k, we have that

∆n(αa) = α1+p+···+pn−1
∆n(a).

Moreover, given an invertible matrix M ∈ GLn(Fp), we have ([13, p. 80]) that

∆n(aM) = ∆n(a) det(M).

These relations are used in the proof of Proposition 4.5(iii). Finally, Moore shows the following
identity:

(A.2) ∆n(a) =
n∏

i=1

∏
ϵi−1∈Fp

· · ·
∏

ϵ1∈Fp

(ai + ϵi−1ai−1 + · · ·+ ϵ1a1).

As a result, we have that ∆n(a) ̸= 0 if, and only if, the ai’s are Fp-linearly independent.

Theorem A.3. For every n-tuple a ∈ kn, and for every 1 ≤ i ≤ n, we define the n − 1-tuple
âi := (a1, . . . , ai−1, ai+1, . . . , an). Then, we have the formula

∆n

(
∆n−1(â1), . . . , (−1)i−1∆i−1(âi), . . . , (−1)n−1∆n−1(ân)

)
= ∆n(a)

1+p+···+pn−2
.

Proof. This is the special case m = 0 of [10, Theorem 4.1]. □
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Definition A.4. For every V ⊂ k is a Fp-vector space of dimension n, the structural polynomial of
V is

PV (X) :=
∏
v∈V

(X − v) ∈ k[X].

It is the unique monic polynomial of degree pn such that V is the set of zeroes of PV .

Lemma A.5. (cf. Proposition 2.2. of [10]) Let V ⊂ k be a Fp-vector space of dimension n. The
structural polynomial PV is additive and for every choice of basis v = (v1, . . . , vn) of V it satisfies
the identity

PV (X) =
∆n+1(v,X)

∆n(v)
= Xpn + · · ·+ (−1)n∆n(v)

p−1X.

Proof. Consider ∆n+1(v,X) as a polynomial in k[X]. The development of the determinant along
the last column gives

∆n+1(v,X) = ∆n(v)X
pn + · · ·+ (−1)n∆n(v)

pX,

which results in the second equality of the lemma. On the other hand, we have by definition that
∆n+1(v, v) = 0 for every v ∈ V , which proves the first equality. Additivity then follows from the
fundamental theorem of additive polynomials, as V is an additive subgroup of k. □

Lemma A.6. Let n ≥ 1, m ≥ 1 and Y1, ..., Yn, X1, ..., Xm be variables over Fp. Then

∆n(∆m+1(Y1, X1, X2, ..., Xm), ...,∆m+1(Yn, X1, X2, ..., Xm)) =

= ∆m(X1, ..., Xm)p+p2+...+pn−1
∆n+m(Y1, ..., Yn, X1, ...Xm).(A.7)

Proof. We proceed by induction on n. If n = 1, we interpret the expression p+ p2 + ...+ pn−1 as 0.
If n = 2, then the Lemma is a special case of Theorem A.3. Let us then assume n > 2 and that the
Lemma is satisfied when replacing n with n− 1.

We denote by X , the Fp-vector space ⟨X1, X2, . . . , Xm⟩Fp , and by PX the structural polynomial
of X . It then follows from Lemma A.5 that

∆n(∆m+1(Y1, X1, X2, ..., Xm), ...,∆m+1(Yn, X1, X2, ..., Xm)) =

∆n((−1)m∆m(X)PX (Y1), · · · , (−1)m∆m(X)PX (Yn)) =

(−1)mn∆m(X)1+p+···+pn−1
∆n(PX (Y1), · · · , PX (Yn)).

From this, we deduce that the identity (A.7) is equivalent to

∆n+m(Y1, ..., Yn, X1, ...Xm) = (−1)mn∆m(X)∆n(PX (Y1), · · · , PX (Yn)).(A.8)

Moreover, we remark that

∆n+m(Y1, ..., Yn, X1, ...Xm) = (−1)m∆n+m(Y1, ..., Yn−1, X1, ...Xm, Yn) =

(−1)m∆n−1+m(Y1, ..., Yn−1, X1, .., Xm)
∏

v∈⟨Y1,..,Yn−1,X1,..,Xm⟩Fp

(Yn + v),

and then we can apply the identity (A.8) replacing n with n−1 (satisfied by the inductive hypothesis)
to show that (A.7) is equivalent to

∆n(PX (Y1), · · · , PX (Yn)) = ∆n−1(PX (Y1), · · · , PX (Yn−1))
∏

v∈⟨Y1,..,Yn−1,X1,..,Xm⟩

(Yn + v)

which, by applying again Lemma A.5 is equivalent to∏
w∈⟨PX (Y1),··· ,PX (Yn−1)⟩Fp

(PX (Yn) + w) =
∏

v∈⟨Y1,..,Yn−1,X1,..,Xm⟩Fp

(Yn + v).

□
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Remark A.9. When m = 1 the identity of Lemma A.6 is already known. It appears for example in
work of Elkies [13, p.81] and it is used in the proof of Proposition 5.3.

To produce certain formulas that we need in Section 4, let us introduce the following determinants.
For every non-zero n-tuple ϵ = (ϵ1, . . . , ϵn) ∈ Fn

p − 0 we define

∆ϵ(a,X) :=

∣∣∣∣∣∣∣∣∣∣∣

ϵ1 ϵ2 . . . ϵn 0
a1 a2 . . . an X
ap1 ap2 . . . apn Xp

...
...

. . .
...

...
ap

n−1

1 ap
n−1

2 . . . ap
n−1

n Xpn−1

∣∣∣∣∣∣∣∣∣∣∣
and

δϵ(a) :=

∣∣∣∣∣∣∣∣∣∣∣

ϵ1 ϵ2 . . . ϵn
a1 a2 . . . an
ap1 ap2 . . . apn
...

...
. . .

...
ap

n−2

1 ap
n−2

2 . . . ap
n−2

n

∣∣∣∣∣∣∣∣∣∣∣
Proposition A.10. (Proposition 2.3. of [10]) Let W ⊂ k be a Fp vector space of dimension
n. Let a be an Fp-basis of W and a⋆ = (a⋆1, . . . , a

⋆
n) be its dual basis. For every non-zero n-

tuple ϵ = (ϵ1, . . . , ϵn) ∈ Fn
p − 0, we denote by φϵ the linear homomorphism W → Fp given by

φϵ :=
∑n

i=1 ϵia
⋆
i . Recall that we have defined Pkerφϵ(X) :=

∏
w∈kerφϵ

(X − w).
Then δϵ(a) ̸= 0 and we have the identity

(A.11) Pkerφϵ(X) =
∆ϵ(a,X)

δϵ(a)
= Xpn−1

+ · · ·+ (−1)n−1δϵ(a)
p−1X.

Moreover, denoting by ei the i-th element of the standard basis of Fn
p , we have the following formulas:

∆ei(a,X) = (−1)i−1∆n(âi, X) ∀ i = 1, . . . , n(A.12)

∆ϵ(a,X) =
n∑

i=1

ϵi∆ei(a,X) =
n∑

i=1

(−1)i−1ϵi∆n(âi, X)(A.13)

δϵ(a) =

n∑
i=1

(−1)i−1ϵi∆n−1(âi).(A.14)

Proposition A.15 (Proposition 5.1. of [10]). Let k be an algebraically closed field containing Fp.
Let V (∆n) := {(a1, . . . , an)|∆n(a) = 0}. Then the map

φ : kn kn

a
(
(−1)i−1∆n−1(âi)

)
i=1,...,n

induces a surjective function kn − V (∆n) → kn − V (∆n). This satisfies the property that

φ2(a) = (−1)n−1∆n(a)
1+p+···+pn−3

(a)p
n−2

.

Moreover, a, a′ are such that φ(a) = φ(a′) if, and only if, a = θa′ for some θ satisfying

θ1+p+···+pn−2
= 1.

Finally, we prove two results that are not in [10] and that are used in Section 4.
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Lemma A.16. Let X1, ..., Xn be variables over Fp, and for every 0 ≤ t ≤ n let Vn−t = ⟨X1, ..., Xn−t⟩Fp .
Then, we have that

∆n(X1, ..., Xn) = ∆n−t(X1, ..., Xn−t)∆t(PVn−t(Xn−t+1), ..., PVn−t(Xn)),

where PVn−t(X) is the structural polynomial of Vn−t (see Definition A.4).

Proof. From Moore’s formula (A.2) we have

∆n(X) =

n∏
i=1

∏
ϵi−1∈Fp

· · ·
∏

ϵ1∈Fp

(Xi + ϵi−1Xi−1 + · · ·+ ϵ1X1) = A ·B,

where

A :=
n−t∏
i=1

∏
ϵi−1∈Fp

· · ·
∏

ϵ1∈Fp

(Xi + ϵi−1Xi−1 + · · ·+ ϵ1X1)

and

B :=
n∏

i=n−t+1

∏
ϵi−1∈Fp

· · ·
∏

ϵ1∈Fp

(Xi + ϵi−1Xi−1 + · · ·+ ϵ1X1).

Moore’s formula ensures that A = ∆n−t(X1, . . . , Xn−t), while the definition of the structural
polynomial gives that

B =
n∏

i=n−t+1

∏
ϵi−1∈Fp

· · ·
∏

ϵn−t+1∈Fp

PVn−t(Xi + ϵi−1Xi−1 + · · ·+ ϵn−t+1Xn−t+1).

By Lemma A.5, PVn−t is an additive polynomial and therefore the above is also equal (after
reindexing) to

B =

t∏
i=1

∏
ϵi−1∈Fp

· · ·
∏

ϵ1∈Fp

(PVn−t(Xn−t+i) + ϵi−1PVn−t(Xn−t+i−1) + · · ·+ ϵ1PVn−t(Xn−t+1)),

and we can see from Moore’s formula that this is precisely equal to

∆t(PVn−t(Xn−t+1), ..., PVn−t(Xn)),

which completes the proof of the claim. □

Corollary A.17. Under the hypotheses of Lemma A.16, for every n− t+ 1 ≤ i ≤ n we have that

∆n−1(X1, .., X̂i, ..., Xn)

∆n(X1, ..., Xn)
=

∆t−1(PVn−t(Xn−t+1), ..., ̂PVn−t(Xi), ..., PVn−t(Xn))

∆t(PVn−t(Xn−t+1), ..., PVn−t(Xn))
.

Lemma A.18. Let n ≥ 1, let M ∈ GLn(Fp) and let X1, ..., Xn be variables over Fp. Denote by
Yi = ∆n−1(X̂i) and by YM

i = ∆n−1

(
̂(XM)i

)
. Then, we have

(YM
1 , . . . , YM

n ) = YM c,

where M c ∈ GLn(Fp) is the cofactor matrix of M

Proof. This is proved with a direct computation. We write M =
(
mij

)
ij

and, for simplicity, we show
only that YM

1 = YM c
•,1 where M c

•,1 is the first column of M c, the proof that YM
j = YM c

•,j being
completely analogous. By definition, we have

YM
1 = ∆n−1

(
n∑

i=1

mi,2X2, . . . ,

n∑
i=1

mi,nXn

)
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and, using the multi-linear properties of Moore determinants, this can be rewritten as

YM
1 =

∑
i2,...,in

mi2,2 · · ·min,n∆n−1(Xi2 , . . . , Xin) =
∑
σ∈Sn

mσ(2),2 · · ·mσ(n),n∆n−1(Xσ(2), . . . , Xσ(n))

=
∑
σ∈Sn

(−1)sgn(σ)mσ(2),2 · · ·mσ(n),nYσ(1),

where Sn is the symmetric group over the set with n elements (note that we used that mp
i,j = mi,j

for getting rid of the exponents). Since for every i, the coefficient of Yi is the minor Mi1 of the
matrix M , it results that YM

1 = YM c
•,1. □
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