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Abstra
tThe extension of Residual Distribution S
hemes to general unsteady and 
omplex inhomoge-neous systems of 
onservation laws poses several te
hni
al diÆ
ulties whi
h have made manye�orts unsu

essful until now. First, the s
hemes in their original formulation 
annot be morethan �rst order a

urate in spa
e in unsteady 
omputations due to an in
onsistent treatmentof the time derivative in the dis
retization. Furthermore, the 
onservation property stronglyrelies on the existen
e of a Roe-type linearization of the Ja
obians of the system whi
h is notavailable in general. Finally, in
luding for
ing terms in the dis
retization in a 
onsistent wayhas not been a
hieved until now.The goal of this proje
t was therefore to 
ure the above problems and to demonstrate theappli
ation towards 
omplex hyperboli
 systems on a two-
uid two-phase 
ow model. Se
ondorder of a

ura
y in time and spa
e was obtained by using a spa
e-time approa
h for whi
hgeneral boundary 
onditions based on 
hara
teristi
 eigenve
tor de
omposition were imple-mented. A new sour
e-term dis
retization, 
onsistent with the Residual Distribution method,has been proposed and tested. This new treatment of the for
ing terms has been shown tobe robust and extendable to se
ond order of a

ura
y. The same idea at the basis of thesour
e term dis
retization allowed rewriting the s
hemes in a way that does not require anyRoe-type linearization of the Ja
obians to guarantee dis
rete 
onservation. Comparison withthe 
lassi
al formulation has shown the robustness and reliability of the approa
h. Finally,the spa
e-time s
hemes, 
ombined with the new treatment of the sour
e terms, have beenapplied to a simple two-phase 
ow model. The solution of some well known two-phase 
owproblems involving separated 
ow is shown.
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Chapter 1Introdu
tionOver the last de
ade, a 
lass of upwind spatial dis
retization s
hemes has been developedfor the solution of systems of hyperboli
 
onservation laws on unstru
tured grids [1, 2℄. TheResidual Distribution (RD) or Flu
tuation Splitting S
hemes in
orporate the same propertieswhi
h are at the basis of all Godunov-type upwind �nite volume s
hemes, but 
arried over toa 
ell-vertex framework with a 
ontinuous representation of the variables, like in the standard�nite element method. The strength of the method lays in the fa
t that both monotoni
ityand se
ond order of a

ura
y 
an be obtained on the 
ompa
t sten
il of nearest neighbors,whi
h also enables an easier impli
it and parallel implementation. The key feature of theRD method is the truly multidimensional upwinding at its basis, whi
h allows to reprodu
enumeri
ally the multidimensionality of the physi
s. Su

essful appli
ation of the s
hemes tothe steady 2D and 3D Euler and Navier Stokes Equations, to the MHD equations and toTwo-Fluid Models for two-phase 
ow simulation, has been shown in the past [1, 2, 3, 4, 5℄.However, those methods still have several limitations. First of all, the s
hemes have been de-veloped for the solution of steady state problems and when they are applied to the simulationof unsteady 
ows, their a

ura
y is degradated even if used in 
ombination with the methodof lines ( Runge-Kutta s
hemes for example ). Furthermore, their appli
ation to 
ows withstrong dis
ontinuities strongly relies on the existen
e of a 
onservative Roe-type linearizationof the Ja
obian matri
es of the system, whi
h is not always guaranteed, as, for example, inthe 
ase of two-phase 
ow models su
h as the Two-Fluid models and of the MHD equations.In addition, up to now a 
onsistent dis
retization of the sour
e terms has not been found. Inparti
ular the point-wise treatment that has been used until now, redu
es the a

ura
y of these
ond order s
hemes to �rst order, while a 
entered treatment is most of the times unstable.In the following se
tions these three problems will be analyzed and explained, summarizingthe work done in the past years to 
ure them, and anti
ipating some of the results obtainedin the 
ourse of this work. In the last se
tion some information will be given on the two-phase
ow modeling and on the related numeri
al issues. In parti
ular the work previously doneat the von Karman Institute will be brie
y summarized and the simple model used in the
omputations introdu
ed.
1



1.1 Unsteady Computations, LP property and MassMatrixConsider the following simple s
alar problem�u�t + ~� � ru = 0 ; (1.1)where ~� is a 
onstant ve
tor. We wish to solve equation (1.1) on an unstru
tured mesh(triangles in 2D, tetrahedra in 3D). The basi
 idea of the Flu
tuation Splitting s
hemes is to
ompute the integral of the adve
tive 
uxes on every 
omputational 
ell and then to distributeportions of it to every node belonging to the element. In formulas:�T = ZT ~� � ru d
 Ri += �Ti �T ; (1.2)where �Ti is the so-
alled distribution 
oeÆ
ient, Ri is the global residual for node i andthe symbol += indi
ates that the value of the residual is updated with the portion of theadve
tive 
uxes 
oming from element T . It 
an be shown [1℄ that if the distribution 
oeÆ
ientis bounded, i.e. for �T going to zero, �Ti �T also goes to zero, then the s
heme is able toreprodu
e exa
tly steady linear solutions of (1.1) and hen
e is se
ond order a

urate at steadystate. This property is usually 
alled LP property or residual property. Of 
ourse the LPproperty holds only for steady state 
omputations, in fa
t for an unsteady solution one 
anwrite �T = � ZT �u�t d
 6= 0 :As a 
onsequen
e one has that in unsteady 
omputations s
hemes that are LP at steadystate, lose this property, hen
e se
ond order of a

ura
y is lost.A di�erent way to explain the lower a

ura
y that linearity preserving s
hemes show in un-steady 
omputations 
an be found in the work done by Maerz [6℄. He started observing thatany LP s
heme 
an be written as a �nite element Petrov-Galerkin method with test fun
tiongiven by !Ti = NTi + (�Ti � 1d+ 1)
T ;where NTi is the linear Galerkin base fun
tion, d the number of spatial dimensions, and 
T is apie
e-wise 
onstant fun
tion whi
h is zero outside of element T and 1 on it. As a 
onsequen
e,for 
onsisten
y, the dis
retization of unsteady problems should in
lude a so-
alled mass matrixde�ned on ea
h element T asmTij = ZT !Ti NTj d
 = 
T3 266664 12 + �T1 � 13 14 + �T1 � 13 14 + �T1 � 1314 + �T2 � 13 12 + �T2 � 13 14 + �T2 � 1314 + �T3 � 13 14 + �T3 � 13 12 + �T3 � 13
377775 :The �nal semi-dis
rete equation for node i then be
omesXT2�iXj2T mTij dujdt + XT2�i �Ti �T = 02



where �i represents the set of elements surrounding node i. It must be noted that, sin
e themass matrix is not diagonal, the method be
omes impli
it. Although the use of the massmatrix allows to re
over se
ond order of a

ura
y in unsteady 
omputations, as shown in [6℄,monotoni
ity problems arise from the fa
t that the matrix is not positive de�ned. In [7℄ Fer-rante tried to 
ure this problem through the use of a limiting pro
edure of the Flux Corre
tedTransport (FCT ) type (see referen
e [8, 9℄), but without satisfa
tory results, at least for theEuler equations.A di�erent approa
h to solve the problem of the a

ura
y has been tried in [10, 11, 12℄. Theauthors used the RD formulation of the Lax-Wendro� s
heme 
ombined with a Flux Cor-re
ted Transport limiting pro
edure to obtain se
ond order monotone solutions of unsteadyproblems. The se
ond order of a

ura
y of the Lax-Wendro� s
heme was shown for a 2Dadve
tion equation like the (1.1) in [11℄ through the use of the 2D modi�ed equation, and in[10℄ through an equivalent equation and grid re�nement studies. Although for s
alar prob-lems the results shown 
ompare reasonably well with the ones obtained using the 
onsistentmass matrix with the FCT limiting, for the Euler equations monotoni
ity problems are stillpresent.More re
ently another te
hnique to get ba
k se
ond order of a

ura
y in unsteady 
omputa-tions has been, and is being, investigated. The basi
 idea is to maintain the LP property inunsteady problems by in
luding the time derivative in the de�nition of the 
ell residual �T(see equation (1.2)): �Ts�t = ZT ��u�t + ~� � ru� d
 :On
e this has been done, the use of a positive linearity preserving s
heme in spa
e-time willguarantee se
ond order a

urate monotone solutions also for unsteady 
omputations. This isthe idea at the basis of the spa
e-time formulation of the RD s
hemes whi
h are the basis ofthis proje
t and that will be extensively des
ribed in se
tion 2.2. Promising results obtainedusing this new formulation have been shown in [13℄ and in [14, 15℄.It is important to underline that positive linearity preserving s
hemes do exist; an overviewof their design methods 
an be found in [16℄.1.2 Sour
e terms and LP propertyConsider now the following 1D s
alar non-homogeneous adve
tion problem:�u�t + a�u�x = � : (1.3)The 1D version of a LP 
u
tuation splitting s
heme is obtained as follows:�e = Z xe2xe1 �a�u�x � �� dx Ri+= �ei �e ; (1.4)where xe1 and xe2 are the 
oordinates of the extrema i and i + 1 of segment e (see �gure 1.1).Any steady solution of (1.3) will be reprodu
ed with se
ond order of a

ura
y by any s
heme3
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Figure 1.1: 1D RD s
hemeof the form (1.4) be
ause of the linearity preservation property. A se
ond order positiveupwind s
heme, for example, is de�ned by8><>: ��ei ; �ei+1� = �a�a ; a+a �a� = min (a; 0)a+ = max (a; 0) : (1.5)What happens if only the adve
tive term is in
luded in the de�nition of the element residual�e ? For a steady problem one will have that�e = Z xe2xe1 a�u�x dx = Z xe2xe1 � dx 6= 0 ;hen
e one 
an say that s
hemes that are LP at steady state for homogeneous problems,lose this property, and hen
e the se
ond order of a

ura
y, when applied to in-homogeneousequations, if the sour
e term is not in
luded in the de�nition of the element residual.As a 
onsequen
e of the last statement one would like to extend to the multidimensional 
asethe upwind s
heme (1.5). In 2D and 3D, equation (1.3) 
an be written as�u�t + ~� � ru = � : (1.6)The extension of a linearity preserving s
heme to equation (1.6) 
an be done in the followingstraightforward way: �T = ZT �~� � ru� �� d
 Ri += �Ti �T :The problem is that most of the LP s
hemes are linear and they are not positive (see se
tion2.1), hen
e, in presen
e of strong gradients of the solution, they usually give non-monotoneresults. Se
ond order positive s
hemes do exist, but they are based on a non-linear blendingbetween a linear LP s
heme and a linear �rst order s
heme, usually the so-
alled N-s
heme(see se
tion 2.1). The N-s
heme, being linear and positive, 
annot be se
ond order a

urate,be
ause of Godunov's theorem (see referen
e [1℄). For this s
heme the distribution 
oeÆ
ient4



is not de�ned, but one 
an 
ompute dire
tly the nodal 
ontribution of an element T as follows(see se
tion 2.1): �Ni = max ~� � ~ni2 ; 0! (ui � uin) ; (1.7)where ~ni is the inward pointing normal to the edge (surfa
e in 3D) in front of node i (see�gure 2.2) and the state uin is the so-
alled in
ow state of element T . Note that the indexT has been dropped in (1.7) to simplify the notation. More details on the s
hemes will begiven in the next 
hapter, what is important to underline here is that the 
ru
ial point inthe 
onstru
tion of a positive s
heme whi
h is LP also in presen
e of sour
e terms is theextension of (1.7) to non-homogeneous equations. The way in whi
h this has been done willbe explained extensively in se
tion 3.1.1.1.3 Conservative Linearization and Quasi-Linear Equa-tionsConsider the following simple 2D s
alar non-linear 
onservation law�u�t + �f�x + �g�y = 0 ; (1.8)where the 
uxes f and g depend in general on the unknown u. Equation (1.8) 
an be solvedin a fully 
onservative way with a LP s
heme 
omputing the residual in the following way:�T = I�T ~F � ~n dl Ri+= �Ti �T ; (1.9)where �T is the boundary of the generi
 triangle T of the grid, ~F = (f; g) and ~n is theoutward pointing unit normal to �T . Note that1. The integral in (1.9) 
an be 
omputed very a

urately by 
hoosing the appropriatequadrature rule.2. The distribution 
oeÆ
ients �Ti depend usually on the ja
obiankTi = �f�unix + �g�vniy ; (1.10)where ~ni � (nix; niy) is the inward pointing ve
tor normal to the edge in front of node i.It is important to underline that kTi for a non-linear equation is in general a fun
tion ofthe unknown u and that the s
heme de�ned by (1.9) remains 
onservative, independentlyon how kTi (u) is 
omputed, as long as the distribution 
oeÆ
ients respe
t the 
ondition:Xj2T �Tj = 1 :The s
alar kTi is usually 
alled in
ow parameter.5



The problem with s
heme (1.9) is that it is linear and hen
e, being LP, it 
annot be positive.So non-monotone solutions are obtained in presen
e of dis
ontinuities. As already mentionedspeaking about the dis
retization of the sour
e terms, the 
onstru
tion of a se
ond orders
heme whi
h is also monotone is based on a non linear blending between a se
ond orderlinear LP s
heme, whi
h is non-positive, with a �rst order positive s
heme. The �rst orders
heme usually used in the 
omputations is an extension of the N-s
heme (equation (1.7))where the produ
t ~� � ~ni is substituted by the parameter kTi of equation (1.10) evaluated insome averaged state. The problem is that the s
heme obtained in this way is 
onservativeprovided that the 
ell residual is 
omputed using the quasi-linear form of equation (1.8), asfollows �T =Xj2T k̂Tj uj ;where k̂Tj indi
ates the in
ow parameter evaluated in an average state ûT su
h that the identityXj2T k̂Tj uj = I ~F � ~n dl ;holds at a dis
rete level. For example for the invis
id Burger's equation one has (f; g) =(u22 ; u), and, if linear variation of the unknown over ea
h element is assumed, a 
onservativeN-s
heme is obtained if all the ja
obians are evaluated in the average state:ûT = 13 Xv=1;3 uv :When su
h a 
onservative linearization exists, it is usually 
alled a Roe linearization. For theEuler equations a Roe linearization is obtained by 
omputing the arithmeti
 average of thevalues at the verti
es of an element T of the Roe parameter Z given byZ = p� [1; u; v;H℄t ;where � is the 
uid density, u and v are the x and y velo
ity 
omponents and H is the totalenthalpy. Sin
e not all the systems of equations admit su
h a linearization one should ideallyuse always a 
ontour integral for the evaluation of the 
ux balan
e of ea
h element (equation(1.9)) in order to be 
onservative. An the other hand, the ne
essity of using the N-s
heme tobuild a non-linear positive and LP blended s
heme for
es to use the quasi-linear form of theequations. In the 
ourse of this proje
t a new te
hnique has been developed whi
h allows torewrite the N-s
heme in a way 
ompatible with the evaluation of the 
ux balan
e through a
ontour integral. In se
tion 3.2.1 details about this new formulation of the s
hemes will begiven together with some 
onsequen
es and future developments.1.4 Physi
al and Numeri
al Modeling of Two-Phase FlowTwo-Phase 
ows are en
ountered in wide variety of engineering appli
ations ranging frompower generation and 
onversion to biologi
al 
ows. The understanding of the physi
s of6



two-phase 
ows and the 
apability of predi
ting the performan
es of multi-phase systems are
ru
ial to 
ontrol and to design them. In the re
ent years, the use of the so-
alled Two-Fluid models to analyze two-phase 
ows is be
oming more and more 
ommon among thes
ienti�
 
ommunity. The reason for this is that these models are obtained dire
tly from thesingle phase Navier-Stokes equations through an averaging pro
ess, hen
e their mathemati
alderivation is exa
t. Furthermore, they are able to handle real non-equilibrium e�e
ts sin
ethe me
hani
al and thermal variables of ea
h phase are des
ribed as distin
t �elds. The mostgeneral formulation of the Two-Fluid equations for a liquid-gas system is the following [17℄:Mass Conservation � (�k�k)�t +r � (�k�k~uk) = �Mk ; k = l; gMomentum Conservation� (�k�k~uk)�t +r � (�k�k~uk 
 ~uk) + �krpk = r � (�k��� k) + ~F extk + ~F intk + �Mk ~uintk ; k = l; gEnergy Conservation� (�k�kEk)�t + pk ��k�t +r � (�k�k~ukHk) = r � (�k��� k � ~uk)+~F extk � ~uk + ~F intk � ~uk +r � (�kqqqk) + �Qk + �Mk �hintk + ~u2k2 � ; k = l; gwhere �k is the void fra
tion or volume fra
tion of phase k, �k its density, ~uk its velo
ity, pkits pressure, Ek and Hk its total energy and enthalpy, ��� k its stress tensor , qqqk the heat 
uxand ~F extk an external for
e a
ting on the phase, usually the gravity for
e. The terms �Mk ,~F intk , �Qk , ~uintk and hintk represent the interfa
e ex
hange of mass, momentum and heat betweenthe phases, the interfa
e velo
ity and enthalpy of phase k. All these terms 
ome from theaveraging pro
ess of the equations and must be somehow modeled. Unfortunately no uniquemodel exists and one usually resorts to some engineering assumptions that simplify the systemgiving a 
omputable model for the simulations. Moreover the use of high resolution upwinds
hemes to dis
retize the Two-Fluid equations turns out to be often very diÆ
ult and usuallyan ad-ho
 re-formulation of the numeri
al methods is needed [18℄. Here the work previouslydone at the von Karman Institute [5, 19℄ will be followed. In parti
ular, the model used inthe 
omputations is the simple single pressure isentropi
-me
hani
al equilibrium model usedin [5℄. In this model the 
ow of the two phases is assumed to be isentropi
 and the pressureof the two phases to be equal, hen
e no energy equations are solved. A strong me
hani
al
oupling between the phases is assumed, leading to the hypothesis ~ul = ~ug = ~u. Moreoverthe model is invis
id and of 
ourse no phase 
hange is 
onsidered1. The �nal form of theequations is (see 
hapter 5 and appendix E for more details):Mass Conservation � (�k�k)�t +r � (�k�k~u) = 0 ; k = l; g1It would require the modeling of the thermal evolution of ea
h phase and hen
e the hypothesis of isentropi

ow should be dropped 7



Mixture Momentum Conservation� (�~u)�t +r � (�~u
 ~u) +rp = ~F extwhere � = �g�g+�l�l is the so-
alled mixture density. Note that be
ause of the hypothesis ofequal velo
ities, only the mixture momentum equation needs to be solved. Di�erently frommost of the Two-Fluid models (see [5, 18, 19℄) this model is always hyperboli
 and well posedin the limiting single-phase 
ases. This will allow to perform simulations involving well knownproblems with strong phase separation. Note also that, although the system of equation iswritten in a strong 
onservative form, no Roe linearization exists for it. This is the typi
al
ase in whi
h the new 
onservative formulation developed here should be used, but, unfor-tunately, be
ause of the limited time, the spa
e-time approa
h 
ould be applied only to thesame non-
onservative formulation used in [5℄. Note also that the two-phase 
ow simulationsperformed here are to be intended as simple tests for the new theoreti
al developments andnot as real appli
ations.The outline of the report is the following: in 
hapter 2 the steady RD s
hemes will bedes
ribed, re
alling where ne
essary details regarding their implementation for the solutionof the Euler equations. In the same 
hapter the new spa
e-time approa
h will be illustratedwith parti
ular attention to te
hni
al problems related to the spa
e-time meshing. Chapter 3will be devoted to the new theoreti
al developments regarding the dis
retization of the sour
eterms and the treatment of 
onservation. Boundary 
onditions and time integration will bedes
ribed in 
hapter 4 while 
hapter 5 will 
ontain the results obtained on well do
umentedsteady and unsteady test-
ases. The report will be 
losed by some 
on
lusions and futuredevelopments.

8



Chapter 2Residual Distribution S
hemesThis 
hapter is devoted to the illustration of the Residual Distribution S
hemes. In a �rstpart the steady s
hemes will be re
alled together with the most important properties that
hara
terize them. Referen
es will be given for a more detailed des
ription. In the se
ondpart of the 
hapter the spa
e-time approa
h will be analyzed with some emphasis on thespa
e-time meshing issues.2.1 RD S
hemes for Steady Hyperboli
 Problems2.1.1 RD S
hemes for S
alar Adve
tionConsider a simple homogeneous s
alar adve
tion equation�u�t + ~� � ru = 0 ;dis
retize the 2D or 3D physi
al domain 
 with an unstru
tured mesh 
omposed of triangles(resp. tetrahedra) and assume that the unknown u varies linearly in spa
e, like in the standardlinear �nite element method. In formulasu =Xi2
 Niui ;where ui indi
ates the nodal value of the unknown and Ni is the linear tent-shaped interpo-lation fun
tion (see �gure 2.1).
 i

1

N i

Figure 2.1: Tent-shaped interpolation fun
tion Ni9



The 
u
tuation or residual of an element T is de�ned as the integral of the adve
tive
uxes, namely �T = ZT ~� � ru d
T = � ZT �u�t d
T : (2.1)De�ne now the so-
alled in
ow parameter of node j in 
ell T as the following quantity:kTj = 1d~� � ~nTj ; (2.2)where d is the number of spatial dimensions and ~nTj is the inward pointing ve
tor, perpendi
-ular to the edge (fa
e in 3D) in front of node j and s
aled by its length (surfa
e in 3D), asillustrated in �gure 2.2.
3

1

2

n
n1

2

n3

n
1

2

3

4

n1

3

Figure 2.2: 2D and 3D grid geometryIt 
an be easily shown that the 
u
tuation �T 
an be 
omputed as the following weightedaverage of the element nodal values �T =Xj2T kTj uj :The idea at the basis of the residual distribution s
hemes is that the evolution of the nodalvalues of the unknown is determined by a fra
tion of the 
u
tuation of ea
h element 
ontainingthat spe
i�
 node. In parti
ular, the global nodal residual is obtained by assembling the
ontribution 
oming from all the elements surrounding the node. In formulas:Ri = XT2�i �Ti = XT2�i �Ti �T = XT2�iXj2T �Ti kTj uj ;being �i the set of elements 
ontaining node i and �Ti the so-
alled distribution 
oeÆ
ient.On
e the nodal residual is assembled, the solution 
an be mar
hed forward in time until
onvergen
e to steady state is rea
hed. A very simple update formula is obtained if expli
itforward Euler time integration is used:un+1i = uni � �tSi Ri ; (2.3)10
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Figure 2.3: Median Dual Cell in 2Dwhere Si is the area of the so-
alled median dual 
ell of node i, obtained joining the gravity
enters of all the elements surrounding node i with the midpoints of the edges meeting at thenode, as depi
ted in �gure 2.3 for the 2D 
ase. Note that:1. For 
onsisten
y and 
onservation the element-to-node residual 
ontributions must re-spe
t the 
onstraint Xj2T �Tj = �T ! Xj2T �Tj = 1 : (2.4)2. The nodal residual 
an be 
omputed using the very 
ompa
t sten
il of nearest neighbors,whi
h allows an easy impli
it and parallel implementation.The design of the s
hemes involves the 
hoi
e of the distribution 
oeÆ
ients or the de�nitionof the element-to-node 
ontribution �Tj . The most important design prin
iples are based onthe following properties:Multidimensional Upwinding (MU) A multidimensional upwind s
heme does not sendany portion of the element 
u
tuation to upstream nodes. In formulas:kTj < 0 ! �Tj = 0 ; �Tj = 0 : (2.5)Positivity (P) The positivity property ensures that monotone solutions are always obtained.For a positive s
heme the new value of the unknown a 
an be written as a 
onvex sumof its old values in the surrounding nodes, i.e.un+1i =X 
ijunj ; 
ij > 0 : (2.6)For the simple update formula (2.3) 
ondition (2.6) be
omes (see referen
e [1℄):�Ti kTj < 0 ; �t < SiPT2�i �Ti kTi :
11



Linearity Preservation (LP) A linearity preserving s
heme is a s
heme whose distribution
oeÆ
ients are bounded. In parti
ular for a linearity preserving s
heme one has thatlim�T!0�Tj = lim�T!0 �Tj �T = 0 :It 
an be shown [1℄ that a linearity preserving s
heme is able to reprodu
e exa
tlysteady linear solutions, hen
e the LP property is equivalent to se
ond order of a

ura
yat steady state.A more detailed des
ription of the properties whi
h 
an be used for the design of the s
hemes
an be found in [1℄. In the same referen
e the proof of the extension of Godunov's theoremto the 
u
tuation splitting s
hemes 
an be found. The above-mentioned theorem states thatlinear s
hemes 
annot be positive and linearity preserving at the same time. Unfortunately,most of the basi
 s
hemes are linear and hen
e, to have a se
ond order positive s
heme,some non-linearity must be introdu
ed. Here we will not follow [1℄ where a review of somete
hniques to obtain non-linear se
ond order s
hemes is made, but we will more 
losely followthe work reported in [3, 16, 20℄.In parti
ular a non-linear s
heme 
ould be de�ned from the following blending:��Ti �P;LP = (1� �) ��Ti �LP + � ��Ti �P ; (2.7)where the blending 
oeÆ
ient � should be de�ned in su
h a way that in 
orresponden
e ofsmooth solutions, where �T � 0, one has � = 0, while in 
orresponden
e of strong gradients ordis
ontinuities, one has � = 1. In this way the LP property will be preserved by the blending,although in presen
e of sharp variations of the solution monotone results are guaranteed bythe stabilizing 
ontribution of the P s
heme. Information and details about possible 
hoi
esof the blending fa
tor and their relation with the work made in [1℄ 
an be found in [20℄, whilein [3, 16℄ a review of the design prin
iples of blended s
hemes for the solution of the Eulerequations is made. In the 
ourse of this proje
t the following blending fa
tor has been usedin all the 
omputations: � = j�T jPj2T j ��Tj �P j : (2.8)It 
an be easily seen from de�nition (2.8) that at 
onvergen
e, whenever one has that �T = 0,the blended s
heme de�ned by (2.7) be
omes a
tually the se
ond order LP s
heme. On theother hand, although there is no formal proof of the positivity of su
h a blended s
heme,numeri
al eviden
e indi
ates that this property a
tually holds.De�nition of the S
hemesNow that the basi
 ideas behind the 
u
tuation splitting s
hemes have been given, it remainsto spe
ify how the element residual is a
tually distributed. The number of s
hemes that havebeen designed and tested in the past years is relatively large. For an overview one 
an referto [1℄. Here the following s
hemes have been used1:1LP stands for Linearity Preserving, P stands for Positive,MU stands for Multidimensional Upwind andL stands for Linear 12



LDA s
heme (LP, L, MU) The LDA s
heme is de�ned by�LDAi = �LDAi �T ; �LDAi = k+iPj2T k+j ;with k+i = max(kTi ; 0). Note that the index T has been dropped where non-ne
essary,to simplify the notation.N s
heme (P, L, MU) The N s
heme is de�ned by�Ni = k+i �ui � uTin� ; uin = Pj2T k�j ujPj2T k�j ;with k�i = min(kTi ; 0). The state uTin is the so-
alled in
ow state.B s
heme (P, LP, MU) The blended s
heme is de�ned by�Bi = (1� �)�LDAi + ��Ni ; � = j�T jPj2T j�Nj j :A geometri
al interpretation of the s
hemes is available in [1, 2℄, while the proof of theirproperties 
an be found in [1, 20℄.Remarks1. The s
hemes de�ned above of 
ourse are applied also to non-linear equations where either~� = ~� (u) or ~� = ru ~F , beingru = (~1x;~1y;~1z) ��u , and ~F is a ve
tor of 
onservative 
uxes.In the last 
ase, in parti
ular, the use of the N s
heme is possible only if a linearizationof the ja
obians su
h thatI�T ~F � ~n dl = ZT r � ~F d
 = 
T[ru ~F � ru ;is available. Note that in the last equation ru is 
onstant, sin
e u is assumed to belinear, and ~n is the outward pointing unit normal to the boundary of T . The reason ofthis is that the distribution 
oeÆ
ient of the N s
heme 
annot be expli
itly de�ned andhen
e a truly 
onservative formulation of the type�Ti = �Ti I�T ~F � ~n dl
annot be used.2. The positivity of the N s
heme (and hen
e of the B s
heme) is obtained, in 
ase of atime mar
hing pro
edure like (2.3), under the time-step 
onstraint:�t < SiPT2�i k+i : (2.9)Of 
ourse this is not true anymore if an impli
it time integration strategy is used2.2In any 
ase, the steady state solution u� satis�es minj2�i u�j < u�i < maxj2�i u�j13



2.1.2 Matrix S
hemes for Hyperboli
 SystemsConsider the hyperboli
 system �U�t + dXi=1 Ai �U�xi ; (2.10)where U is the ve
tor of the unknown, d is the number of spa
e dimensions and the Ai's are
onstant matri
es su
h that Pdi=1Ai�i is diagonalizable with real eigenvalues and real andindependent eigenve
tors for every ~� � (�1; � � � ; �d) in Rd. In order to solve system (2.10)dis
retize the spa
e domain 
 with an unstru
tured grid and assume that the ve
tor U varieslinearly in spa
e, namely U =Xi2
 NiUi ; (2.11)where Ui represents the value of the unknown at node i and the Ni's are the Galerkin tentshaped linear test fun
tion (see �gure 2.1). De�ne the residual of an element T (triangle in2D and tetrahedron in 3D) as�T = ZT dXi=1 Ai �U�xi d
 = � ZT �U�t d
 :For the hypotheses made on the matri
es Ai, it is possible to de�ne the following multidimen-sional generalizations of the in
ow parameters (2.2) and of their sign:KTj = 1d dXi=1 Ainji ; K�j = Rj��j Lj ; (2.12)being ~nj the ve
tor normal to the edge (fa
e in 3D) in front of node j and s
aled by itslength (resp. surfa
e), Rj and Lj the matri
es of the right and left eigenve
tors of KTj ,�+ = diagk=1;��� ;d [max (�k; 0)℄ and �� = diagk=1;��� ;d [min (�k; 0)℄ with �k k-th eigenvalue ofKTj . Thanks to the hypothesis of linear variation of U , it 
an be easily shown that the 
ellresidual 
an be 
omputed as �T =Xj2T KTj Uj : (2.13)Exa
tly like in the s
alar 
ase, the global nodal residual is obtained assembling portions ofthe 
u
tuation of the elements surrounding it. In formulas:�Ti = BTi �T ; Ri = XT2�iBTi �T = XT2�iXj2T BTi KTj Uj : (2.14)The matrix BTi is 
alled the distribution matrix, and the 
lass of s
hemes de�ned by (2.14)are usually referred to as the matrix s
hemes.On
e the nodal residual has been assembled, the solution 
an be mar
hed forward in timetoward the steady state. If expli
it forward Euler time integration is used, one has:Un+1i = Uni � �tSi Ri = Un � �tSi XT2�iXj2T BTi KTj Uj : (2.15)14



As in the s
alar 
ase, the properties of the method are fully determined by the distribution
riterion. For an optimal design of the s
hemes is then of primary importan
e to be able togeneralize properties of the s
alar distribution to the system 
ase. The set of 
riteria on whi
hthe 
hoi
e of the distribution 
riteria is based are the following:Multidimensional Upwinding (MU) In the 
ase of hyperboli
 systems theMU propertymust be intended in a 
hara
teristi
 sense. The idea is that if the eigenvalue �ik of KTiis negative, then the k-th 
hara
teristi
 �eld of node i is not updated. Mathemati
allythis implies that the nodal residual must be lo
ally proportional to the positive part ofKTi , namely �Ti = BTi �T / K+i :Positivity (P) Following [2℄, in order to generalize this property to the matrix s
hemes, theupdate formula (2.15) is rewritten asUn+1i � Uni�t Si +Xm Clm(Unl � Unm) = 0 :The s
heme will be said positive if all the matri
es Clm are non-negative, i.e. theireigenvalues are all positive or zero.Linearity Preservation (LP) Simply as in the s
alar 
ase, a s
heme is said to be linearitypreserving if lim�T!0�Tj = lim�T!0BTj �T = 0 :Invarian
e for Similarity Transformations (IST ) This is a very important property forthe design of the s
hemes. Consider a set of variables W , de�ned by�W = �W�U �U ;the invarian
e property requires that the following relation between the residual ex-pressed in the old set of variables and the one expressed in the new one:RUi = �U�W RWi :From the last equation one dedu
es for the distribution matri
es [2℄BWi = �W�U BUi �U�W ; BUi = �U�W BWi �W�U :The importan
e of this property is that it allows to 
ompute the residual in the set ofvariables more 
onvenient3 and then transform it to the original variables, being surethat the �nal result will be exa
tly the as as if the residual were 
omputed dire
tly inthe original set of variables.3For example the one that symmetrizes the matri
es of the system or redu
es their entries15



Like in the s
alar 
ase, no linear s
hemes that have both the LP property and the P propertyexist. In this work, a se
ond order positive s
heme has been used, whi
h is de�ned by thefollowing non-linear blending of a linear positive s
heme and a linear linearity preservings
heme: ��Ti �P;LP = (I � �) ��Ti �LP +� ��Ti �P ; �ij = Æij ���[�T ℄j���Pk2T ����h(�Ti )Pij����Also for this s
heme, like for the one de�ned by (2.7) and (2.8), no analyti
al proof of posi-tivity is available. Strong numeri
al eviden
e is available, though, that it produ
es monotonesolutions also in presen
e of strong dis
ontinuities.A di�erent 
lass of blended s
hemes have been re
ently developed by Abgrall for the solu-tion of the Euler equations, that are designed using a more analyti
al approa
h. The readerinterested 
an refer to referen
e [16℄.De�nition of the S
hemesIn this proje
t, the s
hemes used in the 
omputations are a generalization of the s
alar s
hemespresented in the previous se
tion. For a more extensive overview on the matrix s
hemes, one
an refer to [1, 2℄.Matrix LDA s
heme (LP, L, IST , MU) The matrix LDA s
heme is a formal general-ization of its s
alar 
ounterpart. Its distribution matrix is given by:BLDAi = K+i  Xj2T K+j !�1 : (2.16)Matrix N s
heme (P, L, IST , MU) Like the matrix LDA s
heme, the matrix N s
hemeis obtained through a formal extension of its s
alar 
ounterpart. Its element-to-node
ontribution is de�ned as:�Ni = K+i (Ui � Uin) ; Uin =  Xj2T K�j !�1Xj2T K�j Uj (2.17)Matrix B s
heme (P, LP, IST , MU) The matrix blended s
heme used in the 
ourse ofthis proje
t is de�ned by:�Bi = (I ��)�LDAi +��Ni ; �ij = Æij ���[�T ℄j���Pk2T ���[�Ni ℄j���For a more detailed des
ription of the properties of the matrix s
hemes and for the proof ofsome of their properties, the interested reader 
an refer to [1, 2, 3, 16℄.16



Remarks1. Of 
ourse the matrix s
hemes 
an be used to solve a system of non-linear equations. Inparti
ular they are used to solve the system of the Euler equations whi
h, in 3D, 
anbe written in the form �U�t + �F (U)�x + �G (U)�y + �H (U)�z = 0 ; (2.18)where U is the ve
tor of the 
onserved variables U = [�; �u; �v; �w; �E℄t4 and the ve
tor~F = (F;G;H) represents the 
onservative 
uxes. Although for the LDA s
heme system(2.18) 
an be solved fully 
onservatively 
omputing the 
ell residual as�T = I�T ~F � ~n dl ; (2.19)one usually rewrites the equations in a quasi-linear form, sin
e the use of the N s
heme,and hen
e of the B s
heme, obliges to do that. In parti
ular, the 
ell 
u
tuation is still
omputed using (2.13) where nowKTi = bKTi = �F (bU)�U nix + �G(bU )�U niy + �H(bU )�U niz ;where, for 
onservation, the average state bU has to be the Roe average obtained throughthe 
omputation of the 
onserved variables in 
orresponden
e of the arithmeti
 averageof the nodal values of Roe's parameter ve
torZ = p� [1; u; v; w;H℄t : (2.20)In the framework of residual distribution s
hemes, this linearization is known as theStruijs-De
onin
k-Roe linearization. For the proof of the fa
t that the relationI�T ~F � ~n dl =Xj2T bKTj Uja
tually holds at the dis
rete level, one 
an refer to [1, 2, 3, 21℄. Here it is of primaryimportan
e to underline that not for all the system of 
onservation laws a Roe-typelinearization exist. As a 
onsequen
e, the possibility to 
ompute �T using (2.19), evenin 
onjun
tion with the N s
heme, turns out to be very appealing.2. For the matrix N s
heme, of 
ourse, one 
annot write down dire
tly the positivity 
ondi-tion, but has to take into a

ount the 
hara
teristi
 formulation of the MultidimensionalUpwinding. In parti
ular, by doing it, one ends up with the time-step restri
tion5�t < SiPT2�i maxk=1;��� ;Nequations(�+k )T ;where Nequations is the number of equations, and hen
e of eigenvalues, of the system.4Density, x-momentum, y-momentum, z-momentum, Total Energy5Of 
ourse not if an impli
it time-integration strategy is used17



3. From (2.16) and (2.17) it 
an be seen that to use the matrix LDA s
heme and the matrixN s
heme one needs to perform the matrix inversion (Pj2T K�j )�1. In [2℄ the proof ofthe existen
e of these inverse matri
es is given for any hyperboli
 system. Some troublein their 
omputation a
tually arises for stagnant 
ows where, in fa
t, the matri
esPj2T K�j are singular. Although Abgrall has proven that the RD s
hemes remainwell-de�ned in these degenerate 
ases, spe
ial 
are is required to treat the singularity.The informations given on the RD s
hemes as applied to steady problems, far from being
omplete, are only intended to serve as a basis for the des
ription of the spa
e-time s
hemesof next se
tion. Additional notions on the general s
hemes 
an be found in the referen
esgiven.
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2.2 Spa
e-Time RD S
hemesIn this se
ond part of the 
hapter the new spa
e-time RD approa
h will be des
ribed. Duringthe last year, two di�erent spa
e-time formulations of the 
u
tuation splitting s
hemes havebeen developed. Although based on the very same idea, the two approa
hes di�er in theway the extension of the steady s
hemes to the spa
e-time domain is obtained. In parti
ular,while the group of the von Karman Institute [14, 15℄ has fo
used its attention to the use oflinear spa
e-time elements, Abgrall and 
o-workers [13℄ make use of prismati
 elements. Theapproa
h used here is the same of [14, 15℄.2.2.1 Unsteady S
alar Conservation LawsConsider a s
alar hyperboli
 
onservation law in d spatial dimensions over the spatial andtemporal domain 
 = 
S � [0; tmax℄:�u�t +r~G = 0 ; 8 (~x; t) 2 
 ; (2.21)where u(~x; t) is the 
onserved quantity and ~G(u) the 
orresponding 
ux fun
tion. De�nethe ja
obian of the 
ux fun
tion ~� = � ~G=�u. Equation (2.21) 
an be reformulated in thefollowing spa
e-time approa
h: ~r � ~F = 0 ; ��� � ~ru = 0 ; (2.22)where ~r denotes the spa
e-time operator ~r = (r; �=�t), ~F is the spa
e-time 
ux fun
tion~F = ~G+ut̂, being t̂ the versor of the time 
oordinate dire
tion, and ��� = ~�+ t̂ is the spa
e-timeja
obian of ~F .The basi
 idea behind the spa
e-time RD approa
h is to solve equation (2.22) using thestandard 
u
tuation splitting s
hemes, des
ribed in the �rst part of this 
hapter, on a dis-
retization of the spa
e-time domain 
 made of triangles and tetrahedra in one and two spatialdimensions respe
tively. In parti
ular the dis
retization pro
edure will be exa
tly the sameas the one des
ribed for the solution of steady problems, ex
ept for the fa
t that now the
u
tuation (2.1) will be 
omputed with an integral over a spa
e-time element and the in
owparameter (2.2) will be 
omputed askTi = 1d+ 1��� � ~nTi = 1d+ 1 �~� � ~nSi + nti� ; (2.23)where d is the number of spatial dimensions, ~nSi is the ve
tor 
ontaining the spatial 
oordinatesof the ve
tor normal to the boundary fa
e (or edge) whi
h stands in front of node i in the spa
e-time element T and s
aled by its surfa
e (rep. length), while nti is the temporal 
omponentof this ve
tor that, for the spa
e-time meshes 
onsidered in this proje
t (see next subse
tionon the spa
e-time geometry), is equal to half of the length of the initial 1D segment if d = 1and one third of the surfa
e of the base triangle in the initial spatial grid, if d = 2.Note that if a standard 
ontinuous spa
e-time �nite element method was to be used, this wouldlead to a 
oupling of all the points in the spa
e-time grid, whi
h would be very expensive. Thisis the reason why most of the �nite element methods are based on a 
ontinuous representation19



in spa
e of the variable, but dis
ontinuous in time. The strength of the spa
e-time RDapproa
h lays in the fa
t that the MU property allows to de
ouple the spa
e-time solutionon temporal slabs of thi
kness �t, maintaining a 
ontinuous variable representation in time.Hen
e, advan
ing of one time-step �t, is equivalent to solve the steady problem (2.22) on thespa
e-time sli
e 
S � �t. Note that if d is the number of spatial dimensions, the s
hemeswill be applied to a domain with dimension d + 1. It turns out that if the spa
e-time grid isbuilt in a proper way, the multidimensional upwinding guarantees the temporal de
ouplingof the spa
e-time slabs automati
ally. As a 
onsequen
e, the 
hoi
e of the grid geometry is offundamental importan
e. The next subse
tion will be fully devoted to the des
ription of thetype of spa
e-time grids used for the 
omputations within this proje
t. More details 
an befound in [14, 15, 22℄Spa
e-Time Grid GeometryThe grids used in this proje
t 
ontain three levels of nodes and two levels of elements in thetime dire
tion, for a reason that will be 
lear after the analysis that follows.Denote with tn, tn+1=2 and tn+1 the temporal 
oordinates of the nodes in the �rst, se
ondand third layer respe
tively. For 
learness they will be referred to as the past, intermediateand future nodes. Denote with �t1 = tn+1=2 � tn the time di�eren
e between intermediateand past nodes and with �t2 = tn+1� tn the time di�eren
e between future and intermediatenodes. The global time-step is 
ontrolled by the parameter Q de�ned byQ = �t2�t1 : (2.24)Spa
e-Time Grid for 1D Problems Given an initial dis
retization of the 1D spa
e do-main, the type of spa
e-time grids that 
an be built are shown in �gure 2.4. It 
an beseen that both 
on�guration have some nodes in the intermediate level whi
h are stag-gered in spa
e, in parti
ular they are lo
ated in 
orresponden
e of the midpoints of thesegments in the past level. Note also that in both 
ases the se
ond layer is obtained justby mirroring the �rst one and stret
hing it a

ording to the fa
tor Q. The 
on�gurationon the left is of 
ourse 
omputationally more 
onvenient and, in fa
t, is the one a
tuallyused in the simulations. The interest in the se
ond 
on�guration 
omes from the fa
tthat it 
an be easily generalized to the 
ase of two spatial dimensions. In order to derivethe 
ondition for the de
oupling of the spa
e-time slab, one 
an fo
us only on the �rstlayer6. In parti
ular note that both 
on�gurations have a similar topology, in parti
ularthey both have two types of triangles: one with two nodes in the past layer and one inthe intermediate and the other with two intermediate nodes and one past node. Fromnow on the dis
ussion will fo
us on the grid 
on�guration on the left in �gure 2.4, but,given the similar topology of the two 
on�gurations, the same analysis 
an be appliedto 
on�guration on the right in the same pi
ture. Denote with E1 the �rst type oftriangle and with E2 the se
ond one as indi
ated in �gure 2.5. In order to de
ouplethe solution, allowing time mar
hing, no residual must be sent to the past. Using the6The de
oupling of the past level from the intermediate one already guarantees the preservation of thepast solution, allowing a true time-mar
hing solution pro
edure20
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Figure 2.4: Spa
e-time mesh in 1D. Nodes at levels n, n+1=2 and n+1 are labeled by bla
k,gray and empty 
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les, respe
tively.
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Figure 2.5: Basi
 triangular elements in the �rst layerMU property, we 
an obtain this by 
hoosing �t1 su
h that the upwind parameter kTi(equation (2.2)) is negative for all the past nodes. In order to do this, it is useful tore
all that in one spatial dimension the quasi-linear form of equation (2.22) redu
es to(�; 1) ���u�x; �u�t� = 0 ; � = �G�u :With the lo
al numbering of �gure 2.5, on has that for the triangle of type E2kE21 = ��x2 < 0 ;for the only past node 1. Hen
e triangles of this type impose no 
onstraints on the
hoi
e of �t1. On the other hand for the E1 triangle one has8<: ~n1 = ���t1; �x2 � ! kE11 = ���t12 � �x4~n2 = ��t1; �x2 � ! kE12 = ��t12 � �x4~n3 = �0; �x2 � ! kE13 = �x2 ;hen
e to be sure that both kE11 and kE12 are negative, one has to respe
t the 
onstraint:��t1j�j�x �E1 = CFL1 � 12 : (2.25)21



Condition (2.25) is 
alled the lo
al past shield (LPS) 
ondition, sin
e it guarantees thatpast nodes are prote
ted from any information 
oming from the future.The global time-step �t1 is 
omputed as the minimum of the lo
al ones, i.e.�t1 = minE2E1CFL1��x2j�j�E :Obviously the intermediate nodes 
an be 
oupled with both past and future nodes,hen
e there are no restri
tions on �t2 in the se
ond layer. This enables to mar
h intime with arbitrarily large time-steps, keeping un
onditional stability if a positive RDs
heme is used. The global time-step 
an be written in fa
t as�t = �t1 +�t2 = (1 +Q)�t1 = (1 +Q) minE2E1CFL1��x2j�j�E ;while for the global CFL number one gets:CFL = j�j�t�x = 1 +Q2 CFL1 : (2.26)From equation (2.26) and from the freedom in the 
hoi
e of the stret
hing parameterQ, one dedu
es that the two layers spa
e-time s
hemes allow to have very large CFLnumbers, whi
h 
an be very useful, espe
ially if the spatial grid 
ontains highly re�nedregions.
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Figure 2.6: Spa
e-time mesh in 2D. Nodes at levels n,n + 1=2 and n + 1 are respe
tivelylabeled by bla
k, gray and empty 
ir
les. Squares indi
ate intermediate nodes positioned inthe 
entroid of the triangles of the level n spatial mesh.Spa
e-Time Grid for 2D Problems As in 1D, starting from a 2D spatial grid, di�erent
on�gurations are possible. The one used here is probably the simplest, although alsothe more expensive. A similar, but more 
onvenient, approa
h 
an be found in [22℄.The grid used is a generalization of the right 
on�guration of �gure 2.4. A global view22



of the nodes 
on�guration 
an be seen in �gure 2.6. As 
an be seen from this pi
ture,every node in the initial spatial mesh is also present in the intermediate level wherenew nodes are added in 
orresponden
e of the 
entroids of the triangles of the initialgrid. Also in the 2D 
ase the se
ond layer is obtained just by mirroring the �rst oneand stret
hing it by the stret
hing fa
tor Q (2.24). The �rst layer is 
omposed by threetypes of elements: the �rst has three past nodes and one intermediate node, the se
ondhas two past nodes and two intermediate ones and the third has one node in the pastlevel and three in the intermediate level. The three element types are highlighted in�gure 2.7, where they have been labeled as E1, E2 and E3 respe
tively.
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Figure 2.7: Basi
 tetrahedra used to build the �rst layer of the spa
e-time mesh in two spa
edimensions, and s
hemati
 view of the mesh.The LPS 
ondition (2.25) 
an be derived for this 
ase following exa
tly the same pro-
edure of the 1D 
ase. For the mesh in �gure 2.7 the element E3 gives no 
onstraintson �t1, while two di�erent 
onditions are obtained for elements E1 and E2. Using thenotation of �gure 2.8 one has (see [14℄):maxj=1;2;3�k+;E1j �t1ntj � < 1maxj=1;2�k+;E2j �t1ntj � < 1 ; (2.27)where ntj is the temporal 
omponent of the ve
tor normal to the fa
e in front of node jand s
aled by its surfa
e, k+;E1j = max(0; kE1j ), k+;E1j = max(0; kE1j ), kE1j = ~� � ~n123j =2 isthe spatial in
ow parameter 
orresponding to the base triangle7 and kE2j is the spatial7 ~n123j is the normal to the base edge in front of node j and s
aled by its length, ~� is the ja
obian � ~G=�u(equation (2.21)) 23



in
ow parameter of node j in the triangle �j34 obtained proje
ting nodes 3 and 4 onthe past level and joining them to node j8.Conditions (2.27) have to be respe
ted simultaneously in all the tetrahedra of type E1and E2, hen
e �t1 is �nally 
omputed as�t1 = CFL1min264minE2E10B� 1maxj=1;2;3 k+;E1jntj 1CA ; minE2E20B� 1maxj=1;2 k+;E2jntj 1CA375 ;with CFL1 < 1. The global time-step is then 
omputed as �t = (1+Q)�t1 and, like inthe 1D 
ase, from the freedom in the 
hoi
e of the Q fa
tor, one dedu
es that arbitrarilylarge CFL numbers 
an be taken retaining un
onditional stability if a positive s
hemeis used.
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xFigure 2.8: Elementary tetrahedra of types E1 (left) and E2 (right)On
e the spa
e-time grid has been built, equation (2.22) is solved using one of the s
hemesdes
ribed in se
tion 2.1. In parti
ular, the solution of the algebrai
 equations obtained apply-ing the s
hemes to one spa
e-time slab is obtained mar
hing in a pseudo-time � exa
tly likethe solution of steady problems is usually obtained mar
hing in time. This means that, on
ethe spa
e-time residual has been assembled, the solution will be updated until 
onvergen
ein pseudo-time is rea
hed for the present spa
e-time slab. For example, using forward Eulertime integration, one ends with u�+1i = u�i � ��Si Ri ;where Si is the surfa
e of the spa
e-time median dual 
ell of node i and Ri is a spa
e-timeresidual.8kE2j = ~� � ~nj34j =2, with ~nj34j normal to the proje
ted edge �34 in the past plane and pointing toward nodej. ~� is the same as in the previous footnote
24



2.2.2 Unsteady Hyperboli
 SystemsConsider now a hyperboli
 system of 
onservation laws�U�t +r � ~G = 0 ; 8 (~x; t) 2 
 = 
S � [0; tmax℄ ; (2.28)where U is the ve
tor of 
onserved variables and ~G(U) is the ve
tor of the 
onservative 
uxes.Equation (2.28) 
an also be written in the quasi-linear form�U�t + Xk=1;��� ;d �Gk�U �U�xk ;where d is the number of spatial dimensions and the matri
es �Gk=�U are the ja
obian of the
uxes. Like in the s
alar 
ase, the spa
e-time formulation of the system 
an be introdu
ed,whi
h, with the notation of equation (2.22), reads~r � ~F = 0 ; ��G1�U ; � � � ; �Gd�U ; I� � ~rU ; (2.29)where ~F = ~G + Ut̂ is the spa
e-time 
ux ve
tor and I is the identity matrix. The unsteadysolution of system (2.28) is then obtained mar
hing in time by solving at ea
h time-step thespa
e-time steady problem (2.29) using standard RD matrix s
hemes on a spa
e-time slab
S � �t. Of 
ourse also in the system 
ase the 
u
tuation of an element is 
omputed as aspa
e-time integral, while the in
ow matri
es KTi (2.12) are substituted byKTi = 1d+ 1  Xk=1;��� ;d �Gk�U nxki + Inti! ; (2.30)where nxki is the k-th spatial 
omponent of the ve
tor normal to the boundary fa
e in frontof node i in the spa
e-time element T , s
aled by its surfa
e (or length if d = 1) and nti is itstemporal 
omponent. The matri
es with sign K�i 
an be 
omputed straightforwardly as [14℄(see equation 2.12): K�i = 1d+ 1Ri ���i + Inti�Li ; (2.31)where �i, Ri and Li 
ome from the eigenvalue de
omposition of Pk=1;��� ;d �Gk�U nxki .Of 
ourse, 
are must be taken in building the spa
e-time grid and in imposing the LPS
ondition. In parti
ular in the 1D 
ase, the j�j of equation (2.25) is substituted by the largestwave-speed asso
iated to the 
hara
teristi
 form of the equations9, while in the 2D 
ase thespatial in
ow parameters in equation (2.27) are repla
ed by the largest positive eigenvalueof the 
orresponding spatial in
ow matrix. Also in the 
ase of the solution of a system ofequations, the solution of one time-step is obtained by mar
hing in a pseudo-time a

ordingto U �+1i = U �i � ��Si Ri :9Largest eigenvalue of the ja
obians. Foe example for the Euler equations one uses k~uk+ a, where ~u is thevelo
ity ve
tor and a is the speed of sound 25



Remarks1. Although not expli
itly proven, the use of a linearity preserving spa
e-time s
hemeshould guarantee se
ond order of a

ura
y in spa
e and time. This is a 
onsequen
e ofthe fa
t that the LP property guarantees that solutions whi
h are linear in spa
e-timewill be reprodu
ed exa
tly.2. The pseudo-time mar
hing pro
edure, if done in an expli
it way, imposes a 
onstrainton the �� . As for steady 
omputations, in fa
t, the N matrix s
heme will be positiveunder the 
ondition �� < SiPT2�i maxk=1;��� ;Nequations(�+k )T ;where now �k is an eigenvalue of the in
ow matrix KTi of equation (2.30)10.3. As noted in [14℄, on
e a Roe-type linearization is known for the system, it 
an be usedalso for the spa
e-time ja
obians. In parti
ular, in all the Euler 
omputation performedin the 
ourse of this proje
t, the Struijs-De
onin
k-Roe linearization has been used tolinearize the ja
obians on ea
h spa
e-time element.4. Equation (2.31) shows one of the important properties of the spa
e-time s
hemes: asalready remarked, the use of the LDA matrix s
heme and of the N matrix s
hemerequires the inversion of the matri
es Pj2T K�j . Even if the spatial ja
obians of thesystem are singular in stagnation regions, the spa
e-time in
ow matri
es are still regularthere be
ause of the additional term Inti. This allows to simulate 
ows with large regionsof zero or vanishing velo
ity without any problem. Examples of su
h 
omputations 
anbe found in [14℄.

10In the s
alar 
ase 
ondition (2.9) must be applied, using the spa
e-time in
ow parameter (2.23)26



Chapter 3New Developments for RD S
hemes:Sour
e Terms and ConservationThis 
hapter des
ribes the new theoreti
al results obtained in the 
ourse of this proje
t. Firstthe 
onsistent sour
e term dis
retization used in the 
omputations will be des
ribed, showingits 
onsisten
y with the 1D approa
h pioneered by Roe [23℄ and later further developed(see [24, 25℄ for example) and its extension to se
ond order a

ura
y. In the se
ond halfof the 
hapter it will be shown how the same idea used to dis
retize the sour
e terms 
anbe used to build a �rst order 
onservative N s
heme whi
h does not need any Roe-typelinearization. Possible developments of the approa
h are also dis
ussed. It is important tostress the generality of the theory des
ribed in this 
hapter that remains valid whenever RDs
hemes are used to solve a hyperboli
 system of equations.3.1 RD S
hemes for Non-Homogeneous EquationsMost of the dis
retization te
hniques 
urrently used nowadays for the approximation of the
onve
tive 
uxes of systems of 
onservation laws are based on some kind of upwinding pro
e-dure. The use of su
h kind of dis
retization �nds its reasons in arguments of physi
al nature,related to the way informations propagate in the 
ow, and of numeri
al nature, related tothe stability of the methods. Although at a �rst glan
e not physi
ally evident, the upwindingshould be extended also to the sour
e terms eventually present in the equations. The rea-son for this is intuitively explained by the following simple 1D example: 
onsider the s
alarproblem �u�t + a�u�x = � ; a > 0 :Dis
retizing this equation with the upwind s
heme given in the introdu
tion (equation (1.5))one obtains at steady state a (ui � ui�1)� �x2 (�i + �i�1) = 0 ;whi
h is 
learly a 
entered, and hen
e se
ond order a

urate, approximation of the steadyequation around the 
ell-
enter i + 1=2. A more detailed and 
onvin
ing analysis 
an be27



found in [24, 25℄, where the authors show the enhan
ed a

ura
y and 
onsisten
y obtainedby upwinding the sour
e terms on a variety of 1D and 2D problems.In the 
ontext of RD s
hemes, the 
ru
ial point is how to derive a multidimensionalextension of the �rst order upwind s
heme. This extension has been obtained within thisproje
t and is des
ribed in the next se
tion.3.1.1 An N-S
heme for Non-Homogeneous EquationsConsider the s
alar non-homogeneous problem�u�t + ~� � ru = � : (3.1)For simpli
ity we will fo
us on the problem of �nding a steady solution of (3.1) with givenboundary 
onditions using a fully multidimensional upwind dis
retization. De�ne the follow-ing parameter: i+j = ( k+jkTj if kTj 6= 00 if kTj = 0 ;where kTj and k+j are the in
ow parameter (2.2) and its positive part. De�ne the redu
ed valueof the sour
e term in the node i on the element T , ��i , as its nodal value multiplied by thesurfa
e (volume in 3D) of the element 
T and divided by its number of verti
es, namely��i = 
Td+ 1�i :Compute the sour
e term 
u
tuation �� = ZT � d
 ; (3.2)where the last integral 
an be approximated with any quadrature rule.Proposition 1The multidimensional upwind RD s
heme de�ned by�N;�j = i+j �kTj (uj � uin) + ��j � ��in� ; (3.3)with ��in = Pl2T i+l ��l + ��Pl2T i+l ; uin = Pl2T k�l ulPl2T k�l ;is fully 
onservative, in the sense thatXl2T �N;�l = ZT �~� � ru� �� d
 = �T � �� :28



Proof: The proof of this proposition is obtained in a straightforward way just by 
omputingthe sum of the element-to-node 
ontributions:Xl2T �N;�l =Xl2T i+l �kTl (ul � uin)�+Xl2T i+l (��l � ��in) ==Xl2T k+l (ul � uin) +Xl2T i+l ��l �Xl2T i+l ��l � �� = �T � �� :Note that di�erent de�nitions of the redu
ed value of the sour
e term 
ould be used, butit must be kept in mind that the residual sent to ea
h node must respe
t the followingdimensional s
aling i+j ���j � ��in� / ZT � d
 ! ��j / 
T� :In this proje
t, the sour
e term 
u
tuation (3.2) has been 
omputed with the se
ond ordera

urate formula �� = 
Td+ 1Xl2T �l =Xl2T ��l ;and hen
e ��in = Pl2T �i+l + 1���lPl2T i+l :Extension to SystemsThe matrix version of s
heme (3.3) is obtained formally extending all the de�nition given forthe s
alar 
ase. In parti
ular, given the hyperboli
 non-homogeneous system�U�t + Xk=1;��� ;dAk �U�xk = S ;de�ne the matrix parameter I+j = K+j �KTj ��1 ;and the lo
al nodal redu
ed value of the sour
e termS�i = 
Td+ 1Si :Compute the sour
e term 
u
tuation �S = ZT S d
 :Proposition 2The multidimensional upwind matrix s
heme de�ned by�N;Sj = I+j �KTj (Uj � Uin) + S�j � S�in� ; (3.4)29



with S�in =  Xl2T I+l !�1 Xl2T I+l S�l + �S! ; Uin =  Xl2T K�l !�1 Xl2T K�l Ul!is fully 
onservative, in the sense thatXl2T �N;Sl = ZT  Xk=1;��� ;dAk �U�xk � S! d
 = �T � �S :Proof: Pro
eeding like in the s
alar 
ase:Xl2T �N;�l =Xl2T I+l �KTl (Ul � Uin)�+Xl2T I+l (S�l � S�in) ==Xl2T K+l (Ul � Uin) +Xl2T I+l S�l �Xl2T I+l S�l � �S = �T � �S :In all the 
omputations made the sour
e term residual has been 
omputed as�S = 
Td+ 1Xl2T Sl =Xl2T S�l ; (3.5)so that S�in =  Xl2T I+l !�1Xl2T �I+l + I�S�l ;where I is the identity matrix.Results obtained on steady and unsteady tests with the matrix version of the s
heme arereported in 
hapter 5, showing the robustness and reliability of the approa
h.3.1.2 A LP S
heme for Non-Homogeneous EquationsOn
e the �rst order monotone RD s
heme to dis
retize non-homogeneous equations is avail-able, a se
ond order non-linear blended s
heme 
an be easily built as followsS
alar Non-Homogeneous Equations :�Bi = (1� �)�LPi ��T � ���+ ��N;�i ; � = j�T � ��jPl2T j�N;�l j :Non-Homogeneous Hyperboli
 Systems :�Bi = (I � �)BLPi ��T � �S�+��N;Si ; �ij = Æij j ��T � �S�j jPl2T j��N;Sl �j j :A

urate results obtained on several invis
id problems are reported in 
hapter 5. Note that inall the 
omputations involving the B s
heme, the LDA s
heme has been used as LP s
heme.30



Remarks1. Although not expli
itly done here, the proof of the existen
e of the matri
es �Pj2T K+j ��1for any hyperboli
 system, reported in [2℄, 
an be naturally extended to the matri
es�Pj2T I+j ��1 needed for the appli
ation of s
heme (3.4).2. Consider a 1D system of 
onservation laws written in quasi-linear form�U�t + A (U) �U�x = S :Referring to �gure A.1 the 1D �rst order upwind �nite volume s
heme used in [24℄ andin [25℄ 
an be written for a uniformly spa
ed 1D grid asUn+1i � Uni�t �x = � �Fni+1=2 � Fni�1=2�+ �ni+1=2 + �ni�1=2 ; (3.6)where the numeri
al 
ux fun
tions Fni�1=2 are given byFni�1=2 = Âi�1=2Ui + Ui�12 � 12 jÂi�1=2j�Ui�1=2 ;being Âi�1=2 the matrix A 
omputed in some average state. The sour
e term 
ontribu-tion 
oming from the interfa
e i� 1=2 is 
omputed as�ni�1=2 = I � sgn(Âi�1=2)2 Sni�1=2�x ; (3.7)being Sni�1=2 the value of the sour
e term at the interfa
e, usually approximated withse
ond order of a

ura
y as Sni�1=2 = Sni + Sni�12 :The matrix sgn(Âi�1=2) in equation (3.7) is the sign of matrix Âi�1=2, de�ned byjÂi�1=2j = sgn(Âi�1=2)Âi�1=2 ; jÂi�1=2jsgn(Âi�1=2) = Âi�1=2 ; (3.8)and 
omputed assgn(Âi�1=2) = R̂i�1=2sgn(�̂i�1=2)L̂i�1=2 ; sgn(�̂i�1=2) = diagk=1;��� ;Nequations � �kj�kj� ;where R̂i�1=2 and L̂i�1=2 are the matri
es of the right and left eigenve
tors of Âi�1=2 and�k is the k-th eigenvalue of Âi�1=2.A very interesting property of s
heme (3.4) is given by the followingProposition 3The N s
heme de�ned by (3.4) is 
onsistent with the RD formulation of the 1D �nitevolume s
heme (3.6).The proof is reported in appendix A. 31



3.2 A New Approa
h for Conservative RD S
hemesBased on the N S
hemeAs already said, in the framework of the RD s
hemes, the use of the �rst order positiveN s
heme is of 
ru
ial importan
e to handle dis
ontinuous solutions retaining monotoni
ity.Unfortunately this is possible only if a 
onservative Roe-type linearization is available for theja
obian of the 
uxes, whi
h is not always the 
ase. In this se
tion an alternative formulationof the s
heme based on the same idea used for the upwind dis
retization of the sour
e terms willbe presented. This new formulation relies on a 
omputation of the integral of the 
uxes overan element through a 
ontour integration and is always 
onservative. A parti
ular se
tion willbe devoted to the des
ription of the integration rules used to perform the 
ontour integrationand also to the future developments that the te
hnique 
ould allow.3.2.1 A Conservative N-S
heme for General Systems of Conserva-tion LawsConsider the following general non-linear system of 
onservation laws in d spa
e dimensions�U�t +r � ~F = 0 ; (3.9)where ~F = � ~Fx1 ; � � � ; ~Fxd� is the ve
tor of the 
onservative 
uxes. De�ne the 
u
tuation ofan element T as the following integral�T = I�T ~F � ~n dl ; (3.10)where ~n is the unit ve
tor normal to �T and pointing outside of T . The following property
an be provenProposition 4The RD s
heme de�ned by�N;
i = K+i (Ui � U
) ; U
 =  Xj2T K+j !�1 Xj2T K+j Uj � �T! ; (3.11)is 
onservative independently of the type of average used to 
ompute the 
ell ja
obian KTi ,i.e. Xj2T �N;
j = I�T ~F � ~n dl :Proof: The proof of the last proposition is easily obtained as followsXj2T �N;
j =Xj2T K+j Uj � Xj2T K+j !U
 =Xj2T K+j Uj �Xj2T K+j Uj + �T = �T ;and hen
e Xj2T �N;
j = I�T ~F � ~n dl :32



3.2.2 A Conservative LP S
heme for General Systems of Conser-vation LawsOn
e a �rst order monotone 
onservative s
heme is in hand, the se
ond order monotonenon-linear blended s
heme 
an be built as�Bi = (I ��)BLPi �T +��N;
i ; �ij = Æij j�Tj jPl2T j��N;
l �j j ;where �T is 
omputed a

ording to (3.10). In all the 
omputations performed here BLPi =BLDAi .Chapter 5 
ontains a number of steady and unsteady tests performed to verify the prop-erties of the new 
onservative formulation. In parti
ular, several 
omputations have beenperformed on problems involving the solution of the Euler equations in order to 
omparethe new treatment of 
onservation with the more 
lassi
 one based on the use of the Struijs-De
onin
k-Roe linearization. Although the 
onservative N s
heme (3.11) 
annot be proven tobe positive, it has shown monotone perfe
t sho
k 
apturing properties, at least in the tests
onsidered here. Unfortunately, be
ause of time restri
tions, the new te
hnique has not beentried for the Two-Phase 
ow model, for whi
h the same non-
onservative formulation used in[5℄ as been adopted.3.2.3 Contour IntegrationIn order to have a 
onservative 
omputation of the 
uxes, an appropriate quadrature rulemust be used to approximate integral (3.10). In this work two di�erent formulas have beenused: a se
ond order formula (Trapezium rule) and a third order one based on Simpson's rule.In parti
ular 
onsider an element T whose nodes are lo
ally numbered from zero to w, wherew is the number of 
oordinates1. The integral of the 
uxes 
an be 
omputed using the se
ondorder trapezium rule as follows:I�T ~F � ~n dl = Xs2�TXi2s 1w ~Fi � ~ns ;where i is a vertex belonging to the side s of �T and ~ns is the ve
tor normal to side s, pointingoutwards and s
aled by its surfa
e (length if T is a triangle. One 
an easily show thatI�T ~F � ~n dl =Xj2T 1w ~Fj � ~nTj ; (3.12)where ~nTj is the ve
tor normal to the side in front of node j of element T , pointing inwardsand s
aled by the surfa
e (length if T is a triangle) of the side. The proof of this statementis reported in appendix C.1.1If d is the number of spa
e dimensions, one has w = d for a steady 
omputation, while w = d + 1 for aspa
e-time 
omputation 33



Unfortunately, the use of a se
ond order formula turned out to be not enough for some
omputations. In parti
ular, the steady Euler tests involving a bow-sho
k blew-up even withthe N 
 s
heme. The reason for this 
an be probably found in the fa
t that the 
omputationof the integral of the 
uxes through a Roe averaging pro
ess of the ja
obians yields an exa
tformula, at the dis
rete level, assuming that the Roe parameter (see equation (2.20)) varieslinearly over an element. The question is then what is the quadrature formula that one shoulduse to mat
h the a

ura
y obtained through Roe averaging. The formula used in this workto over
ome the diÆ
ulties in the bow sho
k 
omputations is based on Simpson's rule. Forthe steady 2D 
ase it reads:I�T ~F � ~n dl = Xs2�T �16 ~Fi1s + 23 ~Fms + 16 ~Fi2s� � ~ns ;where i1s and i2s are the extrema of the edge s, while ms is its middle-point. It 
an be easilyshown that the previous formula 
an be rewritten as (see appendix C.2)I�T ~F � ~n dl =X�2T 13 �12 ~Fj � 2 ~Fmj� � ~nTj ; (3.13)where now mj is the middle-point of the edge in front of node j in T and ~nTj is the same of(3.12). The use of the last formula allowed to run steady simulations involving strong 
urvedsho
ks, but still the results are not fully satisfa
tory. The use of more a

urate formulas ofthe Gaussian type is probably one of the solutions to be investigated. Note that in order touse formula (3.13) a proper way of evaluating the 
ux ve
tor in the middle-point of the edgesmust be found. Here di�erent possibilities have been tried, but the best results have beenobtained with ~Fmj = ~F(Umj ) = ~F �Ui + Uk2 � ;where i and k are the two nodes belonging to T di�erent from j and U is the ve
tor of 
on-servative variables.Finally in all the steady 
omputations only Simpson's rule has been used, while the trapeziumrule was used in all the unsteady problems 
onsidered, where the additional di�usion due tothe spa
e-time approa
h (see 
hapter 5) seemed to guarantee monotone solutions even withthe se
ond order formula. As a matter of fa
t for both steady and unsteady 
omputationsthe use of higher order formulas will be a must if strong and non-uniform dis
ontinuities haveto be handled.Remarks1. The possibility if using averaged states di�erent from the Roe one, even if it existsfor the system we are interested to solve, gives the possibility to 
hoose the one thatpossibly improves the resolution of 
ertain features of the 
ow. For example for theEuler equations the number of possibilities is very large2 and an investigation of this2Averaged Conservative Variables, Averaged Primitive Variables, Averaged Entropy (or Symmetrizing)Variables, Averaged Chara
teristi
 Variables et
. 34



aspe
t has to be done in the future. Here for reasons of eÆ
ien
y and simpli
ity, a simplearithmeti
 average of the primitive variables has been used to linearize the ja
obians2. The new approa
h allows in prin
iple to evaluate the 
uxes with any a

ura
y, if theappropriate integration formula is adopted. Hen
e one 
ould think of designing higherorder RD s
hemes based on a quadrati
 or even 
ubi
 representation of the variables.Although some attempts in this dire
tion have been already made [27℄, the way in whi
hthe 
ell residual should be distributed is at the moment an open question.3. An important issue, when performing 
omputations with systems, is to be able to 
om-pute the nodal residual in the set of variables more 
onvenient. This is allowed for thetraditional s
hemes by the IST property (see se
tion 2.1.2). In appendix B the proofof the following important proposition is givenProposition 5The s
hemes de�ned by equations (3.4) and (3.11) are IST .4. It 
an be easily proven that the traditional formulation of the N s
heme based onthe De
onin
k-Struijs-Roe linearization 
an be obtained as a spe
ial 
ase of the newtreatment of 
onservation proposed here. In order to do this, denote with K̂Ti the in
owmatrix evaluated in the Roe state of the element T and set �T =Pj2T K̂Tj Uj in equation(3.11). Re
alling the de�nition of Uin given in equation (2.17), one 
an write:U
 =  Xj2T K̂+j !�1Xj2T �K̂+j � K̂Tj �Uj =� Xj2T K̂+j !�1Xj2T K̂�j Uj =  Xj2T K̂�j !�1Xj2T K̂�j Uj = Uin : (3.14)Note that the relation KTj = K+j + K�j has been used in the last equation. As a
onsequen
e of equation (3.14), the new N s
heme redu
es to the original one if theDe
onin
k-Struijs-Roe linearization is used and if the 
ell 
u
tuation �T is 
omputedusing the quasi-linear formulation of the system. Hen
e, the new approa
h is moregeneral.
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Chapter 4Boundary Conditions and TimeIntegrationThis is the last 
hapter des
ribing the theoreti
al aspe
ts related to the 
omputations per-formed within the proje
t. The �rst se
tion will give all the details on the type of boundary
onditions used in the simulations, in parti
ular the 
hara
teristi
s-based approa
h used forwall, sub-soni
 inlet and sub-soni
 outlet boundary treatment will be analyzed. In the se
ondpart, the simple time-stepping pro
edure implemented will be brie
y re
alled.4.1 Chara
teristi
s-Based B.C.sGiven a hyperboli
 system of 
onservation laws, it is known that for well-posedness of theproblem the number of physi
al 
onditions to be imposed at ea
h boundary of the spatialdomain 
, depends on the number of 
hara
teristi
s that lo
ally enter 
 [28℄. In parti
ularea
h in-going wave is asso
iated to a positive eigenvalue �j of the ja
obianC = Xk=1;��� ;d � ~Fk�U nxk ;evaluated at the boundary �
 (see sket
h on the left in �gure 4.1). Re
all that � ~Fk=�U isthe ja
obian matrix of the k-th 
omponent of the ve
tor of the 
uxes and U is the ve
tor of
onserved variables. The ve
tor ~n
 = (nx1; � � � ; nxd) is the unit ve
tor lo
ally orthogonal tothe boundary �
, pointing inside 
. For the systems of equations 
onsidered in this proje
t,the eigenvalues of C 
an be written, without any loss of generality, as follows:�1 = ~u � ~n
�2 = ~u � ~n
�3 = ~u � ~n
 + a�4 = ~u � ~n
 � a ;where a is the lo
al value of the speed of sound and ~u is the velo
ity ve
tor. Depending onthe sign of these eigenvalues, di�erent 
on�gurations 
an be en
ountered. From a physi
alpoint of view, they 
an be 
lassi�ed in 37



Supersoni
 Inlet ~u � ~n
 > 0 and ~u � ~n
 > a: all the eigenvalues are positive, hen
e all the
hara
teristi
s enter the domain. Four 
onditions must be imposedSupersoni
 Outlet ~u � ~n
 < 0 and j~u � ~n
j > a: all the eigenvalues are negative, hen
e allthe 
hara
teristi
s leave the domain. No 
onditions have to be imposed.Subsoni
 Inlet ~u � ~n
 > 0, but ~u � ~n
 < a: there are three waves going in the domain, whileone wave is leaving it. Three 
onditions Must be imposed.Subsoni
 Outlet ~u � ~n
 < 0, but ~u � ~n
 < a: there are three waves going out of the domain,while one wave is entering it. Only one 
ondition 
an be imposed.Wall ~u �~n
 = 0: two eigenvalues are zero, hen
e the 
orrespondent 
hara
teristi
s are lo
allyparallel to the boundary. No 
onditions 
an be imposed for these waves. One 
onditionhas to be set for the wave asso
iated to the only positive eigenvalue �3 = a.The right pi
ture in �gure 4.1 summarizes the �ve situations listed above.
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4λ  < 0Figure 4.1: In-going and outgoing waves at the boundaries and boundary 
onditionsFrom the 
omputational point of view, one would like to translate the informations 
omingfrom the lo
al wave propagation phenomena des
ribed by the system, in algebrai
 equationsto 
ouple with the equations obtained from the spatial dis
retization. In parti
ular, sin
ethe RD dis
retization te
hnique used in this proje
t relies on the knowledge of the nodalvalues of the unknowns, a pro
edure that allows to impose the boundary 
onditions dire
tlyon the nodes belonging to the boundaries of the 
omputational domain seems to be the mostindi
ated. The te
hnique a
tually used here is based on what in [1℄ has been 
alled strongformulation of the boundary 
onditions.Consider then the boundary node i of �gure 4.2. The unit ve
tor lo
ally normal to the
omputational boundary �
 
an be 
omputed as the average of the inward pointing ve
tors38



normal to the edges of the boundary triangles 
ontaining i, T1 and T2, weighted by theirlength, i.e. ~ni = ~nT1 + ~nT2k~nT1k+ k~nT2k ;where k~nTjk is equal to the length of the boundary edge of Tj. On
e the 
omponents of thenormal ~ni are known, one is able to 
ompute the ja
obian Ci = Pk(� ~Fk=�U)nixk and itseigenvalue de
omposition. The pro
edure used to impose the boundary 
onditions is then thefollowing1. Compute the inner nodal residual Ri, 
oming from the spatial dis
retization;2. Compute the provisional in
rement of the nodal variables asso
iated to the inner resid-ual: ÆUi = � ~Ri3. Compute the 
orre
tive boundary residual R�i as the linear 
ombinationR�i = X�ik>0 �krk ; (4.1)where rk is the right eigenve
tor asso
iated to the positive eigenvalue of the ja
obian Ci,�ik and the 
oeÆ
ients �k are 
omputed analyti
ally su
h that the solution 
omputedas Un+1i = Uni + ÆUi �R�iveri�es the required boundary 
ondition;4. Update the nodal residual with the 
orre
tive residual R�i before the nodal update.
T1 T2

T3

T1
n nT2

ni

iFigure 4.2: Nodal normal at the boundaryNote that the provisional residual ~Ri is a
tually the spatial residual Ri (see equation (2.15))multiplied by the fa
tor �t=Si. The same multipli
ation fa
tor must be taken into a

ountin the 
omputation of the �k 
oeÆ
ients to avoid in
onsisten
ies. Generally speaking the
onditions that 
an be imposed with this te
hnique 
an be 
hosen freely, keeping in mind thattheir number 
annot be greater than the number of positive eigenvalues �ik. The 
onditionsimposed in the 
omputations performed 
an be summarized as follows39



Supersoni
 Outlet Sin
e there are no positive eigenvalues, no 
onditions are imposed, i.e.the new solution in nodes belonging to a boundary through whi
h there is a supersoni
outlet is determined only from the inner residual.Supersoni
 Inlet All the 
hara
teristi
s enter the domain, hen
e the whole ve
tor of vari-ables should be imposed. Pra
ti
ally speaking this 
ondition 
an be imposed simply bysetting to zero the nodal residual.Wall In invis
id 
omputations only the impermeability 
ondition 
an be guaranteed at thewall, i.e. one 
an require that ~ui � ~ni = 0 in the new solution. Note that in this 
aseonly one positive eigenvalue is present and hen
e only one 
oeÆ
ient �w is needed in(4.1). De�ning the normal velo
ity u? = uinix + viniy, the 
oeÆ
ient 
an be 
omputedimposing one of the two following 
onditions:un+1? = 0 or �un+1? = un+1? � un? = 0 :The 
omputation of �w is reported in appendix D for the 2D Euler equations.Subsoni
 Outlet Also in this 
ase only one 
ondition 
an be imposed. In parti
ular, onlyone 
oeÆ
ient �a is needed in (4.1) and it is 
omputed requiringpn+1i = pout(tn+1) or �pi = pn+1i � pni = 0 ;where p is the pressure and pout(t) is a given fun
tion of the time. Also for this 
onditionthe full 
omputation of �a is given in appendix D for the 1D Euler equations.Subsoni
 Inlet In this 
ase three 
onditions must be imposed, and hen
e three 
oeÆ
ients�1, �2 and �3 are needed in (4.1). Of 
ourse several possibilities are available for the
hoi
e of the physi
al 
onditions to set. Here, for the Euler equations, following [1, 2℄,the 
onditions 
hosen are given by�T0i = T n+10i � T n0i = 0 ; �p0i = pn+10i � pn0i = 0 ; ��viui� = � viui�n+1� �viui�n = 0or T n+10i = T �0 ; ~pn+10i = ~p�0 ; �� viui� = �viui�n+1� �viui�n = 0 ;where T0 is the total temperature, p0 is the total pressure, v=u is the tangent of the
ow angle, T �0 is a pres
ribed value of the total temperature and ~p0 is a modi�ed totalpressure de�ned by ~p0 = �p0p �� 1
 p0 ;being 
 = 1:4 the ratio of the spe
i�
 heat 
oeÆ
ients. A di�erent set of 
onditionshave been implemented for the Two-Phase 
ow model (see 
hapter 5):�(�u)i = (�u)n+1i � (�u)ni = 0 ; �(�v)i = (�v)n+1i � (�v)ni = 0 ; ��gi = �n+1gi ��ngi = 0 ;40



where � is the mixture density and �g is the void fra
tion of the gas phase. The pro
edureused to 
ompute the 
oeÆ
ients for the Euler equations is des
ribed in appendix D,where also their �nal expression is given. In the same appendix the expression of �1, �2and �3 for the Two-Phase Flow model is given, while for their 
omputation the reader
an refer to [5℄.Remarks1. Note that the boundary 
onditions treatment des
ribed applies indi�erently to steady
omputations and to spa
e-time 
omputations as well. In parti
ular, in the spa
e-time
ase, the unit nodal normal to the spa
e-time boundary given by the past plane is alwaysgiven by ~ni = (0; 0; 1), while all the eigenvalues redu
e to �ik = 1 > 0, hen
e, 
onsistentlywith the LPS 
ondition derived in the previous 
hapter, the past plane is a supersoni
inlet-like boundary for whi
h no residual must be 
omputed. On the other hand, for thefuture plane one has �ik = �1 < 0 for all the eigenvalues, hen
e no boundary 
onditionsmust be imposed on the future plane that is a supersoni
 outlet-like boundary. As a
onsequen
e, there is no di�eren
e in the boundary treatment of steady and spa
e-time
omputations.2. The boundary 
onditions used in this proje
t 
an be easily applied also if an impli
ittime-stepping pro
edure is used. In parti
ular, the ja
obian of the algebrai
 systemJij = �Ri=�Uj will be modi�ed with the following entry:Jij+= X�ik>0���k�Uj rk + �k �rk�Uj Æij� :Sin
e the �k 
oeÆ
ient 
an be expressed as (see appendix D)�k = Dk(Ui) �Ri + 
k(Ui) ;where the ve
tor Dk and the s
alar 
k depend only on Ui, one ends withJij+= X�ik>0��Dki�Uj �RiÆijrk +Dki � �Ri�Uj rk + �
ki�Uj Æijrk + �k �rk�Uj Æij� ;where �Ri=�Uj has been already 
omputed to assemble the ja
obian entry related tothe inner residual. Thus, the ja
obian entries related to the boundary 
onditions 
anbe written as a linear 
ombination of the entries related to the inner dis
retization,whi
h are already known at this stage of the 
omputation, plus informations relatedonly to the a
tual value of the variables in node i, still allowing a nodal treatment of theboundary 
onditions. Note that Dki = Dk(Ui) and 
ki = 
k(Ui) are known analyti
ally,hen
e no numeri
al di�erentiation is ne
essary.
41



4.2 Lo
al Time-Stepping Te
hniqueThe time1 integration te
hnique used for the 
omputations is based on the very simple forwardEuler formulas already given (equation (2.15)). In parti
ular, sin
e is only for steady solutionsthat we are seeking for2, a lo
al nodal time-step is used to have a faster 
onvergen
e, namelyUn+1i = Uni � �tSi Ri :Sin
e for the positivity of the N s
heme one has to impose�ti < SiPT2�i maxk=1;��� ;Nequations(�+k )T ;the time-stepping formula a
tually 
oded isUn+1i = Uni � �PT2�i maxk=1;��� ;Nequations(�+k )TRi ;with � < 1.

1Pseudo-time in the 
ase of spa
e-time 
omputations2Be it in time or in pseudo-time 42



Chapter 5ResultsIn this 
hapter the results obtained on a series of well known steady and unsteady test-
asesare reported and 
ommented. Note that, sin
e di�erent systems of equations have been 
on-sidered, it seemed more 
onvenient not to write one 
hapter devoted to the presentation ofthe equations, but to des
ribe brie
y the basi
 equations in this 
hapter. To avoid 
onfu-sion, most of the informations regarding the 
hara
teristi
s analysis of the models and theireigenstru
ture are given in appendix E. The outline of the 
hapter is the following: The �rstse
tion 
ontains the results obtained on the Euler equations. Solutions of unsteady and steadyproblems are dis
ussed and 
ompared, when possible, to analyti
al or referen
e solutions. Inthe se
ond se
tion the Two-Fluid Model is brie
y presented and the solutions of some 
lassi
Two-Phase unsteady problems is shown.5.1 Euler EquationsThe system of the 2D Euler equations des
ribes the motion of an invis
id non 
ondu
tivematerial. They 
an be written in 
onservative form and in a 
artesian frame of referen
e as��t 2664 ��u�v�E 3775 + ��x 2664 �u�u2 + p�uv�uH 3775 + ��y 2664 �v�uv�v2 + p�vH 3775 = 0 ; (5.1)where � is the 
uid density, p its pressure, ~u = (u ; v) its velo
ity, E and H the total energyand enthalpy. The system is 
losed by the state equationp = (
 � 1)��E � u2 + v22 �and by the de�nition of total enthalpy H = E + p� :Introdu
ing the ve
tor of primitive variables P = [ � u v p ℄t, the system 
an be rewrittenin the quasi-linear form �P�t +AP �P�x +BP �P�y = 0 ;43



with AP and BP given byAP = 2664 u � 0 00 u 0 1=�0 0 u 00 �a2 0 u 3775 ; BP = 2664 v 0 � 00 v 0 00 0 v 1=�0 0 �a2 v 3775 ;where a = p
p=� is the lo
al speed of sound. Sin
e the system is hyperboli
, the matrixC = APnx + BPny is diagonalizable with a 
omplete set of real eigenvalues and linearlyindependent eigenve
tors and its eigenstru
ture is given in appendix E. Although di�erentforms of system (5.1) with additional sour
e terms have been 
onsidered, the 
ux ve
tors andthe ja
obian matri
es of the system used to 
ompute the upwind matri
es (2.12) are alwaysthe ones just presented. In the paragraph relative to ea
h test-
ase these di�erent forms ofthe equations will be given, showing their relation with (5.1).5.1.1 Unsteady ComputationsA Ma
h 3 Wind Tunnel with a Forward Fa
ing StepThis is a very famous test-
ase proposed by Colella and Woodward in [29℄. It 
onsists of asupersoni
 
ow entering a 
hannel that 
ontains a forward fa
ing step. The initial solution
onsists of a uniform Ma
h 3 
ow. At the very beginning, a sho
k develops in front of the stepand deta
hes from it growing and then re
e
ting on the upper and lower walls of the 
hannel.The test was performed solving the spa
e-time formulation of system (5.1) with the non-linearblended s
heme. What usually 
auses some diÆ
ulties in the solution of this problem is theupper 
orner of the step whi
h is a geometri
al singularity. In [29℄ this problem is solved with avery parti
ular treatment of the unknowns stored in the 
omputational 
ells 
lose to the singu-lar point. Here no modi�
ations of the s
heme have been introdu
ed to handle the singularity.The e�e
t of the presen
e of the singular point 
an be two-fold. Roe-type s
hemes usu-ally show an unphysi
al expansion sho
k in 
orresponden
e of 
orner. The reason of this 
anbe qualitatively understood 
onsidering the following analysis:A 1D Roe-type s
heme 
an be written in �nite volume formulation asUn+1i = Uni � �t�x �Hi+1=2 �Hi�1=2� ;where the numeri
al 
ux fun
tion Hi+1=2 is de�ned byHi+1=2 = Fi + Fi+12 � 12Rj�jL (Ui+1 � Ui) ; (5.2)where F is the ve
tor of the 
onservative 
uxes, R and L are the matri
es of the right andleft eigenve
tors of its ja
obian and j�j is the diagonal matrix of the absolute values of theeigenvalues of the ja
obian. In 1D � is given byj�j = 24 juj 0 00 ju� aj 00 0 ju+ aj 35 :44



At the transoni
 point the eigenvalue ju� aj is zero, hen
e no numeri
al dissipation is addedfrom the s
heme along the 
orresponding 
hara
teristi
 �eld. In some 
on�gurations this
auses the preservation of dis
ontinuous data and hen
e the appearan
e of what is usually
alled a transoni
 expansion sho
k. An example of su
h a phenomenon is given on the leftof �gure 5.1, where the solution of this problem obtained in [7℄ using standard RD s
hemeswith the 
onsistent mass matrix is reported at time t = 0:5. The dis
ontinuity at the 
orneris 
learly visible. On the right of the same pi
ture, the solution obtained here on the samemesh used in [7℄ at the same physi
al time is shown. As it 
an be seen from the pi
ture, apartfrom being globally more di�usive, the solution obtained with the spa
e time s
hemes doesnot 
ontain any transoni
 sho
k. The reason of this 
an be understood 
onsidering the spa
e-time version of the 1D Roe s
heme presented above. In (5.2) the ve
tor of the 
onservative
uxes would be substituted by the ve
tor of the spa
e-time 
uxes whose ja
obian matrix willhave eigenvalues given by�s�t = 24 unx + nt 0 00 unx + nt � ajnxj 00 0 unx + nt + ajnxj 35 ;from whi
h is 
lear that at the transoni
 point the s
heme still provides some numeri
aldissipation asso
iated to j (unx + nt � ajnxj)transoni
 j = jntj. This extra di�usion is enough todissipate the expansion sho
k.
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Figure 5.1: Expansion at the Singular Point, t = 0:5. Left: Solution From [7℄, Right: SolutionObtained with the Spa
e-Time Approa
h
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Figure 5.2: Unphysi
al Ma
h Stem on the Lower Wall, t = 4:0. Left: Solution from [30℄,Right: Solution Obtained with the Spa
e-Time Approa
h45



Very often, the presen
e of the 
orner 
auses a 
ompletely di�erent behavior of the solu-tion. On the left of �gure 5.2 is reported the solution of this problem obtained in [30℄ witha Dis
ontinuous Galerkin Method at time t = 4:0. On the right in the same �gure the resultobtained here on the grid used in [7℄ is shown. A Ma
h stem on the lower wall is 
learlyvisible in both results. The presen
e of the Ma
h re
e
tion 
an be explained with the a greatamount of spurious numeri
al dissipation that 
auses the appearan
e of an unphysi
al entropylayer. The entropy produ
tion at the 
orner is 
learly visible in �gure 5.3 where the entropy
ontours of the solutions obtained here at times t = 0:5 and t = 1:5 are reported.
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Figure 5.3: Entropy Produ
tion at the Corner

Figure 5.4: E�e
t of the Progressive Grid Re�nement Around the Corner (from [30℄)46



An e�e
tive way to 
ure this problem is suggested in [30℄: re�ne the grid lo
ally around thesingular point so that the false entropy layer is 
ontained within a few 
ells and does notpollute the solution downstream. The e�e
t of the progressive re�nement of the mesh asreported in [30℄ is shown in �gure 5.4. Here a similar te
hnique was used. The top of �gure5.5 shows a 
lose-up view of the grid around the singular point with and without re�nementand below the improvement obtained in the solution at t = 4:0. Although a small Ma
hre
e
tion is still visible, due to the very lo
alized re�nement of the grid1, the improvement innon-negligible.
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yFigure 5.5: Grid Re�nement Around the Corner and Improvement of the SolutionOn
e the problem with the 
orner has been solved, a �ne version of the re�ned mesh of�gure 5.5 has been used to 
ompare with referen
e [29℄. In parti
ular, the referen
e solutionsreported in [29℄ have been obtained with a third order PPM s
heme on a uniform 
artesian gridwith �x = �y = 1=80. The mesh used here 
ontains 38740 triangles and 19715 nodes, with a
hara
teristi
 mesh-size h = 1=80 and a re�ned mesh-size around the 
orner h
 = 1=1000. The
omputation is made with the se
ond order non-linear blended s
heme. Taking advantage ofthe double-layer spa
e-time approa
h the physi
al CFL number was �xed as CFL = h
=h inorder to have an e�e
tive CFLe � 1 in the uniform grid-size region. In �gures 5.6 and 5.7a few snap-shots of the time evolution of the density 
omputed here are reported togetherwith the referen
e solution. Note that the agreement is very good, also 
onsidering thatthe method used in the referen
e is third order a

urate while the spa
e-time 
omputations
annot be more than se
ond order a

urate in spa
e. A main di�eren
e 
an be found in theresolution of the 
onta
t dis
ontinuity 
oming from the triple point whi
h appears very mu
hsmeared in the present solution. On the other hand, the spa
e-time 
omputations show avery 
lean and monotone 
apturing of the dis
ontinuities.1The typi
al size of the elements of the grid is h = 1=40, while very 
lose to the 
orner it goes down toh
 = 10�3. Despite of the small mesh-size around the 
orner, an entropy layer still develops due to the smallregion of re�nement 47
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Figure 5.6: Ma
h 3 Wind Tunnel with a Step, Solutions at t = 1:0 and t = 1:5. Top: Present,Bottom: Referen
e Solution [29℄
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Figure 5.7: Ma
h 3 Wind Tunnel with a Step, Solutions at t = 3:0 and t = 4:0. Top: Present,Bottom: Referen
e Solution [29℄This problem has been used as a test for the new treatment of 
onservation des
ribed in
hapter 3. The spa
e-time blended s
heme fully based on a 
ux 
omputation done through
ontour integration of the ve
tor of the 
uxes has been tested. Figure 5.8 shows the solutionobtained with the new approa
h a t = 4:0 on the intermediate re�ned grid of �gure 5.5 andon the �ne grid. Comparing the plots of �gure 5.8 with the ones in �gures 5.5 and 5.7 novisible di�eren
e in the solutions 
an be seen. The solution is still very 
lean and 
ompletelymonotone, whi
h shows the robustness of the approa
h. Furthermore, all the sho
ks are inthe 
orre
t position, indi
ating that the s
heme is still fully 
onservative. This very promisingresult will be 
on�rmed by the more severe tests presented in the following se
tions.48
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Figure 5.8: Ma
h 3 Wind Tunnel with a Step: Solution at t = 4:0 Obtained with the BS
heme Based on the New Treatment of ConservationTransoni
 Flow in a Channel with a Bump with Os
illating Ba
k-PressureThis problem was proposed for the �rst time by B�ol
s and 
o-workers in [31℄ and later onre-
omputed by Hwang and Liu in [32℄ and by Rogiest in [33℄. It 
onsists of a 
hannel whoselength is equal to 2 and whose height is equal to 1 with a sinusoidal bump on the upperwall. The initial solution is a Ma
h 0:675 
ow with a transoni
 sho
k on the bump. Startingfrom this solution a sinusoidal outlet pressure is imposed. In parti
ular, a

ording to [33℄, thefollowing law for the outlet pressure is �xed:pout = 1
M21 "1 + 0:12�1 + 
 � 12 M21� 

�1 sin (!t)# ; (5.3)with M1 = 0:675 and ! = 0:792. The problem was solved here using the spa
e-time for-mulation of system (5.1) and the subsoni
 inlet and outlet boundary 
onditions of 
hapter 4.The grid and the initial steady solution 
omputed with the spa
e-time blended s
heme arereported in �gure 5.9. Starting from the solution of �gure 5.9 the unsteady outlet pressure(5.3) was imposed. Taking advantage of the two-layers approa
h, the �t was �xed su
h thatone period of outlet pressure os
illation 
orresponded to 200 physi
al time-steps. The un-steady evolution of the Ma
h number is shown if �gures from 5.10 to 5.17, 
ompared with theresults of [33℄.

Figure 5.9: Transoni
 Channel: Grid (left) and Ma
h Contours of the Initial Solution (right)49



Figure 5.10 shows the solutions after the �rst 
y
le, when the value of the outlet pressureis equal to the stationary one ans is in
reasing. The sho
k, whi
h already exists on the upperwall, is moving toward the exit of the 
hannel and it starts to rea
h the lower wall. In thesolution of �gure 5.11 the sho
k has rea
hed the lower wall and it starts to rea
t to thein
reasing outlet pressure raise. The delay between the instant in whi
h the pressure startsto in
rease and the one in whi
h the sho
k feel the pressure in
rease is due to the �nite speedof propagation of sound. Some time after (�gures 5.12 and 5.13), although the pressure isde
reasing, the sho
k is moving upstream and deforming. Again the �nite speed of soundis responsible for this time lag. At times t = 24�=8! and t = 26�=8! the 
ow is subsoni
throughout the 
hannel, as it 
an be seen in �gures 5.14 and 5.15. The pressure minimum isrea
hed at t = 28�=8! when a weak sho
k is already present on the upper wall (�gure 5.16).The end of the se
ond 
y
le is shown in �gure 5.17, where the 
ow pattern of �gure 5.10 isrestored.
Figure 5.10: Transoni
 Channel: Unsteady Solution, !t = 2�. Left: Present, Right: [33℄

Figure 5.11: Transoni
 Channel: Unsteady Solution, !t = 18�=8. Left: Present, Right: [33℄
Figure 5.12: Transoni
 Channel: Unsteady Solution, !t = 20�=8. Left: Present, Right: [33℄
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Figure 5.13: Transoni
 Channel: Unsteady Solution, !t = 22�=8. Left: Present, Right: [33℄
Figure 5.14: Transoni
 Channel: Unsteady Solution, !t = 24�=8. Left: Present, Right: [33℄
Figure 5.15: Transoni
 Channel: Unsteady Solution, !t = 26�=8. Left: Present, Right: [33℄
Figure 5.16: Transoni
 Channel: Unsteady Solution, !t = 28�=8. Left: Present, Right: [33℄
Figure 5.17: Transoni
 Channel: Unsteady Solution, !t = 4�. Left: Present, Right: [33℄51



The 
omparison between the solution obtained here and the referen
e one shows a goodagreement, 
onsidering that both are obtained numeri
ally. What is interesting to note isthat the spa
e-time s
hemes seem to have a small advan
ing phase shift with respe
t to the�nite volume method used in the referen
e. Figures 5.11, 5.12 and 5.13 
learly show that thesho
k, espe
ially on the lower wall, is situated more upstream in the spa
e-time solution thanin the �nite volume one, as if one was looking at a later time solution. Same thing for thesmooth 
ow patterns of �gures 5.14 and 5.15, whi
h seem identi
al in the result obtained hereand in the referen
e one, apart from a 
onsistent spa
e, and hen
e time, shift. One element totake into a

ount 
ould be the grid used in the 
omputations, but in [33℄ a stru
tured 79� 30grid was used, while the mesh of �gure 5.9 
ontains 3162 nodes whi
h is a bit more than thenumber of 
ells used in the referen
e, although reasonably 
lose to it. A di�erent explanation
ould be that the spa
e-time approa
h itself might introdu
e a phase error when applied tonon-linear periodi
 problems. Other tests reported in this 
hapter will show the same typeof advan
ing phase error, whi
h deserves further investigation. As far as the present test-
ase is 
on
erned, a 
omputation on a �ner grid 
ould be performed to verify if the apparentadvan
ing phase error is still present.A Cylindri
al 1D Riemann Problem with a Sour
e TermTo test the a

ura
y of the new sour
e terms dis
retization, a 
ylindri
al 1D Riemann problemsimilar to the one proposed in [34℄ has been solved. Consider the physi
al state des
ribed in�gure 5.18: an initial 
ir
ular dis
ontinuity in pressure and density lo
ated in the 
enter ofthe physi
al domain on top of a stati
 ba
kground2.The idea is to use the 1D radial version of the axisymmetri
 Euler equations to simulatethe time evolution of su
h a system.
u = 0
p = 3

v = 0

ρ = 3
u = 0
p = 1

v = 0

ρ = 1

Figure 5.18: Initial Physi
al State for the Cylindri
al Riemann Problem
2Zero velo
ity everywhere 52



The 2D axisymmetri
 Euler equations 
an be written as��t 2664 ��ux�ur�E 3775 + ��x 2664 �u�u2x + p�uxur�uxH 3775 + ��r 2664 �ur�uxur�u2r + p�urH 3775 = S ; S = �1r 2664 �ur�uxur�u2r�urH 3775 ; (5.4)being x the axis of symmetry, ux the 
omponent of the velo
ity parallel to the axis and urthe radial 
omponent of the velo
ity. Considering again �gure 5.18, the x axis would be theone perpendi
ular to the page and the radial would be the one starting from the 
enter of the
ir
ular dis
ontinuity and going toward the external region of the domain. Note that system(5.4) 
an be seen as system (5.1) with the addi
tion of the sour
e term S whi
h a

ounts forthe e�e
ts of the axisymmetry. In parti
ular, assuming ux = 0 and �=�x = 0 everywhere, oneends with ��t 24 ��ur�E 35 + ��r 24 �ur�u2r + p�urH 35 = S ; S = �1r 24 �ur�u2r�urH 35 ; (5.5)whi
h is nothing else than the system of the 1D Euler equation, with the sour
e term S.Finally the de�nition of the Riemann problem is: solve system (5.5) with the initial state� [ � ur p ℄ = [ 3 0 3 ℄ if r < r0[ � ur p ℄ = [ 1 0 1 ℄ if r > r0 :The problem is that, sin
e no analyti
al solution is available for su
h a test-
ase, one needsto build a referen
e solution. The approa
h used here is the following: Solve the real 2DRiemann problem des
ribed in �gure 5.18 on a �ne isotropi
 mesh with the 2nd order blendeds
heme and at the same time solve the 1D Riemann problem with the sour
e term on a very�ne 1D mesh using the blended s
heme and the new sour
e term treatment. Note that one
ould simply use the 1D se
ond order solution on the �ne mesh as a referen
e, but the 
om-parison with the 2D solution will further verify the reliability of the 1D result. For symmetryreasons, the 2D 
omputation was run only on one quarter of the physi
al domain using anisotropi
 Delaunay mesh with 20000 triangles and 10201 nodes. A 
lose-up view of the meshis given in �gure 5.19.Note that a 2D Riemann problem has been already proposed as a test-
ase in [14℄, but inthat 
ase the initial dis
ontinuity was taken to be square-shaped, so that on the symmetrylines3 a pure 1D Riemann problem was re
overed. In this 
ase one would expe
t, given thesymmetry of the problem and the isotropi
 mesh, to have the same distribution of the variablesalong any ray going through the origin of the domain. The 2D solution at t = 0:4 is shown in�gure 5.20 in terms of density and pressure 
ontours. It 
an be noted that the solution presentsa reasonable 
ylindri
al symmetry, 
onsidering that in the mesh no preferential orientation ofthe edges of the triangles do exist.3Parallel to the edges of the initial dis
ontinuity 53
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Figure 5.19: Close-up View of the Isotropi
 Mesh used for the Cylindri
al Riemann Problem
Density: B scheme
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Figure 5.20: Cylindri
al Riemann Problem: t = 0:4, B s
heme. Left: density, Right: pressureThe 1D solution was 
omputed using 4001 nodes and then 
ompared with 
uts of the2D solution along rays going through the origin of the 
ir
ular dis
ontinuity, at di�erentangles. The 
omparison is shown in �gure 5.21, where the 1D solution is the solid lineand the 2D results are plotted with symbols. Several 
on
lusions 
an be drawn from the
omparison. The agreement between 1D and 2D results indi
ates that the 1D model is
orre
t and the 1D solution 
an be indeed 
onsidered as a referen
e given the agreement withthe multidimensional one. Furthermore, 
omparing the plots at di�erent angles one realizesthat a very small deviation from 
ylindri
al symmetry is present in the 2D solution.
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Figure 5.21: Cylindri
al Riemann Problem: Comparison of the 1D Solution (solid line) with
uts of the 2D Solution Along Rays at Di�erent Angles (symbols)55



On
e a referen
e solution has been obtained, the new sour
e term dis
retization has beentested on this new 1D Riemann problem. In parti
ular, the N s
heme and the blendeds
heme with the 
onsistent treatment of the sour
e term have been used to solve the problemon di�erent meshes and the results have been 
ompared to the referen
e solution. The resultsare summarized in �gures from 5.22 to 5.24.
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Figure 5.22: 1D Cylindri
al Riemann Problem: t = 0:4, density. Left: B s
heme, Right: Ns
heme
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Figure 5.23: 1D Cylindri
al Riemann Problem: t = 0:4, pressure. Left: B s
heme, Right: Ns
hemeFrom the pi
tures is 
lear that the B s
heme behaves as a typi
al 2nd order s
heme while theN s
heme is indeed only �rst order. This di�eren
e is 
on�rmed by the dire
t 
omparisonof the two s
hemes given in �gure 5.25. The 
on
lusion one draws from this test is thatindeed the new sour
e term treatment works and it is robust enough to handle dis
ontinuoussolutions. In addition, the blending of the LP LDA s
heme with the N s
heme with thein
lusion in both of the 
onsistent dis
retization of the sour
e terms gives a blended s
hemewhi
h is indeed monotone and gives a sharper resolution of the dis
ontinuities, typi
al of ase
ond order s
heme. 56
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Figure 5.24: 1D Cylindri
al Riemann Problem: t = 0:4, Ma
h. Left: B s
heme, Right: Ns
heme
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Figure 5.25: 1D Cylindri
al Riemann Problem: 
omparison between N and B s
hemes bothwith the new 
onsistent treatment of the sour
e term
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5.1.2 Steady ComputationsSteady Quasi-1D Nozzle FlowsA typi
al 1D test-
ase with a sour
e term is obtained 
onsidering the so-
alled quasi-1D Eulerequations, that is, the 1D Euler equations in whi
h one takes into a

ount the variation withthe x 
oordinate of the area 
rossed by the 
uid. Indi
ating with A = A(x) the variation ofthe 
ross-se
tional area, the system of equation reads��t 24 �A�uA�EA 35+ ��x 24 �uA(�u2 + p)A�uHA 35 = S ; S = 24 0p�A�x0 35 :De�ning the modi�ed density �0 = �A and modi�ed pressure p0 = pA the equations 
an berewritten as ��t 24 �0�0u�0E 35+ ��x 24 �0u�0u2 + p0�0uH 35 = S 0 ; S 0 = 24 0p0A �A�x0 35 ;while the equation of state be
omesp0 = (
 � 1)�0�E � u22 � :It is 
lear that if the modi�ed density and pressure are used as primitive variables, thequasi-1D Euler equations 
an be 
onsidered as the 1D Euler equations with the addition ofa sour
e term whi
h a

ounts for the variation of the 
ross-se
tional area. The advantageof this approa
h is that it allows to perform simulations of 
ows through 1D 
hannels ofarbitrary geometry, by simply adding to the equations a sour
e term and by imposing theproper initial and boundary 
onditions. In parti
ular, here the same 1D nozzle geometry usedin [35℄ was used in the 
omputations, for whi
h the area variation, plotted in �gure 5.26, 
anbe analyti
ally expressed asA(x) = ( 1 + 32 �1� x+55 �2 if � 5 � x � 01 + 12 �1� x+55 �2 if 0 � x � 5 :

-5 -4 -3 -2 -1 0 1 2 3 4 5
XFigure 5.26: Cross-Se
tional Area Variation for the Quasi-1D Nozzle Flow Simulations58
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(e)Figure 5.27: Steady Quasi-1D Euler: Ma
h Number distribution along the nozzle. (a) FullySubsoni
, (b) Cho
ked Subsoni
, (
) Adapted, (d) Transoni
 Sho
k, (e) Fully Supersoni
For steady quasi-1D 
ows, a simple pro
edure to 
ompute the exa
t solution exists based onthe isentropi
 
ow relations and on the Rankine-Hugoniot sho
k 
onditions. This te
hnique,extensively explained in [35℄, was used here to 
ompute the exa
t solution for �ve di�erent59




ases: fully subsoni
 
ow, 
ho
ked subsoni
 
ow , adapted 
ow, a 
ow with a transoni
 sho
kand a supersoni
 
ow. On
e the exa
t solution was known, the exa
t total temperature andpressure at the inlet have been used to impose the inlet boundary 
ondition for the subsoni

ases and the same has been done for the outlet pressure. Note that the boundary treatmentis 
ru
ial espe
ially for the subsoni
 outlet, sin
e the sho
k position and the appearan
e ofthe 
ho
king 
ondition are very sensitive to the variation of the outlet pressure. Sin
e it iswell known that a pure 1D upwind dis
retization with a 
onsistent upwinding of the sour
eterm yields a se
ond order solution (see referen
es [23, 24, 25℄), and in order to further testthe new multidimensional upwind sour
e term treatment, the 
omputations were run withthe spa
e-time blended s
heme, starting from a uniform 
ow, and mar
hing in time until asteady state was rea
hed in terms of the L2 norm of the density residual4. The �nal resultof the 
omputations on 201 points are presented in terms of Ma
h number distribution alongthe nozzle and are plotted in �gure 5.27 together with the exa
t solution. The agreement isremarkable.Jets Intera
tionThis is the �rst of a series of steady tests performed to verify the robustness and the reliabilityof the new dis
retization te
hniques proposed in 
hapter 3. In parti
ular, the new treatmentof 
onservation has been 
ompared on this problem to the traditional approa
h based on theDe
onin
k-Struijs-Roe linearization of the ja
obians of the system. The steady matrix s
hemesdes
ribed in se
tion 2.1.2 have been used and Simpson's rule has been used for the 
ontourintegration. The test is taken from [1℄ and it 
onsists of the intera
tion of two horizontalsupersoni
 jets whi
h are suddenly brought into 
onta
t. The upper stream is 
hara
terizedby Mup = 4, �up = 0:5 and pup = 0:25, while for the lower stream one has: Mlow = 2:4,�low = 1:0 and plow = 1:0. The domain is a 1 � 1 square. The intera
tion of the two jetsprodu
es a sho
k wave in the low pressure jet and an expansion fan in the high pressure one.A 
onta
t dis
ontinuity develops in the middle. The mesh used is a 100� 100 diamond grid.In �gure 5.28 the des
ription of the problem and a zoom of the mesh used in the 
omputationare reported.
M = 4.0

M = 2.4

Shock

Expansion Fan

Slip/Contact

Figure 5.28: Jets Intera
tion Problem: Problem Des
ription and Zoom of the grid4Pra
ti
ally speaking, the 
omputation was stopped when Pi=1;��� ;nodes(�n+1i ��ni )2nodes was smaller than a �xedthreshold � � 10�7 � 10�8, where n indi
ates the physi
al time level60



The results obtained with the s
hemes based on the new treatment of 
onservations arereported in �gure 5.29 in terms of density 
ontours. The 
orre
t reprodu
tion of the physi
s
an be seen from the pi
ture. The outlet Ma
h number distribution is then 
ompared in�gure 5.30 with the one obtained on the same mesh and using the traditional formulation ofthe s
hemes based on the 
omputation of the integral of the 
uxes using the Roe averagedquasi-linear form of the equations.
New N scheme: density
20 contours between 0.5 and 1

New B scheme: density
20 contours between 0.5 and 1

Figure 5.29: Jets Intera
tion Problem: Solution obtained with the new s
hemes. Left: Ns
heme, Right: B s
hemeBoth the new N s
heme and B s
heme have been tested and 
ompared with their originalversion. First, from the density isolines, one 
an re
ognize the 
omplete monotone behaviorof the s
hemes based on the new treatment of 
onservation and the sharp resolution of thedis
ontinuities obtained with the blended s
heme whi
h seems indeed se
ond order. The
omparison with the original s
hemes based on the De
onin
k-Struijs-Roe averaging showsperfe
t agreement.
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Figure 5.30: Jets Intera
tion Problem: Comparison with Roe Averaging, Outlet Ma
h Num-ber. Left: N s
heme, Right: B s
heme 61



S
ramjet InletThis problem is also taken from [1℄ and 
onsists of a supersoni
 inlet of a s
ramjet. The inletMa
h number is Min = 3:6, the upper wall is a symmetry line and the outlet 
ow is stillsupersoni
. The N and B s
hemes based on the new treatment of 
onservation were testedand 
ompared with their analogous based on Roe averaging. Figure 5.31 shows a detail of thegrid used for the 
omputations 
ontaining 7056 nodes and 13383 triangles, while the Ma
hisolines of the solutions obtained with the new N and B s
hemes are given in �gure 5.32.

Figure 5.31: S
ramjet Inlet. Parti
ular of the Grid
New N scheme: Mach
20 levels

New B scheme: Mach
20 levelsFigure 5.32: S
ramjet Inlet: Ma
h Number Isolines. Left: new N S
heme, Right: new BS
hemeBoth solutions show a good predi
tion of the 
ompression of the 
ow through the series ofsho
ks re
e
ting between the symmetry line and the wedge and the better resolution of theB s
heme is 
lear. Moreover, the solutions are both monotone. The distribution of densitypressure and Ma
h number along the symmetry line were 
ompared with the ones 
omputedwith the 
lassi
al N and B s
heme based on the De
onin
k-Struijs-Roe Linearization on thesame grid. The 
omparison is shown in �gures 5.33, 5.34 and 5.35. The agreement betweenthe solutions obtained with the di�erent approa
hes is almost perfe
t.
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Figure 5.33: S
ramjet Inlet: density along the symmetry line, 
omparison with Roe averaging.Left: N s
heme, Right B s
heme. Symbols: New Approa
h, Solid: Roe Average
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Figure 5.34: S
ramjet Inlet: pressure along the symmetry line, 
omparison with Roe averag-ing. Left: N s
heme, Right B s
heme. Symbols: New Approa
h, Solid: Roe Average
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Ma
h 10 Flow Around a CylinderIn order to further test the robustness of the new N s
heme based on the 
ontour integrationof the 
uxes with Simpson's rule, a Ma
h 10 bow sho
k over a 
ylinder was 
omputed. Thegrid used is a quite �ne Delaunay mesh 
ontaining 12085 nodes and 23740 triangles. Giventhe symmetry of the problem, only the upper half of the 
ow was simulated. The solutionobtained with the new approa
h is 
ompared with the results obtained with the original Ns
heme in �gure 5.36 in terms of Ma
h and pressure isolines. In parti
ular, the two solutionsare plotted one on top of the other with di�erent 
olors.
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Figure 5.36: Ma
h 10 Flow Over a Cylinder: 
omparison with Roe averaging
Blue: New N scheme with Simpson’s rule
Green: Roe average-based N scheme
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PressureFigure 5.37: Ma
h 10 Flow Over a Cylinder: Stagnation point64



A 
loser view of the stagnation point is also reported in �gure 5.37. As it 
an be seen from thepi
tures, one 
an hardly distinguish the two solutions. The 
on
lusion is that the N s
hemebased on the new treatment of 
onservation and 
ontour integration with Simpson's rule isas mu
h robust and reliable as the one based on Roe averaging is. This is 
on�rmed bythe 
omparison of pressure and Ma
h number distribution along the symmetry line shown in�gure 5.38.
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Figure 5.38: Ma
h 10 Flow Over a Cylinder: 
omparison with Roe averaging. Pressure andMa
h distribution along the symmetry lineMa
h 4 Flow Around a SphereA bow sho
k 
omputation was also used to test the robustness of the sour
e term dis
retiza-tion. In parti
ular, the steady matrix N s
heme with the new 
onsistent sour
e term treatmentof 
hapter 3 was used to solve equations (5.4) on the same 2D grid used for the test-
ase ofthe bow sho
k around a 
ylinder. This time the symmetry line has taken to be a line of axialsymmetry so that a bow sho
k around a sphere 
ould be simulated. The in
oming 
ow Ma
hnumber was taken to be M1 = 4. A 
omputation using a 
entered treatment of the axisym-metry sour
e term was tried to 
ompare with the new approa
h, but the 
entral dis
retizationturned out to be not stable enough to handle this problem. The result obtained with the newapproa
h is shown in terms of Ma
h number and pressure isolines in �gures 5.39 and 5.40.The plots show a perfe
t and monotone sho
k 
apturing. What is very important tounderline is that no spe
ial 
are has been taken in the low Ma
h region of the 
ow5, i.e. thebasi
 matrix s
heme has been applied to system (5.4) without any kind of pre
onditioningte
hnique (see referen
es [1, 2℄ for details). This adds value to the results shown here. Thedistribution of Ma
h number and pressure along the axis of symmetry is also reported (�gure5.41) to further prove the monotoni
ity of the solution.5Whi
h is also true for the Ma
h 10 
ow around a 
ylinder test-
ase
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Figure 5.40: Ma
h 4 Flow Over a Sphere: Ma
h (left) and pressure (right) isolines at theStagnation Point
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5.2 Two-Fluid Me
hani
al Equilibrium ModelThe two-phase 
ow model used in this proje
t is probably the simplest model available inliterature. It belongs to the 
lass of models 
alled Two-Fluid models and it 
an be obtainedfrom the most general model under the assumptions of invis
id and isentropi
 
ow of bothphases and of a very strong me
hani
al 
oupling of the two 
uids (see [5, 17, 18℄ for details).The two phases 
onsidered are a liquid phase and a gas phase 
hosen to be representative ofwater and air. As a 
onsequen
e of the hypothesis of isentropi
 
ow one does not need to solvethe energy equations, while the strong me
hani
al 
oupling between the phases translates intothe 
ondition of equal velo
ities of the two phases [5℄. The system of equations 
an be writtenin the following 
onservative form��t 2664 �l�l�g�g�u�v 3775 + ��x 2664 �l�lu�g�gu�u2 + p�uv 3775 + ��y 2664 �l�lv�g�gv�uv�v2 + p 3775 = 2664 00� (~g)x� (~g)y 3775 ;where �l and �g are the liquid and gas void fra
tions, �l and �g are the liquid and gas densities,~u = (u v) is the velo
ity ve
tor, ~g is the gravity ve
tor and � is the mixture density de�nedby � = �l�l + �g�g :The system is 
losed by the relation between the void fra
tions�l + �g = 1and by the state equations �l = �l0 + p� p0a2l ; p = �g�
gg :In the last equation �l0 and p0 are referen
e density and pressure for the liquid phase, al is thespeed of sound of the liquid phase, assumed to be 
onstant and 
g is the ratio of the spe
i�
heat 
oeÆ
ients of the gas phase. In all the 
omputations the following values have been usedfor these quantities �l0 = 1000 kg=m3p0 = 105 Paal = 1000 m=s
g = 1:4 :The value of the 
onstant �g in the gas state equation has been �xed to �g = 105 Pa (m3=kg)
g .Note that the equations of state used are 
onsistent with the hypothesis of isentropi
 
ow.Although the model is written in 
onservative form, no Roe-type linearization exists for it,hen
e this would be the typi
al 
ase in whi
h the new treatment of 
onservation should beapplied. Unfortunately, be
ause of the small amount of time left for this part of the proje
t,only the non-
onservative formulation used in [5℄ 
ould be implemented. In parti
ular, de�ning67



the ve
tor of primitive variables P = 2664 puv�g 3775 ;the system 
an be rewritten in the quasi-linear form�P�t +AP �P�x +BP �P�y = SP ; (5.6)with AP and BP given byAP = 2664 u �a2 0 01=� u 0 00 0 u 00 � 0 u 3775 ; BP = 2664 v 0 �a2 00 v 0 01=� 0 v 00 0 � v 3775 ;where a is a mixture speed of sound given bya = a0r�l�g��swith a0 =s �s�g�la2g + �l�ga2l ; �s = �l�g + �g�lbeing ag =p
gp=�g the speed of sound in the gas phase, while � is de�ned by� = a20�l�g�s ��ga2l � �la2g� :Sin
e the system is hyperboli
, the matrix C = APnx+BPny is diagonalizable with a 
ompleteset of real eigenvalues and linearly independent eigenve
tors. The eigenvalue de
ompositionof C is given in appendix E. The spa
e-time formulation of system (5.6) has been solvedusing the non-linear blended s
heme on three unsteady two-phase 
ow problems. The �rstand the se
ond one are very well known tests for whi
h has been possible to 
ompare thesolution obtained with analyti
al or experimental results. The third test has to be 
onsideredmore as an appli
ation of the new spa
e-time s
hemes to the simulation of relatively 
omplextwo-phase 
ows. In all the tests 
onsidered the gravity term played a major role, hen
e we
ould apply the new sour
e term treatment.The Os
illating Manometer ProblemThis is a rather simple 1D problem to set-up and it is very interesting sin
e an analyti
alsolution is available. It 
onsists of a U shaped tube �lled partially with liquid and partiallywith gas (see �gure 5.42). The total length of the tube is 20 m, 10 m of whi
h are �lledwith liquid. In the initial 
ondition the liquid is at the bottom of the tube and both liquid68
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Figure 5.42: Os
illating Manometer: Problem Statement and Initial Conditionand gas are moving with the same speed. In the 
omputations the tube has been 
onsideredone-dimensional and 
losed, so that simple periodi
 boundary 
onditions 
ould be used at itsextrema.The initial 
ondition is given by[ p ; u ; �g ℄ = 8><>: [ 105 ; 2:1 ; 1 ℄ if 0 � x � 5h 105 + �l0gL� sin��(x�5)L � ; 2:1 ; 0 i if 5 � x � 15[ 105 ; 2:1 ; 1 ℄ if 15 � x � 20 ;where g = 9:81 m=s2 is the magnitude of the gravity ve
tor and L = 10 m is the length ofthe liquid 
olumn. The e�e
t of the 
urvature is taken into a

ount in the initial pressuredistribution in the liquid phase and in the gravity term whi
h is de�ned as�g(x) = 8><>: g if 0 � x < 5g 
os��(x�5)L � if 5 � x < 15�g if 15 � x < 20 :The problem has an analyti
al solution. In parti
ular, the velo
ity at the bottom of the tube6u�(t) is given by u�(t) = 2:1 
os (!t) ; ! =p2g=L :The 
omputation was performed with two spatial resolutions and until time t = 15s whi
his slightly more than three periods of os
illation of the 
olumn. A �rst 
omputation on 201nodes was performed with di�erent CFL numbers. In parti
ular, thanks to the double layerapproa
h, 
omputations with CFL = 1, CFL = 10 and CFL = 20 were performed.6x = 10m 69



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t [s]

-2.1

-1.8

-1.5

-1.2

-0.9

-0.6

-0.3

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1
u

 [m
/s

]
Analytical Solution 
Numerical Solution ( CFL =1 )

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t [s]

-2.1

-1.8

-1.5

-1.2

-0.9

-0.6

-0.3

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

u 
[m

/s
]

Analytical Solution 
Numerical Solution (CFL = 10 )

Figure 5.43: Os
illating Manometer Problem: Comparison with the Exa
t Solution. Left:201 nodes - CFL = 1, Right: 201 nodes - CFL = 10
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Figure 5.44: Os
illating Manometer Problem: Comparison with the Exa
t Solution. Left:201 nodes - CFL = 20, Right: 401 nodes - CFL = 20The 
omparison between analyti
al solution and the solutions 
omputed at di�erent CFLnumbers is shown in �gure 5.43 and on the left in �gure 5.44. Common feature of all the solu-tions is a very small numeri
al damping of the amplitude of the os
illation and an advan
ingphase error. Surprisingly, the smaller the CFL number, and hen
e the value of the time-step,the larger the phase error. This somehow 
ontradi
ts the fa
t that for smaller time-steps onewould expe
t a better time a

ura
y of the solution. The 
omputation made with CFL = 20is indeed the best one, although a phase error is still visible. This 
an be attributed to thea

umulation of the phase error in the 
omputations made with smaller CFL numbers, dueto the larger number of iterations needed to rea
h a �xed time with a smaller time-step.70
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Figure 5.45: Os
illating Manometer Problem: Comparison with the Exa
t Solution. Left:201 nodes - in
uen
e of CFL number, Right: CFL = 20 - In
uen
e of grid resolutionThe advan
ing phase shift observed here seems to be 
onsistent to the one observed in the
omputations of the transoni
 
hannel with 
u
tuating ba
k-pressure. Whether the spa
e-time treatment itself 
ould introdu
e a phase error, when applied to non-linear equations, isnot 
lear at the moment and further investigation of this aspe
t has to be done in the future.The 
omputation at CFL = 20 was repeated on a �ner mesh 
ontaining 401 nodes. Theresult is reported on the right in �gure 5.44. The agreement with the exa
t solution is verygood, but a phase shift starts to be visible already at the beginning of the fourth 
y
le. Figure5.45 summarizes the analysis made. As a matter of fa
t, the results obtained are not too bad,although the reasons of the advan
ing phase error should be investigated. Another importantpoint is to perform some 
omputations using the 
onservative formulation of the equations
oupled with the new treatment of 
onservation, whi
h will help to understand if the phaseshift is related to the non-
onservative approa
h used.Sloshing of a Water Column in a TankThis problem has been used by several authors as a validation test for two-phase 
ow 
odes[5, 37℄ and has been also experimentally studied [36, 37℄. The problem 
onsists of a liquid
olumn initially at rest in hydrostati
 equilibrium in a tank. The height of the initial water
olumn is 2L and its width is L. The tank is a square with side 4L and in the experimentsits top side is open. Figure 5.46 summarizes the geometry of the problem.At time t = 0 the water 
olumn is left free to move and an instability due to gravity 
ausesits break down. The water starts to move toward to opposite wall of the tank until it splashesagainst it and then moves ba
k. Some experimental data are available in literature for theposition of the leading edge of the moving liquid front. The distan
e of the front from the leftwall of the tank Z s
aled by the initial width of the water 
olumn L is given as a fun
tion ofthe redu
ed time t� de�ned by t� = tp2g=L ;71
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Figure 5.46: Sloshing of a Water Column: Geometry of the Problem and Initial Conditionbeing g the gravity a

eleration. The initial 
olumn width used in the 
omputations isL = 0:146 m, whi
h is the same used for the experiments in [37℄. Unfortunately, be
auseof the numeri
al di�usion, the interfa
e between the phases is spread over several 
omputa-tional 
ells, so that a pre
ise interfa
e is not de�ned. What is usually done to 
ompare withexperimental data is to assume that the interfa
e is lo
ated in the position where the gasvoid fra
tion assumes the value �g = 0:5. Using this 
riterion, the numeri
al position of theliquid front was 
ompared with the experimental data of referen
es [36, 37℄. The numeri
alsimulation was performed using the spa
e-time formulation of system (5.6) and the non-linearblended s
heme. The mesh used is an isotropi
 Delaunay mesh similar to the one in �gure5.19, 
ontaining 11804 nodes and 23206 triangles. The CFL number was �xed to 100. The
omparison between the numeri
al predi
tion and the experimental data is shown in �gure5.47. The numeri
al results predi
t 
orre
tly the parabola-like behavior of the experimentaldata and it is also quantitatively very good at the earlier times of the movement of the waterfront, until t� � 2 whi
h 
orresponds to a physi
al time t � 0:172 s. The agreement worsens,although still qualitatively a

eptable, at later times. The reason of this 
ould be of 
oursein the poor modeling of the physi
s. The model used is indeed one of the simplest one 
anthink of. It does not in
lude any vis
ous e�e
t and, even more important, no modeling ofthe surfa
e tension e�e
ts is in
luded7. From the numeri
al point of view, a possible wayof improving the result is 
ertainly the use of a 
onservative approa
h that would guaranteea numeri
ally 
orre
t predi
tion of the position of the interfa
e whi
h is not guaranteed bythe present non-
onservative formulation. Of 
ourse this would not over
ome the problemsrelated to the modeling issue.The unsteady motion of the liquid mass has been also visualized plotting the isolines ofthe gas void fra
tion. The visualizations are reported in �gures from 5.48 to 5.51, where theliquid phase is in blue and the gas phase in red. The initial 
ondition is shown on the left in�gure 5.48. On the right in the same �gure the water 
olumn has already broken apart andit is moving toward the right end of the tank.7The equilibrium of the stresses at the interfa
e is probably what in
uen
es the real shape and motion ofthe interfa
e 72
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Figure 5.47: Sloshing of a Water Column: Comparison with Experimental Data

Figure 5.48: Sloshing of a Water Column: Gas Void Fra
tion. Left:t� = 0, Right:t� � 1:2On the right in �gure 5.49 the liquid front has rea
hed the wall and the splashing of the liquidon the wall is visible on the left in �gure 5.50. The beginning of the sloshing of the water is�nally shown on the right in �gure 5.50 and in �gure 5.51. In the 
aption of ea
h pi
ture therelative redu
ed time t� is indi
ated. 73



Figure 5.49: Sloshing of a Water Column: Gas Void Fra
tion. Left:t� � 2:5, Right:t� � 3:8

Figure 5.50: Sloshing of a Water Column: Gas Void Fra
tion. Left:t� � 5:2, Right:t� � 6:5The visualizations show the e�e
t of the numeri
al di�usion spreading the void fra
tion dis-
ontinuity over a region 
overing several triangles. Note that the dis
ontinuity in the voidfra
tion is a linearly degenerated dis
ontinuity, exa
tly like a slip line is for the Euler equa-tions. As remarked when speaking about the Ma
h 3 
ow over a forward step problem, thespa
e-time s
hemes, be
ause of the time upwinding, tend to badly smear this kind of dis-
ontinuities. As a last remark, it must be mentioned that, be
ause the interfa
e betweenthe phases spreads over several 
ells, its position is not uniquely de�ned. In parti
ular, the
omparison with the experimental data of �gure 5.47 was done assuming the interfa
e to belo
ated where the void fra
tions rea
h the value 0:5.
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Figure 5.51: Sloshing of a Water Column: Gas Void Fra
tion. Left:t� � 7:8, Right:t� � 9Gas Plume Test-CaseThe evolution of a gas mass inje
ted verti
ally into a liquid 
olumn initially at rest is 
on-sidered here. The water is initially in hydrostati
 equilibrium and the gas is inje
ted with aninlet verti
al velo
ity of 0:2 m=s. At the top the liquid phase is in 
onta
t with gas at atmo-spheri
 pressure. The inje
tion starts at t = 0 s and the entrainement of the gas phase intothe liquid due to the formation of two symmetri
 vorti
es is observed. Given the symmetryof the problem, only half of it was simulated on a isotropi
 Delaunay grid (see �gure 5.19)with a mesh-size h � 0:01 
orresponding to one tenth of the inje
tion hole. System (5.6) wassolved in its spa
e-time formulation using the non-linear blended s
heme and a CFL = 100.A similar test was performed in [5℄ with the same geometry, a higher inje
tion speed anda mu
h 
oarser mesh, solving system (5.6) with a �rst order residual distribution method.What is important to underline is that this test has a pure a
ademi
al meaning, given the verysimple model used8 and the geometry of the problem9. The initial evolution of the inje
tedgas, 
lose to the inlet, and the formation of the two vorti
es is visualized using the isolines ofthe gas void fra
tion and the velo
ity ve
tors in �gures from 5.52 to 5.55 where the red 
olordenotes pure gas and the blue pure liquid. Note that the formation of the two 
ounter-rotatingvorti
es is related to the 
oupled e�e
t of the gravity and of the equal velo
ity of the phases.Be
ause of the last, in parti
ular, in the regions where the void fra
tion goes from one to zerothe liquid moves with the same velo
ity of the gas as if an in�nite fri
tion at the interfa
ewas a
ting10.
8Vis
ous and surfa
e tension e�e
ts are not in
luded9The inje
tion hole has a width of about 0:1 m whi
h is pra
ti
ally too mu
h to 
onsider a jet of pure air10Whi
h is a
tually the basi
 assumption in the model75



Figure 5.52: Gas Plume Problem: Gas Void Fra
tion at the inlet. Left: t = 0:2 s, Right:t = 0:4 s

Figure 5.53: Gas Plume Problem: Gas Void Fra
tion at the inlet. Left: t = 0:6 s, Right:t = 0:8 s
76



Figure 5.54: Gas Plume Problem: Gas Void Fra
tion at the inlet. Left: t = 1:0 s, Right:t = 1:2 s

Figure 5.55: Gas Plume Problem: Gas Void Fra
tion at the inlet. Left: t = 1:4 s, Right:t = 1:6 s
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Chapter 6Con
lusions, Final Remarks andFuture Perspe
tives
A
hievements and Con
lusionsThe main goal of this proje
t was to investigate the 
apabilities of a new Spa
e-Time for-mulation of the Residual Distribution s
hemes and eventually to show its appli
ation to thesimulation of unsteady two-phase 
ows on unstru
tured grids. The starting point was a 
odein whi
h the basi
 method was implemented. The strategy adopted to rea
h the obje
tive hasbeen that of implementing step by step all the utilities and features needed to run more 
om-plex simulations and in parallel to develop the ne
essary theoreti
al ba
kground. Followingthis path the main a
hievements of the proje
t 
an be summarized as followsValidation of the Code and of the MethodStarting already with the initial version of the 
ode, the new method has been intensivelytested on a large number of problems, eventually 
omparing the solution obtained withreferen
e solutions available in literature or with analyti
al solutions.Boundary ConditionsTo enlarge the 
apabilities of the 
ode, a set of 
hara
teristi
s-based boundary 
onditions
onsistent with the nodal variable representation of the numeri
al method and basedon the work done previously in [1℄ has been developed and analyzed, showing howto obtain an extension to impli
it 
omputations without the need of 
omputing anynumeri
al ja
obian.Sour
e Term Dis
retizationTo be able to perform two-phase 
ow simulations, there must be a way to in
lude in thedis
retization the sour
e terms present in the equations in a 
onsistent manner whi
hdoes not spoil the a

ura
y of the basi
 s
heme and at the same time is robust enoughto handle dis
ontinuous or sti� sour
es. One possible way to do this has been developedand tested on rather severe problems within this proje
t.New Conservative FormulationResidual Distribution s
hemes were born for the solution of multidimensional s
alar ad-79



ve
tion problems and then later extended to the system of the Euler equations. This waspossible thanks to their matrix formulation and to the extension of the Roe linearizationto the multidimensional upwind method. A problem 
ommon to anybody willing to usethe RD method to solve a di�erent system of equations is that, if no Roe linearizationexists for the system, the method is not able to guarantee full 
onservation. The MHDequations, the equations of a 
hemi
ally rea
ting 
ows and the two-phase Two-Fluidmodels are examples of systems for whi
h no 
onservative linearization of the ja
obiansexists. Here, a new formulation of the RD s
hemes has been proposed whi
h guaranteesfull 
onservation without the need of any Roe-type linearization. The new approa
h hasbeen tested and 
ompared with the traditional formulation of the s
hemes.Appli
ation to Two-Phase FlowsThe last item of this proje
t was the appli
ation of the spa
e-time approa
h to the simu-lation of two-phase 
ows. The model used is one of the simplest present in the literature,but still very interesting two-phase problems 
ould be solved. The new theoreti
al re-sults 
on
erning sour
e term dis
retization and 
onservation are of 
ourse of primaryinterest be
ause they allow to dis
retize the two-phase 
ow equations in a 
onsistent,a

urate and 
onservative manner. Unfortunately, be
ause of the time restri
tions, thenew 
onservative formulation 
ould not be implemented, hen
e only the new treatmentof the sour
e term 
oupled with the spa
e-time approa
h has been used.The main a
hievements of the proje
t are 
ertainly the new developments relative to sour
eterms and 
onservation. The results presented indeed prove their robustness although moretesting is needed. The two-phase 
ow simulations have shown very promising results, besidesthe simple model used. As far as the spa
e-time s
hemes are 
on
erned, at the momentthey are indeed the most robust and a

urate formulation of the RD s
hemes for unsteadysimulation. As a matter of fa
t, in their present formulation, they are by far more expensivethan a �nite volume method 
oupled with a Runge-Kutta time integrator and their extensionto three spatial dimensions1 would probably not be 
ompetitive enough espe
ially in termsof memory requirements. Nevertheless they 
ould still be optimized and be very useful fortwo dimensional and axisymmetri
 
omputation. A

ording to the author, the spa
e-times
hemes do not represent the ultimate way of performing a

urate unsteady simulations usingthe RD method.Future Perspe
tivesSeveral topi
s related to the work done deserve further attention1. The strong node-wise boundary 
ondition treatment used here, that allows a true 
ontrolof the nodal value of the unknowns on the boundaries, should be implemented in animpli
it solver and 
ompared with the ghost-nodes approa
h used now in most of theRD 
odes. In parti
ular, the advantage of being able of 
omputing analyti
ally the newja
obian entries should be exploited.1Apart from the trouble in extending the 
onstrained spa
e-time meshing to 4D80



2. The new 
onservative formulation of the s
hemes enables to extend the use of the 
u
-tuation splitting s
hemes to any system of equations. Of 
ourse one of the �rst itemsto take into 
onsideration is to use it to solve the two-phase problems 
onsidered here.Further appli
ation to 
hemi
ally rea
ting 
ows and to the MHD equations should bealso tried.3. A di�erent use of the possibility of 
omputing the 
ell residual through a numeri
al
ontour integration 
ould be to build more a

urate s
hemes. In fa
t, sin
e the 
ontourintegral and hen
e the 
ell residual 
an be 
omputed with any a

ura
y just by 
hangingthe quadrature rule, third order or even even more a

urate s
hemes 
ould be built.Two important issues have to be dealt with: how to de�ne the residual distributionstrategy and how to retain positivity when higher order polynomial representations ofthe variables are used. Help might 
ome for the se
ond issue from the work done in the�eld of the dis
ontinuous Galerkin method [30℄.4. Being able to perform 3D a

urate unsteady 
omputations using residual distributions
hemes still remain a 
hallenge, sin
e the spa
e-time approa
h would probably be tooexpensive. A way to go 
ould be to go ba
k to the �nite elements formulation of thes
hemes, 
oupling it with the ideas at the basis of stabilized �nite elements methods.A blending of the 
onsistent mass matrix with the lumped one 
ould be one of the �rstthings to try. Following the work of Sidilkover [38℄ the 
omputation of the blending
oeÆ
ient should be based on the time variation of the unknown. Investigation of theappli
ation to the time derivative of the same te
hnique used for the dis
retization ofthe sour
e terms and for the treatment of 
onservation 
ould be also interesting5. Even for two dimensional and axisymmetri
 
ows, the spa
e-time s
hemes are veryexpensive and a long 
omputational time 
an be required also for simple problems. Theexpli
it pseudo-time iterative pro
edure in use at the moment 
ould be abandoned infavor of a Newton or quasi-Newton iterative method, but the large memory requirementsasso
iated to the method have to be kept in mind.6. Cheaper spa
e-time meshing te
hniques, like the one proposed in [22℄, should be 
on-sidered.7. The dual time loop intrinsi
 in the spa
e-time method of solution 
ould be easily usedto perform in
ompressible 
ow simulation by the use of the arti�
ial 
ompressibilityapproa
h.8. Dual time pre
onditioning te
hniques 
ould be easily 
oupled with the spa
e-time method,thanks to its intrinsi
 dual time-stepping formulation.
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Appendix AConsisten
y of the NS S
heme in 1DIt is known that the 1D upwind �nite volume Roe s
heme 
an be rewritten as a RD s
heme(see [1, 26℄). In parti
ular, with referen
e to �gure A.1, s
heme (3.6) 
an be rewritten as(�ei )UP = Â�e (Ui+1 � Ui)� I�sgn(Âe)2 �x2 (Si + Si+1)��e�1i �UP = Â+e�1(Ui � Ui�1)� I+sgn(Âe�1)2 �x2 (Si + Si�1) ;and similarly for the nodes i+ 1 and i� 1.
U i−1

U i

  i  i+1 i−1

 i+1

 i−1/2   i+1/2

U

U i−1
U i

U i+1

  i  i+1 i−1

e−1   e

FVRDS

Figure A.1: RD formulation of a 1D Finite Volume S
hemeIn order to derive the 1D version of s
heme (3.4) 
onsider the following relations:8>>>>>>>>><>>>>>>>>>:
Kei = �A ! K�i = �A�jAj2 = �A+ = � I+sgn(A)2 A! K+i = �A+jAj2 = �A� = �I+sgn(A)2 A! I+i = K+i (Kei )�1 = ��I+sgn(A)2Kei+1 = A ! K�i+1 = A� = I�sgn(A)2 A! K+i+1 = A+ = I+sgn(A)2 A! I+i+1 = K+i+1 �Kei+1��1 = I+sgn(A)2! Pj2eK+j = �Pj2eK�j = jAj ; Pj2e I+j = I : (A.1)
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Note that the subs
ript e has been dropped for 
learness.The sour
e term 
u
tuation (3.5) is given by�S = S�i + S�i+1 = �x2 Si + �x2 Si+1 ;and the in
ow states 
an be proven to beS�in = I�sgn(A)2 S�i + I+sgn(A)2 S�i+1 + �SUin = I+sgn(A)2 Ui + I�sgn(A)2 Ui+1 :Then, a

ording to (3.4) and using relations (A.1), the element-to-node 
ontribution for nodei from element e is (�ei )N;S = �A� (Ui � Uin) + I � sgn(A)2 (S�i � S�in) : (A.2)For the �rst term in the last equation one has� A� (Ui � Uin) =� A�Ui + I � sgn(A)2 AI + sgn(A)2 Ui + I � sgn(A)2 AI � sgn(A)2 Ui+1 =� A�Ui + A�1A�A+Ui + 14 (A� jAj) (I � sgn(A))Ui+1 = �A�Ui + A�Ui+1 ; (A.3)and �nally �A� (Ui � Uin) = A� (Ui+1 � Ui) :Note that in equation (A.3) the relation A�A+ = 0, the de�nition of the sign of a matrix(equation (3.8)) and the fa
t that sgn(A) = sgn(A�1) has been used. For the se
ond termin equation (A.2) one hasI � sgn(A)2 (S�i � S�in) =I � sgn(A)2 �S�i � I � sgn(A)2 S�i + I + sgn(A)2 S�i+1 � �S� =� I � sgn(A)2 �S + I � sgn(A)2 �I + sgn(A)2 S�i � I + sgn(A)2 S�i+1� =� I � sgn(A)2 �S + I � sgn(A)2 I + sgn(A)2 �S�i � S�i+1� =� I � sgn(A)2 �S + A�1A�A+A�1 �S�i � S�i+1� = �I � sgn(A)2 �S :Assembling the two 
ontributions and writing expli
itly the sour
e term 
u
tuation one endswith (�ei )N;S = Â�e (Ui+1 � Ui)� I � sgn(Âe)2 �x2 (Si + Si+1) = (�ei )UP :Similarly one 
an prove that ��e�1i �N;S = ��e�1i �UP .84



Appendix BThe New N S
heme is ISTConsider the s
heme given by the 
ombination of the NS and the N 
 s
hemes introdu
ed in
hapter 3: �j = I+j �KTj (Uj � U
) + S�j � S�in� ;beingS�in =  Xl2T I+l !�1 Xl2T I+l S�l + �S! ; U
 =  Xj2T K+j !�1 Xj2T K+j Uj � �T! ;and �T = I�T ~F � ~n dl ; �S = ZT S d
 :What we would like to do is to extend the proof of the IST property also to this s
heme. Inorder to do this, 
onsider two sets of variables U and W , linked by the relation�W = �W�U �U :It is easy to prove that KUj = �U�W KWj �W�U ;and hen
e K�Wj = �W�U K�Uj �U�W ; I+Wj = �W�U I+Uj �U�W : (B.1)Suppose U is the ve
tor of 
onserved variables, of 
ourse �T must be 
omputed using the
onservative 
uxes, hen
e �T = �T;U . Suppose that also �S is 
omputed in 
onservativevariables, 
onsistently with what is done for the 
uxes. So we also have �S = �S;U . De�nenow the following quantities�T;W = �W�U �T;U ; �S;W = �W�U �S;U ; S�;Wi = �W�U S�i ; Wi = �W�U Ui : (B.2)The nodal residual of the new s
heme will be 
omputed in the W variables as�Wj = I+Wj hKWj (Wj �W
) + S�;Wj � S�;Win i ;85



withS�;Win =  Xl2T I+;Wl !�1 Xl2T I+;Wl S�;Wl + �S;W! ;W
 =  Xj2T K+;Wj !�1 Xj2T K+;Wj Wj � �T;W! :Using relations (B.1) and (B.2) one 
an easily 
he
k thatS�;Win = �W�U S�in ; W
 = �W�U U
 ;and hen
e, using again (B.2)�Wj = I+Wj �KWj �W�U (Uj � U
) + �W�U �S�j � S�in�� :Applying one last time (B.1) to last equation, one 
an write�Wj = �W�U I+Uj � �U�W �W�U KUj �U�W �W�U (Uj � U
) + �U�W �W�U �S�j � S�in�� ;and �nally �Wj = �W�U I+Uj �KUj (Uj � U
) + S�j � S�in� = �W�U �Uj ;hen
e the new s
heme is IST .
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Appendix CFlux Computations
C.1 Se
ond Order Flux IntegrationThe proof of relation (3.12) will be given here, �rst in the 
ase of a triangle and then for atetrahedron. Consider then the triangle of �gure C.1; applying the trapezium rule one obtainsI�T ~F � ~n dl = �12 � ~F0 + ~F1� � ~n2 � 12 � ~F1 + ~F2� � ~n0 � 12 � ~F2 + ~F0� � ~n1 =� 12 ~F0 � (~n1 + ~n2)� 12 ~F1 � (~n0 + ~n2)� 12 ~F2 � (~n0 + ~n1) :Using the relation ~n0 + ~n1 + ~n2 = ~0, one ends withI�T ~F � ~n dl = 12 � ~F0 � ~n0 + ~F1 � ~n1 + ~F2 � ~n2� ;that is exa
tly what (3.12) says.
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Figure C.1: Contour Integration with Trapezium Rule87



In the 
ase of a tetrahedron the trapezium rule be
omesI�T ~F � ~n dl =� � ~F0 + ~F1 + ~F2�3 � ~n3� � ~F1 + ~F2 + ~F3�3 � ~n0� � ~F0 + ~F2 + ~F3�3 � ~n1� � ~F0 + ~F1 + ~F3�3 � ~n2= � ~F0 � ~n1 + ~n2 + ~n33 � ~F1 � ~n0 + ~n2 + ~n33 � ~F2 � ~n0 + ~n1 + ~n33 � ~F3 � ~n0 + ~n1 + ~n23 :Using the relation ~n0 + ~n1 + ~n2 + ~n3 = ~0, one ends withI�T ~F � ~n dl = 13 � ~F0 � ~n0 + ~F1 � ~n1 + ~F2 � ~n2 + ~F3 � ~n3� ;as we wanted to prove.C.2 Third Order Flux IntegrationUsing the notation of �gure C.2, Simpson's rule 
ontour integration reads:I�T ~F � ~n dl =� 13 �12 ~F0 + 2 ~Fm2 + 12 ~F1��~n2� 13 �12 ~F1 + 2 ~Fm0 + 12 ~F2��~n0� 13 �12 ~F2 + 2 ~Fm1 + 12 ~F1��~n1 =�13 �12 ~F0 � (~n1 + ~n2) + 12 ~F1 � (~n0 + ~n2) + 12 ~F2 � (~n0 + ~n1) + 2 ~Fm0 � ~n0 + 2 ~Fm1 � ~n1 + 2 ~Fm2 � ~n2� :
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Figure C.2: Contour Integration on a Triangle with Simpson's Rule88



Using the relation ~n0 + ~n1 + ~n2 = ~0 one ends withI�T ~F � ~n dl = 13 �12 ~F0 � 2 ~Fm0� � ~n0 + 13 �12 ~F1 � 2 ~Fm1� � ~n1 + 13 �12 ~F2 � 2 ~Fm2� � ~n2 ;exa
tly as stated by equation (3.13).
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Appendix DBoundary ConditionsConsider the following update formula:Un+1i = Uni � ki�Ri ;where the 
oeÆ
ient ki� is a fun
tion of the time-step and of the lo
al geometry, for exampleki� = �t=Si. The 
orre
tion related to the boundary treatment will be of the typeÆU� = X�ik>0 �krk ;where rk is the right eigenve
tor relative to the k-the positive eigenvalue of the ja
obian ofthe di�erential system �ik (see se
tion 4.1). The �nal update formula be
omesUn+1i = Uni � ki�Ri + ÆU� = Uni � ki� (Ri +R�i )! R�i = � 1ki� X�ik>0 �krk :Sin
e the eigenve
tors rk are known analyti
ally, the only information missing is the onerelative to the �k 
oeÆ
ient. As already explained, they are 
omputed from the imposition ofthe required boundary 
ondition on Un+1i . Instead of giving the general pro
edure to 
omputethe 
oeÆ
ients, here the way they were 
omputed for the Euler equations will be reportedas an example. In a se
ond se
tion the value of the �k 
oeÆ
ient for imposing the boundary
onditions for the Two-Fluid model are also given. For their 
omputation one 
an refer to [5℄.D.1 Euler EquationsInvis
id Wall Condition for the 2D Euler equationsThe 
ondition we want to impose is either �u? = 0 or un+1? = 0. What we need to 
omputeis the provisional in
rement ÆUi of our variables and then derive an equation for �w. Indi
atewith P = [�; u; v; p℄t the ve
tor of primitive variables, one has in a �rst order approximationÆPi = ��P�U �ni ÆUi = �ki���P�U �ni Ri ;91



where the ja
obian �P=�U is known analyti
ally (see appendix E). The last expression givesfor the provisional in
rement of the primitive variablesÆ� = �ki� (Ri)1Æu = �ki� (Ri)2�uni (Ri)1�niÆv = �ki� (Ri)3�vni (Ri)1�niÆp = (
 � 1) [�ki� (Ri)4 � kneiÆ�� �ni (uni Æu+ vni Æv)℄ ;where knei is the kineti
 energy per unit mass. In the 
ase of wall boundary 
onditions, thereis only one ingoing wave asso
iated to the eigenvalue ~u �~ni+a, with relative eigenve
tor givenin primitive variables as follows (see appendix E)rw = 2664 �ni =aninixniy�ni ani 3775 :Writing the �nal update in primitive variables, one obtains for the velo
ity 
omponentsun+1i = uni + Æu+ �wnixvn+1i = vni + Æv + �wniy ;and �nally multiplying the �rst equation by nix, the se
ond by niy and remembering thatn2ix + n2iy = 1, one obtains for un+1? and �u?un+1? = un? + Æu? + �w ! �u? = Æu? + �w ;being Æu? = Æunix + Ævniy. Finally the value of �k is obtained simply by setting un+1? = 0 or�u? = 0: un+1? = 0 ! �w = � (un? + Æu?)�u? = 0 ! �w = �Æu? :Note that �w 
an be written as the following linear 
ombination of the values of the nodalresidual:�w = Dw(Ui) �Ri + 
w(Ui) ; Dw(Ui) = ki�� [ �un? nx ny 0 ℄t ; 
w(Ui) = �un? :Subsoni
 Outlet Condition for the 1D Euler equationsPro
eeding exa
tly as in the previous 
ase, one obtains for the provisional in
rement of theprimitive variables Æ� = �ki� (Ri)1Æu = �ki� (Ri)2�uni (Ri)1�niÆp = (
 � 1) [�ki� (Ri)3 � kneiÆ�� �ni uni Æu℄ :Also in this 
ase the only ingoing wave is asso
iated to the eigenvalue ~u � ~ni+ a, with relativeeigenve
tor given in primitive variables as (see appendix E)ra = 24 �ni =aninx=jnxj�ni ani 35 :92



Writing the �nal update in primitive variables one obtains for the pressurepn+1i = pni + Æp+ �a�ni ani ;and �nally �a is obtained either imposing pn+1i = pout(tn+1) or �p = 0:pn+1i = pout(tn+1) ! �a = 1�ni ani (�Æp + pout(tn+1)� pni )�p = 0 ! �a = � Æp�ni ani :Note that the expression of �a is exa
tly the same for the 2D Euler equations. Making useof the de�nition of Æp, �a 
an be easily expressed as �a = Da(Ui) �Ri + 
a(ui). In parti
ularone 
an easily show that in the 2D 
aseDa(Ui) = 
 � 1�ni ani ki� [ knei � uni � vni 1 ℄t ; 
a = pout(tn+1)� pni�ni ani :Subsoni
 Inlet Condition for the 2D Euler equationsBe
ause of the lengthy algebra, only the general pro
edure will be explained and the �nalresults will be given. In this 
ase there are three positive eigenvalues given by ~u � ~ni + a and~u � ~ni two times. The eigenve
tors asso
iated to these eigenvalues are written in primitivevariables as (see appendix E)r1 = 2664 �ni =aninixniy�ni ani 3775 ; r2 = 2664 1000 3775 ; r3 = 2664 0�niynix0 3775 :As in the 
ase of the wall boundary 
onditions, one 
an easily derive the provisional in
rementfor the primitive variables:Æ� = �ki� (Ri)1Æu = �ki� (Ri)2�uni (Ri)1�niÆv = �ki� (Ri)3�uni (Ri)1�niÆp = (
 � 1) [�ki� (Ri)4 � kneiÆ�� �ni (uni Æu+ vni Æv)℄ :The variables we are interested in are the total temperature T0, the total pressure p0 and thetangent of the 
ow angle tg� = v=u. The idea is to write the in
rement of these variables asa linear 
ombination of the in
rements of the primitive variables. This 
an be obtained asfollows:T n+10i � T n0i = ÆT0 + ÆT �0 =�T0�� (Æ�+ Æ��) + �T0�u (Æu+ Æu�) + �T0�v (Æv + Æv�) + �T0�p (Æp+ Æp�) ; (D.1)pn+10i � pn0i = Æp0 + Æp�0 =�p0�� (Æ� + Æ��) + �p0�u (Æu+ Æu�) + �p0�v (Æv + Æv�) + �p0�p (Æp+ Æp�) ; (D.2)93



tgn+1�i � tgn�i = Ætg� + Ætg�� =�tg��� (Æ� + Æ��) + �tg��u (Æu+ Æu�) + �tg��v (Æv + Æv�) + �tg��p (Æp+ Æp�) ; (D.3)where the ve
tor of the 
orre
tive in
rements of the primitive variables is given by2664 Æ��Æu�Æv�Æp� 3775 = �1r1 + �2r2 + �3r3 : (D.4)Substituting the expression of the eigenve
tors in (D.4) and then inserting the expressionsof the 
orre
tive in
rements of the primitive variables in equations (D.1), (D.2) and (D.3)one obtains a linear system for the unknowns �k 
oeÆ
ients whi
h 
an be solved as soon asinformations are given on the time in
rements of T0, p0 and tg�. The �nal results are:�3 = vni Æuun? � uni Ævun? � �1 unkun?�2 = �2�=0 +��2�1 = �1�=0 +��1 ;where uk = uniy�vnix, �1�=0 and �2�=0 are the values of �1 and �2 obtained requiring �T0 = 0and �p0 = 0 and are given by�1�=0 = � Æp=(�ni ani )+2Æu?knei=(ani un?)1+2knei=(ani un?)�2�=0 = Æp(ani )2 � Æ� :By imposing a required value of T n+10 and ~pn+10 (see se
tion 4.1), one 
an 
ompute the addi-tional terms ��1 and ��2 whi
h are given by��1 = �p0=knei+
�ni �T0=(ani )2�ni ani ��(1+2knei=(ani un?))��2 = (
 � 1) �niani �1 + 1kneiani un?���1 � 
�ni(ani )2�T0 ;with �� = 1knei + 
�1(ani )2�T0 = R (T �0 � T n0 )�p0 = � pn0pni �� 1
 (p�0 � pn0) ;where T �0 and p�0 are the required total temperature and pressure required at the inlet.Although less easy to prove, �1, �3 and �3 
an be written, as in the previous 
ases, as�k = Dk �Ri + 
k.
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D.2 Two-Phase Equilibrium ModelInvis
id Wall Condition for the 2D Me
hani
al Equilibrium ModelOnly one positive eigenvalue is present in this 
ase and it is given by ~u �~ni. The 
orrespondentright eigenve
tor is rw = 2664 �ni aninixniy�ni =ani 3775 :The 
oeÆ
ient �w required for the wall boundary 
ondition �u? = 0 is given by�w = Æu? :Subsoni
 Outlet Condition for the 2DMe
hani
al EquilibriumModelAlso in this 
ase the only positive eigenvalue is given by ~u � ~ni with the 
orrespondent righteigenve
tor ra = 2664 �ni aninixniy�ni =ani 3775 :The 
oeÆ
ient �a required for the wall boundary 
ondition �p = 0 is given by�a = � Æp�ni ani :Subsoni
 Inlet Condition for the 2D Me
hani
al Equilibrium ModelIn this 
ase three positive eigenvalues are present: ~u�~ni and ~u�~ni two times. The 
orrespondentright eigenve
tors arer1 = 2664 �ni aninixniy�ni =ani 3775 ; r2 = 2664 0�niynix0 3775 ; r3 = 2664 0001 3775 :The 
oeÆ
ients needed to impose the 
onditions �(�u) = 0, �(�v) = 0 and ��g = 0 are�1 = �24��nlia2l + �ngi(angi)2�u?Æp+�ni Æu?�ni +��nlia2l + �ngi(angi)2�u?�ni ani 35�2 = �24��nlia2l + �ngi(angi)2�ukÆp+�ni Æuk�ni +��nlia2l + �ngi(angi)2�uk�ni ani 35�3 = �Æ�g � �1 �niani :
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For all the boundary 
onditions related to the Two-Fluid Model is also very easy to 
he
k that�k = Dk �Ri. In parti
ular, note that sin
e the 
omputations were a
tually run in primitivevariables, the provisional in
rements were simply 
omputed asÆp = �ki� (Ri)1Æu = �ki� (Ri)2Æv = �ki� (Ri)3Æ�g = �ki� (Ri)4 :
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Appendix EEquations, Ja
obians and EigenvalueDe
ompositions
E.1 2D Euler EquationsFor the Euler equations, two di�erent sets of variables are used in the 
omputations: the
onservative variables given by U = 2664 ��u�v�E 3775 ;and the primitive variables, given by P = 2664 �uvp 3775 :The transformations ja
obian matri
es between the two sets of variables are�U�P = 2664 1 0 0 0u � 0 0v 0 � 0ke �u �v 1
�1 3775 ; �P�U = 2664 1 0 0 0�u� 1� 0 0�v� 0 1� 0(
 � 1)ke �(
 � 1)u �(
 � 1)v 
 � 1 3775 ;being ke the kineti
 energy per unit mass. In primitive variables the ja
obian of the systemis given by C = 26664 ~V � ~n �nx �ny 00 ~V � ~n 0 nx�0 0 ~V � ~n ny�0 �a2nx �a2ny ~V � ~n

37775 ;
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where ~V �~n = ~u �~n in the steady 
omputations, while ~V �~n = unx+vny+nt for the spa
e-time
omputations. The eigenvalues and eigenve
tors of C 
an be 
omputed as�1 = ~V � ~n ; r1 = 2664 1000 3775 ;
�2 = ~V � ~n ; r2 = 2664 0�nynx0 3775 ;
�3 = ~V � ~n+ a ; r3 = 2664 �anxny�a 3775 ;
�4 = ~V � ~n� a ; r4 = 2664 �a�nx�ny�a 3775 :For the boundary 
onditions the knowledge of the eigenve
tors in 
onservative variables isneeded. If rU indi
ates the generi
 eigenve
tor in 
onservative variables and rP indi
ates thegeneri
 eigenve
tor in primitive variables, one 
an easily prove thatrU = �U�P rP :Using the previous relation one obtainsr1U = 2664 1uvke 3775 ; r2U = 2664 0��ny�nx��uny + �vnx 3775 ;

r3U = 26664 �a�(nx + ua)�(ny + va)��kea + a
�1 + unx + vny� 37775 ; r4U = 26664 �a�(�nx + ua )�(�ny + va)��kea + a
�1 � unx � vny� 37775 :Note that all the previous matri
es have been 
omputed with the hypothesis n2x + n2y = 1E.2 1D Euler EquationsAlso for the 1D Euler equations, two di�erent sets of variables are used in the 
omputations:the 
onservative variables given by U = 24 ��u�E 35 ;98



and the primitive variables, given by P = 24 �up 35 :The transformations ja
obian matri
es between the two sets of variables are�U�P = 24 1 0 0u � 0ke �u 1
�1 35 ; �P�U = 24 1 0 0�u� 1� 0(
 � 1)ke �(
 � 1)u 
 � 1 35 ;being ke the kineti
 energy per unit mass. Sin
e in 1D only spa
e-time 
omputations havebeen performed, it is the spa
e-time ja
obian that is reported here. In primitive variables itreads C = 24 unx + nt �nx 00 unx + nt nx�0 �a2nx unx + nt 35 ;The eigenvalues and eigenve
tors of C 
an be 
omputed as�1 = ~V � ~n ; r1 = 24 100 35 ;�2 = ~V � ~n + ajnxj ; r2 = 24 �anx=jnxj�a 35 ;�3 = ~V � ~n� ajnxj ; r3 = 24 �a�nx=jnxj�a 35 :For the boundary 
onditions the knowledge of the eigenve
tors in 
onservative variables isneeded. If rU indi
ates the generi
 eigenve
tor in 
onservative variables and rP indi
ates thegeneri
 eigenve
tor in primitive variables, one 
an easily prove thatrU = �U�P rP :Using the previous relation one obtainsr1U = 24 1uke 35 ; r2U = 264 �a�( nxjnxj + ua )��kea + a
�1 + u nxjnxj� 375 ; r3U = 264 �a�(� nxjnxj + ua)��kea + a
�1 � u nxjnxj� 375 ;
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E.3 2D Two-Phase Equilibrium ModelThe 
omplete ja
obian of the system reads in primitive variablesC = 26664 ~V � ~n �a2nx �a2ny 0nx=� ~V � ~n 0 0ny=� 0 ~V � ~n 00 �nx �ny ~V � ~n 37775 ;where in the 
ase of spa
e-time 
omputations ~V �~n = unx+vny+nt. The following eigenvaluede
omposition 
an be proven: C = R�L ;with R = 2664 �a �a 0 0nx �nx �ny 0ny �ny nx 0�=a �=a 0 1 3775 ; L = 26664 12�a 12nx 12ny 012�a �12nx �12ny 00 �ny nx 0� ��a2 0 0 1 37775 ;and � = 26664 ~V � ~n + a 0 0 00 ~V � ~n� a 0 00 0 ~V � ~n 00 0 0 ~V � ~n 37775 :Note that all the previous matri
es have been 
omputed with the hypothesis n2x + n2y = 1E.4 1D Two-Phase Equilibrium ModelThe 1D spa
e-time ja
obian of the system reads in primitive variablesC = 24 unx + nt �a2nx 0nx=� unx + nt 00 �nx unx + nt 35 :The following eigenvalue de
omposition 
an be proven:C = R�L ;with R = 24 �a �a 0nx=jnxj �nx=jnxj 0�=a �=a 1 35 ; L = 264 12�a nx2jnxj 012�a � nx2jnxj 0� ��a2 0 1 375 ;and � = 24 unx + nt + ajnxj 0 00 unx + nt � ajnxj 00 0 unx + nt 35 :100
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