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Abstract

The extension of Residual Distribution Schemes to general unsteady and complex inhomoge-
neous systems of conservation laws poses several technical difficulties which have made many
efforts unsuccessful until now. First, the schemes in their original formulation cannot be more
than first order accurate in space in unsteady computations due to an inconsistent treatment
of the time derivative in the discretization. Furthermore, the conservation property strongly
relies on the existence of a Roe-type linearization of the Jacobians of the system which is not
available in general. Finally, including forcing terms in the discretization in a consistent way
has not been achieved until now.

The goal of this project was therefore to cure the above problems and to demonstrate the
application towards complex hyperbolic systems on a two-fluid two-phase flow model. Second
order of accuracy in time and space was obtained by using a space-time approach for which
general boundary conditions based on characteristic eigenvector decomposition were imple-
mented. A new source-term discretization, consistent with the Residual Distribution method,
has been proposed and tested. This new treatment of the forcing terms has been shown to
be robust and extendable to second order of accuracy. The same idea at the basis of the
source term discretization allowed rewriting the schemes in a way that does not require any
Roe-type linearization of the Jacobians to guarantee discrete conservation. Comparison with
the classical formulation has shown the robustness and reliability of the approach. Finally,
the space-time schemes, combined with the new treatment of the source terms, have been
applied to a simple two-phase flow model. The solution of some well known two-phase flow
problems involving separated flow is shown.
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Chapter 1

Introduction

Over the last decade, a class of upwind spatial discretization schemes has been developed
for the solution of systems of hyperbolic conservation laws on unstructured grids [1, 2]. The
Residual Distribution (RD) or Fluctuation Splitting Schemes incorporate the same properties
which are at the basis of all Godunov-type upwind finite volume schemes, but carried over to
a cell-vertex framework with a continuous representation of the variables, like in the standard
finite element method. The strength of the method lays in the fact that both monotonicity
and second order of accuracy can be obtained on the compact stencil of nearest neighbors,
which also enables an easier implicit and parallel implementation. The key feature of the
RD method is the truly multidimensional upwinding at its basis, which allows to reproduce
numerically the multidimensionality of the physics. Successful application of the schemes to
the steady 2D and 3D Euler and Navier Stokes Equations, to the MHD equations and to
Two-Fluid Models for two-phase flow simulation, has been shown in the past [1, 2, 3, 4, 5].
However, those methods still have several limitations. First of all, the schemes have been de-
veloped for the solution of steady state problems and when they are applied to the simulation
of unsteady flows, their accuracy is degradated even if used in combination with the method
of lines ( Runge-Kutta schemes for example ). Furthermore, their application to flows with
strong discontinuities strongly relies on the existence of a conservative Roe-type linearization
of the Jacobian matrices of the system, which is not always guaranteed, as, for example, in
the case of two-phase flow models such as the Two-Fluid models and of the MHD equations.
In addition, up to now a consistent discretization of the source terms has not been found. In
particular the point-wise treatment that has been used until now, reduces the accuracy of the
second order schemes to first order, while a centered treatment is most of the times unstable.
In the following sections these three problems will be analyzed and explained, summarizing
the work done in the past years to cure them, and anticipating some of the results obtained
in the course of this work. In the last section some information will be given on the two-phase
flow modeling and on the related numerical issues. In particular the work previously done
at the von Karman Institute will be briefly summarized and the simple model used in the
computations introduced.



1.1 Unsteady Computations, LP property and Mass

Matrix
Consider the following simple scalar problem
ou -
—+A-Vu=0, 1.1

where X is a constant vector. We wish to solve equation (1.1) on an unstructured mesh
(triangles in 2D, tetrahedra in 3D). The basic idea of the Fluctuation Splitting schemes is to
compute the integral of the advective fluxes on every computational cell and then to distribute
portions of it to every node belonging to the element. In formulas:

o' = /TX-vu QR 4+=06¢"; (1.2)

where ] is the so-called distribution coefficient, R; is the global residual for node i and
the symbol += indicates that the value of the residual is updated with the portion of the
advective fluxes coming from element 7". It can be shown [1] that if the distribution coefficient
is bounded, i.e. for ¢’ going to zero, B¢’ also goes to zero, then the scheme is able to
reproduce exactly steady linear solutions of (1.1) and hence is second order accurate at steady
state. This property is usually called LP property or residual property. Of course the LP
property holds only for steady state computations, in fact for an unsteady solution one can
write
ou

T _
b= , Ot

As a consequence one has that in unsteady computations schemes that are LP at steady
state, lose this property, hence second order of accuracy is lost.

A different way to explain the lower accuracy that linearity preserving schemes show in un-
steady computations can be found in the work done by Maerz [6]. He started observing that
any LP scheme can be written as a finite element Petrov-Galerkin method with test function
given by

dQ £ 0.

1
= NT r_ _— T
Z+(5l d+1)7 ?

where NI is the linear Galerkin base function, d the number of spatial dimensions, and 77 is a
piece-wise constant function which is zero outside of element 7" and 1 on it. As a consequence,
for consistency, the discretization of unsteady problems should include a so-called mass matrix
defined on each element T as

sHB -3 148 -3 1+60—3
O
= [WINF Q=S| N -3 b AT bed -
T
Tt -5 18 -3 3+6 -3

The final semi-discrete equation for node ¢ then becomes

ZZ TdU’J_|_ ZBquT

TeA; jeT TeA;



where A; represents the set of elements surrounding node 7. It must be noted that, since the
mass matrix is not diagonal, the method becomes implicit. Although the use of the mass
matrix allows to recover second order of accuracy in unsteady computations, as shown in [6],
monotonicity problems arise from the fact that the matrix is not positive defined. In [7] Fer-
rante tried to cure this problem through the use of a limiting procedure of the Flux Corrected
Transport (FCT) type (see reference [8, 9]), but without satisfactory results, at least for the
Euler equations.

A different approach to solve the problem of the accuracy has been tried in [10, 11, 12]. The
authors used the RD formulation of the Lax-Wendroff scheme combined with a Flux Cor-
rected Transport limiting procedure to obtain second order monotone solutions of unsteady
problems. The second order of accuracy of the Lax-Wendroff scheme was shown for a 2D
advection equation like the (1.1) in [11] through the use of the 2D modified equation, and in
[10] through an equivalent equation and grid refinement studies. Although for scalar prob-
lems the results shown compare reasonably well with the ones obtained using the consistent
mass matrix with the FC7T limiting, for the Euler equations monotonicity problems are still
present.

More recently another technique to get back second order of accuracy in unsteady computa-
tions has been, and is being, investigated. The basic idea is to maintain the £P property in
unsteady problems by including the time derivative in the definition of the cell residual ¢

(see equation (1.2)):
iy = / %L X ) dg
s—=t — T ot '

Once this has been done, the use of a positive linearity preserving scheme in space-time will
guarantee second order accurate monotone solutions also for unsteady computations. This is
the idea at the basis of the space-time formulation of the RD schemes which are the basis of
this project and that will be extensively described in section 2.2. Promising results obtained
using this new formulation have been shown in [13] and in [14, 15].

It is important to underline that positive linearity preserving schemes do exist; an overview
of their design methods can be found in [16].

1.2 Source terms and LP property

Consider now the following 1D scalar non-homogeneous advection problem:

ou ou

The 1D version of a LP fluctuation splitting scheme is obtained as follows:

¢ = /w <aa—z — 0> de  Ri+= B¢, (1.4)

e
1

where z§ and z§ are the coordinates of the extrema i and i + 1 of segment e (see figure 1.1).
Any steady solution of (1.3) will be reproduced with second order of accuracy by any scheme
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Figure 1.1: 1D RD scheme

of the form (1.4) because of the linearity preservation property. A second order positive
upwind scheme, for example, is defined by

(8 850) = (5 5)

a” = min (a,0) : (1.5)

What happens if only the advective term is included in the definition of the element residual
¢°¢ 7 For a steady problem one will have that

¢6:/‘a?dm‘:/‘adw7ﬁ0,

hence one can say that schemes that are LP at steady state for homogeneous problems,
lose this property, and hence the second order of accuracy, when applied to in-homogeneous
equations, if the source term is not included in the definition of the element residual.

As a consequence of the last statement one would like to extend to the multidimensional case
the upwind scheme (1.5). In 2D and 3D, equation (1.3) can be written as

ou -
— +A-Vu=%. 1.6
The extension of a linearity preserving scheme to equation (1.6) can be done in the following

straightforward way:
qu:/ (X-vu—x) A0 R, += T .
T

The problem is that most of the £LP schemes are linear and they are not positive (see section
2.1), hence, in presence of strong gradients of the solution, they usually give non-monotone
results. Second order positive schemes do exist, but they are based on a non-linear blending
between a linear £LP scheme and a linear first order scheme, usually the so-called N-scheme
(see section 2.1). The N-scheme, being linear and positive, cannot be second order accurate,
because of Godunov’s theorem (see reference [1]). For this scheme the distribution coefficient



is not defined, but one can compute directly the nodal contribution of an element 7" as follows
(see section 2.1):

57,
oY = max ( 2” ,o) (45 — uin) (1.7)

where 7i; is the inward pointing normal to the edge (surface in 3D) in front of node i (see
figure 2.2) and the state wu;, is the so-called inflow state of element 7. Note that the index
T has been dropped in (1.7) to simplify the notation. More details on the schemes will be
given in the next chapter, what is important to underline here is that the crucial point in
the construction of a positive scheme which is £LP also in presence of source terms is the
extension of (1.7) to non-homogeneous equations. The way in which this has been done will
be explained extensively in section 3.1.1.

1.3 Conservative Linearization and Quasi-Linear Equa-
tions

Consider the following simple 2D scalar non-linear conservation law

ou Of 0g
E“"% B_y_o’ (1.8)

where the fluxes f and g depend in general on the unknown u. Equation (1.8) can be solved
in a fully conservative way with a £LP scheme computing the residual in the following way:

o' =¢ F-iddl  Rit=ple", (1.9)

where 0T is the boundary of the generic triangle T of the grid, F = (f,g) and 7 is the
outward pointing unit normal to d7. Note that

1. The integral in (1.9) can be computed very accurately by choosing the appropriate
quadrature rule.

2. The distribution coefficients 3" depend usually on the jacobian

of dg

1.1
r=2 (1.10)

where 71; = (14, n4y) is the inward pointing vector normal to the edge in front of node <.
It is important to underline that & for a non-linear equation is in general a function of
the unknown u and that the scheme defined by (1.9) remains conservative, independently
on how k! (u) is computed, as long as the distribution coefficients respect the condition:

1.

jET
The scalar k! is usually called inflow parameter.

5



The problem with scheme (1.9) is that it is linear and hence, being LP, it cannot be positive.
So non-monotone solutions are obtained in presence of discontinuities. As already mentioned
speaking about the discretization of the source terms, the construction of a second order
scheme which is also monotone is based on a non linear blending between a second order
linear LP scheme, which is non-positive, with a first order positive scheme. The first order
scheme usually used in the computations is an extension of the N-scheme (equation (1.7))
where the product X - ii; is substituted by the parameter kI of equation (1.10) evaluated in
some averaged state. The problem is that the scheme obtained in this way is conservative
provided that the cell residual is computed using the quasi-linear form of equation (1.8), as

follows R
o =) kju;,

JeT

where /Ac;[ indicates the inflow parameter evaluated in an average state 4’ such that the identity

Z/%}’uj:]{ﬁ-ﬁdz,

jer

holds at a discrete level. For example for the inviscid Burger’s equation one has (f,g) =

2 . . . . . .
(%, u), and, if linear variation of the unknown over each element is assumed, a conservative
N-scheme is obtained if all the jacobians are evaluated in the average state:

@T:%Zuv.

v=1,3

When such a conservative linearization exists, it is usually called a Roe linearization. For the
Euler equations a Roe linearization is obtained by computing the arithmetic average of the
values at the vertices of an element 7" of the Roe parameter Z given by

Z = \/p[l,u,v,H|' ,

where p is the fluid density, v and v are the x and y velocity components and H is the total
enthalpy. Since not all the systems of equations admit such a linearization one should ideally
use always a contour integral for the evaluation of the flux balance of each element (equation
(1.9)) in order to be conservative. An the other hand, the necessity of using the N-scheme to
build a non-linear positive and LP blended scheme forces to use the quasi-linear form of the
equations. In the course of this project a new technique has been developed which allows to
rewrite the N-scheme in a way compatible with the evaluation of the flux balance through a
contour integral. In section 3.2.1 details about this new formulation of the schemes will be
given together with some consequences and future developments.

1.4 Physical and Numerical Modeling of Two-Phase Flow

Two-Phase flows are encountered in wide variety of engineering applications ranging from
power generation and conversion to biological flows. The understanding of the physics of



two-phase flows and the capability of predicting the performances of multi-phase systems are
crucial to control and to design them. In the recent years, the use of the so-called Two-
Fluid models to analyze two-phase flows is becoming more and more common among the
scientific community. The reason for this is that these models are obtained directly from the
single phase Navier-Stokes equations through an averaging process, hence their mathematical
derivation is exact. Furthermore, they are able to handle real non-equilibrium effects since
the mechanical and thermal variables of each phase are described as distinct fields. The most

general formulation of the Two-Fluid equations for a liquid-gas system is the following [17]:

Mass Conservation o )
(07 —

TIZPICWLV' (wprily) = oy’ k=19

Momentum Conservation

0 (apprtiy)

5% +V - (prlly @ W) + Vi = V- (qTg) + FEU+ FM p oMait g =1,g

Energy Conservation

a(akpkEk) 6
ot + Pk

(0% — —
8tk + V- (ockpkuka) =V (Oéka . Uk) +

—o
- — in — in u
,SXt-ulg+Fkt-uk+V-(aqu)+a,?+o,]y (hkt+7k> yk=1,g

where « is the void fraction or volume fraction of phase k, py its density, iy its velocity, py
its pressure, Ej and Hj its total energy and enthalpy, T its stress tensor , g, the heat flux
and ﬁf“ an external force acting on the phase, usually the gravity force. The terms o,
Fim g@ gint and hi** represent the interface exchange of mass, momentum and heat between
the phases, the interface velocity and enthalpy of phase k. All these terms come from the
averaging process of the equations and must be somehow modeled. Unfortunately no unique
model exists and one usually resorts to some engineering assumptions that simplify the system
giving a computable model for the simulations. Moreover the use of high resolution upwind
schemes to discretize the Two-Fluid equations turns out to be often very difficult and usually
an ad-hoc re-formulation of the numerical methods is needed [18]. Here the work previously
done at the von Karman Institute [5, 19] will be followed. In particular, the model used in
the computations is the simple single pressure isentropic-mechanical equilibrium model used
in [5]. In this model the flow of the two phases is assumed to be isentropic and the pressure
of the two phases to be equal, hence no energy equations are solved. A strong mechanical
coupling between the phases is assumed, leading to the hypothesis @, = @, = 4. Moreover
the model is inviscid and of course no phase change is considered!. The final form of the
equations is (see chapter 5 and appendix E for more details):

Mass Conservation
0 (akpk)
ot

Tt would require the modeling of the thermal evolution of each phase and hence the hypothesis of isentropic
flow should be dropped

+ V- (arprtt) =0, k=1,g




Mixture Momentum Conservation

0 (pid)
ot

+V - (pi ® @)+ Vp = F

where p = ayp, + yp; is the so-called mixture density. Note that because of the hypothesis of
equal velocities, only the mixture momentum equation needs to be solved. Differently from
most of the Two-Fluid models (see [5, 18, 19]) this model is always hyperbolic and well posed
in the limiting single-phase cases. This will allow to perform simulations involving well known
problems with strong phase separation. Note also that, although the system of equation is
written in a strong conservative form, no Roe linearization exists for it. This is the typical
case in which the new conservative formulation developed here should be used, but, unfor-
tunately, because of the limited time, the space-time approach could be applied only to the
same non-conservative formulation used in [5]. Note also that the two-phase flow simulations
performed here are to be intended as simple tests for the new theoretical developments and
not as real applications.

The outline of the report is the following: in chapter 2 the steady RD schemes will be
described, recalling where necessary details regarding their implementation for the solution
of the Euler equations. In the same chapter the new space-time approach will be illustrated
with particular attention to technical problems related to the space-time meshing. Chapter 3
will be devoted to the new theoretical developments regarding the discretization of the source
terms and the treatment of conservation. Boundary conditions and time integration will be
described in chapter 4 while chapter 5 will contain the results obtained on well documented
steady and unsteady test-cases. The report will be closed by some conclusions and future
developments.



Chapter 2

Residual Distribution Schemes

This chapter is devoted to the illustration of the Residual Distribution Schemes. In a first
part the steady schemes will be recalled together with the most important properties that
characterize them. References will be given for a more detailed description. In the second
part of the chapter the space-time approach will be analyzed with some emphasis on the
space-time meshing issues.

2.1 'RD Schemes for Steady Hyperbolic Problems

2.1.1 RD Schemes for Scalar Advection
Consider a simple homogeneous scalar advection equation

ou -
— +A-Vu=0;
ot ’
discretize the 2D or 3D physical domain €2 with an unstructured mesh composed of triangles
(resp. tetrahedra) and assume that the unknown u varies linearly in space, like in the standard

linear finite element method. In formulas
u = Z Niu;
i€
where u; indicates the nodal value of the unknown and /V; is the linear tent-shaped interpo-
lation function (see figure 2.1).

Figure 2.1: Tent-shaped interpolation function N;
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The fluctuation or residual of an element 7' is defined as the integral of the advective
fluxes, namely

> 0
¢T:/A-vudQT:—/—“dQT. (2.1)
Define now the so-called inflow parameter of node j in cell T" as the following quantity:
A 2.2
i T 3 ) n] ) ( . )

where d is the number of spatial dimensions and ﬁ]T is the inward pointing vector, perpendic-
ular to the edge (face in 3D) in front of node j and scaled by its length (surface in 3D), as
illustrated in figure 2.2.

Figure 2.2: 2D and 3D grid geometry

It can be easily shown that the fluctuation ¢? can be computed as the following weighted
average of the element nodal values

o' => klu;.

JeET

The idea at the basis of the residual distribution schemes is that the evolution of the nodal
values of the unknown is determined by a fraction of the fluctuation of each element containing
that specific node. In particular, the global nodal residual is obtained by assembling the
contribution coming from all the elements surrounding the node. In formulas:

Ri=) ol =) B8l¢"=> > Blkfu,

Teh; TeA; TeA; jeT

being A; the set of elements containing node ¢ and 3] the so-called distribution coefficient.
Once the nodal residual is assembled, the solution can be marched forward in time until
convergence to steady state is reached. A very simple update formula is obtained if explicit
forward Euler time integration is used:

uptt =y — §Ri ; (2.3)



Figure 2.3: Median Dual Cell in 2D

where S; is the area of the so-called median dual cell of node i, obtained joining the gravity
centers of all the elements surrounding node 7 with the midpoints of the edges meeting at the
node, as depicted in figure 2.3 for the 2D case. Note that:

1. For consistency and conservation the element-to-node residual contributions must re-
spect the constraint
2 0 =0" = D =1 (24)
JET JET

2. The nodal residual can be computed using the very compact stencil of nearest neighbors,
which allows an easy implicit and parallel implementation.

The design of the schemes involves the choice of the distribution coefficients or the definition
of the element-to-node contribution QSJT. The most important design principles are based on
the following properties:

Multidimensional Upwinding (M#/) A multidimensional upwind scheme does not send
any portion of the element fluctuation to upstream nodes. In formulas:

T T _ T _
<0 — ¢f=0,p57=0. (2.5)

Positivity (P) The positivity property ensures that monotone solutions are always obtained.
For a positive scheme the new value of the unknown a can be written as a convex sum
of its old values in the surrounding nodes, i.e.

U,;H—l = Zciju? ,  Cij > 0. (26)

For the simple update formula (2.3) condition (2.6) becomes (see reference [1]):

S.

BT <0, At< =0 .
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Linearity Preservation (LP) A linearity preserving scheme is a scheme whose distribution
coefficients are bounded. In particular for a linearity preserving scheme one has that

lim ¢f = lim fT¢? =0.

$T'—0 ¢] ¢ —0 BJ ¢
It can be shown [1] that a linearity preserving scheme is able to reproduce exactly
steady linear solutions, hence the LP property is equivalent to second order of accuracy
at steady state.

A more detailed description of the properties which can be used for the design of the schemes
can be found in [1]. In the same reference the proof of the extension of Godunov’s theorem
to the fluctuation splitting schemes can be found. The above-mentioned theorem states that
linear schemes cannot be positive and linearity preserving at the same time. Unfortunately,
most of the basic schemes are linear and hence, to have a second order positive scheme,
some non-linearity must be introduced. Here we will not follow [1] where a review of some
techniques to obtain non-linear second order schemes is made, but we will more closely follow
the work reported in [3, 16, 20].

In particular a non-linear scheme could be defined from the following blending:

@) =1 —-0)(6") T +0 (o), (2.7)

where the blending coefficient # should be defined in such a way that in correspondence of
smooth solutions, where ¢ =~ 0, one has # = 0, while in correspondence of strong gradients or
discontinuities, one has § = 1. In this way the LP property will be preserved by the blending,
although in presence of sharp variations of the solution monotone results are guaranteed by
the stabilizing contribution of the P scheme. Information and details about possible choices
of the blending factor and their relation with the work made in [1] can be found in [20], while
in [3, 16] a review of the design principles of blended schemes for the solution of the Euler
equations is made. In the course of this project the following blending factor has been used
in all the computations:
|¢"]
6= 5 - (2.8)
Yjer|(65)" |

It can be easily seen from definition (2.8) that at convergence, whenever one has that ¢ = 0,
the blended scheme defined by (2.7) becomes actually the second order LP scheme. On the
other hand, although there is no formal proof of the positivity of such a blended scheme,
numerical evidence indicates that this property actually holds.

Definition of the Schemes

Now that the basic ideas behind the fluctuation splitting schemes have been given, it remains
to specify how the element residual is actually distributed. The number of schemes that have
been designed and tested in the past years is relatively large. For an overview one can refer
to [1]. Here the following schemes have been used!:

LLP stands for Linearity Preserving, P stands for Positive, MU/ stands for Multidimensional Upwind and
L stands for Linear

12



LDA scheme (LP, £, MU) The LDA scheme is defined by

LDA LDA T LDA ki

¢z' = /87, ¢ ’ ﬁz = - )
Yierk]

with k" = max(kT,0). Note that the index 7" has been dropped where non-necessary,
to simplify the notation.

N scheme (P, £, MU) The N scheme is defined by
ZjeT k;uj
jerky

with k7 = min(k7,0). The state ul, is the so-called inflow state.

¢l]~v:k’i+(ui—UT) y  Uin =

B scheme (P, LP, MU) The blended scheme is defined by

OF = (1—0)6i2 400 | 9= 12
> er |0Y

A geometrical interpretation of the schemes is available in [1, 2], while the proof of their
properties can be found in [1, 20].

Remarks

1. The schemes defined above of course are applied also to non-linear equations where either
X=X(u)or X =V,F, being V, = (I, 1,, fz)a%, and F is a vector of conservative fluxes.
In the last case, in particular, the use of the N scheme is possible only if a linearization
of the jacobians such that

]{ f.ﬁdl:/v-ﬁdQ:QTvuﬁ'vua
T T

is available. Note that in the last equation Vu is constant, since w is assumed to be
linear, and 77 is the outward pointing unit normal to the boundary of 7. The reason of
this is that the distribution coefficient of the N scheme cannot be explicitly defined and
hence a truly conservative formulation of the type

ol =pT ¢ F-iidl

cannot be used.

2. The positivity of the N scheme (and hence of the B scheme) is obtained, in case of a
time marching procedure like (2.3), under the time-step constraint:
Si

€A; T

Of course this is not true anymore if an implicit time integration strategy is used?.

%In any case, the steady state solution u* satisfies minjca, u; <uj <maxjea, uj
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2.1.2 Matrix Schemes for Hyperbolic Systems

Consider the hyperbolic system
G J— LU

e Rk 2.10
ot Lo, (2.10)

where U is the vector of the unknown, d is the number of space dimensions and the A;’s are
constant matrices such that Z?Zl A;&; is diagonalizable with real eigenvalues and real and
independent eigenvectors for every 5’ = (&, -+,&) in R% In order to solve system (2.10)
discretize the space domain €2 with an unstructured grid and assume that the vector U varies
linearly in space, namely

U=> NU;, (2.11)

ien

where U; represents the value of the unknown at node ¢ and the N;’s are the Galerkin tent
shaped linear test function (see figure 2.1). Define the residual of an element 7 (triangle in

2D and tetrahedron in 3D) as
A — d$2 .
/ Z 8% /

For the hypotheses made on the matrices A;, it is possible to define the following multidimen-
sional generalizations of the inflow parameters (2.2) and of their sign:

ZA nl = RAFL; (2.12)

being 7/ the vector normal to the edge (face in 3D) in front of node j and scaled by its
length (resp. surface), R; and L; the matrices of the right and left eigenvectors of K7,
A" = diagy_, ... 4[max (A, 0)] and A~ = diag_, ... 4[min (A, 0)] with A, k-th eigenvalue of
KJ-T. Thanks to the hypothesis of linear variation of U, it can be easily shown that the cell
residual can be computed as

T=>"K/U;. (2.13)

jET

Exactly like in the scalar case, the global nodal residual is obtained assembling portions of
the fluctuation of the elements surrounding it. In formulas:

T _ THT _ THRT __ T 17T
o/ =B{®" |, R;=) B/o"=> Y B/K/U;. (2.14)
TeEA; TeA; jeT

The matrix BT is called the distribution matriz, and the class of schemes defined by (2.14)
are usually referred to as the matriz schemes.

Once the nodal residual has been assembled, the solution can be marched forward in time
toward the steady state. If explicit forward Euler time integration is used, one has:

At
Urtt =y — 3 R, =U"-= Z > BIK[U; . (2.15)
Si TeA; jeT
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As in the scalar case, the properties of the method are fully determined by the distribution
criterion. For an optimal design of the schemes is then of primary importance to be able to
generalize properties of the scalar distribution to the system case. The set of criteria on which
the choice of the distribution criteria is based are the following:

Multidimensional Upwinding (M) In the case of hyperbolic systems the MU property
must be intended in a characteristic sense. The idea is that if the eigenvalue \i of K]
is negative, then the k-th characteristic field of node ¢ is not updated. Mathematically
this implies that the nodal residual must be locally proportional to the positive part of
KT namely

o =Bl " « K.

Positivity (P) Following [2], in order to generalize this property to the matrix schemes, the
update formula (2.15) is rewritten as

yrtt _pyn
Y LS+ C(UP =Up)=0.

The scheme will be said positive if all the matrices C,, are non-negative, i.e. their
eigenvalues are all positive or zero.

Linearity Preservation (LP) Simply as in the scalar case, a scheme is said to be linearity
preserving if
lim &7 = lim BJ®" =0.
T —0 T —0
Invariance for Similarity Transformations (ZS7) This is a very important property for
the design of the schemes. Consider a set of variables W, defined by
ow
oW = —0U ,
oUu
the invariance property requires that the following relation between the residual ex-
pressed in the old set of variables and the one expressed in the new one:
oU

RV = —RW .
(A aW (A

From the last equation one deduces for the distribution matrices [2]
ow _ ., oU ou ow
B'Y=—B/— , Bl=_—B"—.
ou ' ow ow ou
The importance of this property is that it allows to compute the residual in the set of
variables more convenient® and then transform it to the original variables, being sure

that the final result will be exactly the as as if the residual were computed directly in
the original set of variables.

3For example the one that symmetrizes the matrices of the system or reduces their entries
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Like in the scalar case, no linear schemes that have both the £LP property and the P property
exist. In this work, a second order positive scheme has been used, which is defined by the
following non-linear blending of a linear positive scheme and a linear linearity preserving
scheme:

o)

S (@]

(@07 = (1-0) (D) +o (@) | e,=0

J

Also for this scheme, like for the one defined by (2.7) and (2.8), no analytical proof of posi-
tivity is available. Strong numerical evidence is available, though, that it produces monotone
solutions also in presence of strong discontinuities.

A different class of blended schemes have been recently developed by Abgrall for the solu-
tion of the Euler equations, that are designed using a more analytical approach. The reader
interested can refer to reference [16].

Definition of the Schemes

In this project, the schemes used in the computations are a generalization of the scalar schemes
presented in the previous section. For a more extensive overview on the matrix schemes, one
can refer to [1, 2].

Matrix LDA scheme (LP, L, ZST, MU) The matrix LDA scheme is a formal general-
ization of its scalar counterpart. Its distribution matrix is given by:

-1
BL/PA = K (Z K;) : (2.16)

jET

Matrix N scheme (P, £, ZST, MU) Like the matrix LDA scheme, the matrix N scheme
is obtained through a formal extension of its scalar counterpart. Its element-to-node
contribution is defined as:

—1
N = K" (Ui —Uyp) , Upn= (Z Kj—) Y KU (2.17)

jer jer

Matrix B scheme (P, LP, ZST, MU) The matrix blended scheme used in the course of
this project is defined by:

(@],
eer |10,

For a more detailed description of the properties of the matrix schemes and for the proof of
some of their properties, the interested reader can refer to [1, 2, 3, 16].
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Remarks

1. Of course the matrix schemes can be used to solve a system of non-linear equations. In
particular they are used to solve the system of the Euler equations which, in 3D, can
be written in the form

oUu OF (U) 0G(U) 0H(U)
—+ + +
ot ox dy 0z

=0, (2.18)

where U is the vector of the conserved variables U = [p, pu, pv, pw, pE]t4 and the vector

F = (F,G, H) represents the conservative fluxes. Although for the LDA scheme system
(2.18) can be solved fully conservatively computing the cell residual as

o'=¢ F-itdl, (2.19)
oT
one usually rewrites the equations in a quasi-linear form, since the use of the N scheme,
and hence of the B scheme, obliges to do that. In particular, the cell fluctuation is still
computed using (2.13) where now

~, OF) aG(U) OH(U)
T — T — . .
K, =K, = BT Ng + o3 Njy + i

Nizy

where, for conservation, the average state U has to be the Roe average obtained through
the computation of the conserved variables in correspondence of the arithmetic average
of the nodal values of Roe’s parameter vector

Z=/p[l,u,v,w, H' . (2.20)

In the framework of residual distribution schemes, this linearization is known as the
Struijs-Deconinck-Roe linearization. For the proof of the fact that the relation

f Foidl=>» KU
oT jer

actually holds at the discrete level, one can refer to [1, 2, 3, 21]. Here it is of primary
importance to underline that not for all the system of conservation laws a Roe-type
linearization exist. As a consequence, the possibility to compute @' using (2.19), even
in conjunction with the N scheme, turns out to be very appealing.

2. For the matrix N scheme, of course, one cannot write down directly the positivity condi-
tion, but has to take into account the characteristic formulation of the Multidimensional
Upwinding. In particular, by doing it, one ends up with the time-step restriction®

Si

ZTGAi man:l:"' 7Nequations ()\Z)T ,

At <

where Negyations 15 the number of equations, and hence of eigenvalues, of the system.

4Density, x-momentum, y-momentum, z-momentum, Total Energy
50f course not if an implicit time-integration strategy is used
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3. From (2.16) and (2.17) it can be seen that to use the matrix LDA scheme and the matrix
N scheme one needs to perform the matrix inversion (3, Kf)*l. In [2] the proof of
the existence of these inverse matrices is given for any hyperbolic system. Some trouble
in their computation actually arises for stagnant flows where, in fact, the matrices
ZJET K Ji are singular. Although Abgrall has proven that the RD schemes remain
well-defined in these degenerate cases, special care is required to treat the singularity.

The informations given on the RD schemes as applied to steady problems, far from being
complete, are only intended to serve as a basis for the description of the space-time schemes
of next section. Additional notions on the general schemes can be found in the references
given.
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2.2 Space-Time RD Schemes

In this second part of the chapter the new space-time RD approach will be described. During
the last year, two different space-time formulations of the fluctuation splitting schemes have
been developed. Although based on the very same idea, the two approaches differ in the
way the extension of the steady schemes to the space-time domain is obtained. In particular,
while the group of the von Karman Institute [14, 15] has focused its attention to the use of
linear space-time elements, Abgrall and co-workers [13] make use of prismatic elements. The
approach used here is the same of [14, 15].

2.2.1 Unsteady Scalar Conservation Laws

Consider a scalar hyperbolic conservation law in d spatial dimensions over the spatial and
temporal domain Q = Qg X [0, t,n0z):

ou - .
EJFVg:o , V(Z,t) e Q, (2.21)
where u(Z,t) is the conserved quantity and G(u) the corresponding flux function. Define
the jacobian of the flux function A = 0G/0u. Equation (2.21) can be reformulated in the
following space-time approach:

V-F=0 , A-Vu=0, (2.22)

where V denotes the space-time operator V = (V,0/0t), F is the space-time flux function
F=G+ ut, being t the versor of the time coordinate direction, and A = X1 is the space-time
jacobian of F.

The basic idea behind the space-time RD approach is to solve equation (2.22) using the
standard fluctuation splitting schemes, described in the first part of this chapter, on a dis-
cretization of the space-time domain €2 made of triangles and tetrahedra in one and two spatial
dimensions respectively. In particular the discretization procedure will be exactly the same
as the one described for the solution of steady problems, except for the fact that now the
fluctuation (2.1) will be computed with an integral over a space-time element and the inflow
parameter (2.2) will be computed as

1 1 5 2
kiTZﬁ)\'ﬁiTZﬁ()\'”ig+nf> ) (2.23)
where d is the number of spatial dimensions, 777 is the vector containing the spatial coordinates
of the vector normal to the boundary face (or edge) which stands in front of node ¢ in the space-
time element 7" and scaled by its surface (rep. length), while n! is the temporal component
of this vector that, for the space-time meshes considered in this project (see next subsection
on the space-time geometry), is equal to half of the length of the initial 1D segment if d = 1
and one third of the surface of the base triangle in the initial spatial grid, if d = 2.
Note that if a standard continuous space-time finite element method was to be used, this would
lead to a coupling of all the points in the space-time grid, which would be very expensive. This
is the reason why most of the finite element methods are based on a continuous representation
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in space of the variable, but discontinuous in time. The strength of the space-time RD
approach lays in the fact that the MU property allows to decouple the space-time solution
on temporal slabs of thickness At¢, maintaining a continuous variable representation in time.
Hence, advancing of one time-step At, is equivalent to solve the steady problem (2.22) on the
space-time slice {2¢ x At. Note that if d is the number of spatial dimensions, the schemes
will be applied to a domain with dimension d 4+ 1. It turns out that if the space-time grid is
built in a proper way, the multidimensional upwinding guarantees the temporal decoupling
of the space-time slabs automatically. As a consequence, the choice of the grid geometry is of
fundamental importance. The next subsection will be fully devoted to the description of the
type of space-time grids used for the computations within this project. More details can be
found in [14, 15, 22]

Space-Time Grid Geometry

The grids used in this project contain three levels of nodes and two levels of elements in the
time direction, for a reason that will be clear after the analysis that follows.

Denote with ¢,, t,41/2 and #,,; the temporal coordinates of the nodes in the first, second
and third layer respectively. For clearness they will be referred to as the past, intermediate
and future nodes. Denote with Aty = ¢,,,/5 — ¢, the time difference between intermediate
and past nodes and with Aty = t,,1 —t, the time difference between future and intermediate
nodes. The global time-step is controlled by the parameter () defined by

Atg

= At (2.24)

Space-Time Grid for 1D Problems Given an initial discretization of the 1D space do-
main, the type of space-time grids that can be built are shown in figure 2.4. It can be
seen that both configuration have some nodes in the intermediate level which are stag-
gered in space, in particular they are located in correspondence of the midpoints of the
segments in the past level. Note also that in both cases the second layer is obtained just
by mirroring the first one and stretching it according to the factor (). The configuration
on the left is of course computationally more convenient and, in fact, is the one actually
used in the simulations. The interest in the second configuration comes from the fact
that it can be easily generalized to the case of two spatial dimensions. In order to derive
the condition for the decoupling of the space-time slab, one can focus only on the first
layer®. In particular note that both configurations have a similar topology, in particular
they both have two types of triangles: one with two nodes in the past layer and one in
the intermediate and the other with two intermediate nodes and one past node. From
now on the discussion will focus on the grid configuration on the left in figure 2.4, but,
given the similar topology of the two configurations, the same analysis can be applied
to configuration on the right in the same picture. Denote with E1 the first type of
triangle and with E2 the second one as indicated in figure 2.5. In order to decouple
the solution, allowing time marching, no residual must be sent to the past. Using the

6The decoupling of the past level from the intermediate one already guarantees the preservation of the
past solution, allowing a true time-marching solution procedure
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Figure 2.4: Space-time mesh in 1D. Nodes at levels n, n+1/2 and n+ 1 are labeled by black,
gray and empty circles, respectively.

type:E 1 type: E 2

Figure 2.5: Basic triangular elements in the first layer

MU property, we can obtain this by choosing At; such that the upwind parameter &,
(equation (2.2)) is negative for all the past nodes. In order to do this, it is useful to
recall that in one spatial dimension the quasi-linear form of equation (2.22) reduces to

ou Ou 0g
AN)-(=—,— | =0 A=—.
A1) (8:10’ 8t> ’ du
With the local numbering of figure 2.5, on has that for the triangle of type E2

A
kf‘2:—7x<07

for the only past node 1. Hence triangles of this type impose no constraints on the
choice of At;. On the other hand for the E1 triangle one has

7 = (—At, Az El _ _AAL _ As
TL1_( AtlA’ 2) - kl B )\At2 A 4
n2:(At1’TI) - k2El: 21_Ta: )
= Az El _ Az

ity = (0, 57) — kg =5F

hence to be sure that both kF* and kX! are negative, one has to respect the constraint:

Aty | Al 1
— =CFL, < -. 2.2
( Az ) CFLi= 2 (2.25)
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Condition (2.25) is called the local past shield (LPS) condition, since it guarantees that
past nodes are protected from any information coming from the future.
The global time-step At; is computed as the minimum of the local ones, i.e.

At, = min CFL, <ﬂ> .
EcE, 2|)\| E
Obviously the intermediate nodes can be coupled with both past and future nodes,
hence there are no restrictions on Aty in the second layer. This enables to march in
time with arbitrarily large time-steps, keeping unconditional stability if a positive RD
scheme is used. The global time-step can be written in fact as

' Az
At = At + Al = (1+Q) Aty = (1+Q) min CFL, (ﬁ% ’

while for the global C'F'L number one gets:

NAE 14Q

FL =
¢ Az

CFL, . (2.26)

From equation (2.26) and from the freedom in the choice of the stretching parameter
@, one deduces that the two layers space-time schemes allow to have very large C'F'L
numbers, which can be very useful, especially if the spatial grid contains highly refined
regions.

Figure 2.6: Space-time mesh in 2D. Nodes at levels n,n + 1/2 and n + 1 are respectively
labeled by black, gray and empty circles. Squares indicate intermediate nodes positioned in
the centroid of the triangles of the level n spatial mesh.

Space-Time Grid for 2D Problems As in 1D, starting from a 2D spatial grid, different

configurations are possible. The one used here is probably the simplest, although also
the more expensive. A similar, but more convenient, approach can be found in [22].
The grid used is a generalization of the right configuration of figure 2.4. A global view
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of the nodes configuration can be seen in figure 2.6. As can be seen from this picture,
every node in the initial spatial mesh is also present in the intermediate level where
new nodes are added in correspondence of the centroids of the triangles of the initial
grid. Also in the 2D case the second layer is obtained just by mirroring the first one
and stretching it by the stretching factor @ (2.24). The first layer is composed by three
types of elements: the first has three past nodes and one intermediate node, the second
has two past nodes and two intermediate ones and the third has one node in the past
level and three in the intermediate level. The three element types are highlighted in
figure 2.7, where they have been labeled as E'1, E2 and E3 respectively.

type: E 1 type: E 2

Figure 2.7: Basic tetrahedra used to build the first layer of the space-time mesh in two space
dimensions, and schematic view of the mesh.

The LPS condition (2.25) can be derived for this case following exactly the same pro-
cedure of the 1D case. For the mesh in figure 2.7 the element E3 gives no constraints
on Aty, while two different conditions are obtained for elements E1 and E2. Using the
notation of figure 2.8 one has (see [14]):

+,E1
max; i R |
Jj=1,2,3 nt
j
oo, , (2.27)
j 1
maX;=12 7 <1
j

where n§ is the temporal component of the vector normal to the face in front of node j
and scaled by its surface, k%! = max(0, k1), k"' = max(0, kP), kP! = X- 5> /2 is
the spatial inflow parameter corresponding to the base triangle” and k}* is the spatial

—

7n;23 is the normal to the base edge in front of node j and scaled by its length, X is the jacobian 8&/8u

(equation (2.21))
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inflow parameter of node j in the triangle A’3* obtained projecting nodes 3 and 4 on
the past level and joining them to node 5%.

Conditions (2.27) have to be respected simultaneously in all the tetrahedra of type E'1
and E2, hence Aty is finally computed as

1 X 1
o i | g ||

Aty = CFL{min | min
] EcE> g
max;=1,2,3 max;=1,2

EecEy

[3 [3
nj nj

with CFL; < 1. The global time-step is then computed as At = (1+ Q)At; and, like in
the 1D case, from the freedom in the choice of the () factor, one deduces that arbitrarily
large C'F'L numbers can be taken retaining unconditional stability if a positive scheme
is used.

4

2 1
Figure 2.8: Elementary tetrahedra of types E1 (left) and E2 (right)

Once the space-time grid has been built, equation (2.22) is solved using one of the schemes
described in section 2.1. In particular, the solution of the algebraic equations obtained apply-
ing the schemes to one space-time slab is obtained marching in a pseudo-time 7 exactly like
the solution of steady problems is usually obtained marching in time. This means that, once
the space-time residual has been assembled, the solution will be updated until convergence
in pseudo-time is reached for the present space-time slab. For example, using forward Euler

time integration, one ends with

AT
U;+1 = U;r — ?Rl s
(3
where S; is the surface of the space-time median dual cell of node ¢ and R; is a space-time
residual.

8LE2 = X . 77%4 /2, with #2%* normal to the projected edge 34 in the past plane and pointing toward node
j j j J g g

J- X is the same as in the previous footnote
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2.2.2 Unsteady Hyperbolic Systems

Consider now a hyperbolic system of conservation laws

%—(tj+vg:0 ) v(f,t)GQ:QSX[Oatmaw] ’ (228)

where U is the vector of conserved variables and G (U) is the vector of the conservative fluxes.
Equation (2.28) can also be written in the quasi-linear form

v, oGk aU
ot = OU Oxy’

where d is the number of spatial dimensions and the matrices 9G¥ /0U are the jacobian of the
fluxes. Like in the scalar case, the space-time formulation of the system can be introduced,
which, with the notation of equation (2.22), reads

N oGt 0G4 -

V-F=0 , — e, —,1)-VU, 2.29
( oU oU ( )

where F = G + Ut is the space-time flux vector and I is the identity matrix. The unsteady

solution of system (2.28) is then obtained marching in time by solving at each time-step the

space-time steady problem (2.29) using standard RD matrix schemes on a space-time slab

Qg x At. Of course also in the system case the fluctuation of an element is computed as a

space-time integral, while the inflow matrices K] (2.12) are substituted by

1 oGk
KI'= — ——_n" 4 Int 2.30
l d + 1 <k:1 ved 8U nl ! nl) 7 ( )

where n;* is the k-th spatial component of the vector normal to the boundary face in front
of node i in the space-time element 7', scaled by its surface (or length if d = 1) and n! is its
temporal component. The matrices with sign Kii can be computed straightforwardly as [14]
(see equation 2.12):

1
where A;, R; and L; come from the eigenvalue decomposition of Zk:h__,d %—g;nf’“.

Of course, care must be taken in building the space-time grid and in imposing the LPS
condition. In particular in the 1D case, the |A| of equation (2.25) is substituted by the largest
wave-speed associated to the characteristic form of the equations’, while in the 2D case the
spatial inflow parameters in equation (2.27) are replaced by the largest positive eigenvalue
of the corresponding spatial inflow matrix. Also in the case of the solution of a system of
equations, the solution of one time-step is obtained by marching in a pseudo-time according

to A
Ut =ur — 2R, .
(2 (2 SZ

9Largest eigenvalue of the jacobians. Foe example for the Euler equations one uses ||i]| + a, where  is the
velocity vector and a is the speed of sound
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Remarks

1. Although not explicitly proven, the use of a linearity preserving space-time scheme
should guarantee second order of accuracy in space and time. This is a consequence of
the fact that the LP property guarantees that solutions which are linear in space-time
will be reproduced exactly.

2. The pseudo-time marching procedure, if done in an explicit way, imposes a constraint
on the A7. As for steady computations, in fact, the N matrix scheme will be positive
under the condition

S

AT <
ZTGAz man:L aNequations ()‘lj)T

Y

where now ) is an eigenvalue of the inflow matrix K7 of equation (2.30).

3. As noted in [14], once a Roe-type linearization is known for the system, it can be used
also for the space-time jacobians. In particular, in all the Euler computation performed
in the course of this project, the Struijs-Deconinck-Roe linearization has been used to
linearize the jacobians on each space-time element.

4. Equation (2.31) shows one of the important properties of the space-time schemes: as
already remarked, the use of the LDA matrix scheme and of the N matrix scheme
requires the inversion of the matrices ZjeT K ]i Even if the spatial jacobians of the
system are singular in stagnation regions, the space-time inflow matrices are still regular
there because of the additional term I'n!. This allows to simulate flows with large regions

of zero or vanishing velocity without any problem. Examples of such computations can
be found in [14].

10Tn the scalar case condition (2.9) must be applied, using the space-time inflow parameter (2.23)
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Chapter 3

New Developments for RD Schemes:
Source Terms and Conservation

This chapter describes the new theoretical results obtained in the course of this project. First
the consistent source term discretization used in the computations will be described, showing
its consistency with the 1D approach pioneered by Roe [23] and later further developed
(see [24, 25] for example) and its extension to second order accuracy. In the second half
of the chapter it will be shown how the same idea used to discretize the source terms can
be used to build a first order conservative N scheme which does not need any Roe-type
linearization. Possible developments of the approach are also discussed. It is important to
stress the generality of the theory described in this chapter that remains valid whenever RD
schemes are used to solve a hyperbolic system of equations.

3.1 RD Schemes for Non-Homogeneous Equations

Most of the discretization techniques currently used nowadays for the approximation of the
convective fluxes of systems of conservation laws are based on some kind of upwinding proce-
dure. The use of such kind of discretization finds its reasons in arguments of physical nature,
related to the way informations propagate in the flow, and of numerical nature, related to
the stability of the methods. Although at a first glance not physically evident, the upwinding
should be extended also to the source terms eventually present in the equations. The rea-
son for this is intuitively explained by the following simple 1D example: consider the scalar

problem
ou ou
=0 , a>0.

— ta— =

ot Ox
Discretizing this equation with the upwind scheme given in the introduction (equation (1.5))
one obtains at steady state

Az
a(u; —u; 1) — > (0i+0i1)=0,

which is clearly a centered, and hence second order accurate, approximation of the steady
equation around the cell-center i + 1/2. A more detailed and convincing analysis can be
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found in [24, 25], where the authors show the enhanced accuracy and consistency obtained
by upwinding the source terms on a variety of 1D and 2D problems.

In the context of RD schemes, the crucial point is how to derive a multidimensional
extension of the first order upwind scheme. This extension has been obtained within this
project and is described in the next section.

3.1.1 An N-Scheme for Non-Homogeneous Equations

Consider the scalar non-homogeneous problem

ou -
- . =Y. 1
5 +A-Vu (3.1)

For simplicity we will focus on the problem of finding a steady solution of (3.1) with given

boundary conditions using a fully multidimensional upwind discretization. Define the follow-

ing parameter:
kf .
N N S A
J
0 if k;‘r =0
where £ and k] are the inflow parameter (2.2) and its positive part. Define the reduced value
of the source term in the node 7 on the element 7', ¥7, as its nodal value multiplied by the
surface (volume in 3D) of the element Q7 and divided by its number of vertices, namely

Qr
v — ;
Yod+1
Compute the source term fluctuation
¢~ = / ¥ dQ, (3.2)
T

where the last integral can be approximated with any quadrature rule.

PROPOSITION 1
The multidimensional upwind RD scheme defined by

N, . ® *
o7 =i (k) (uj —um) + 35— 5], (3.3)
with o . .
v Dier X+ ¢ w — D ier ki w
" D ier Zl+ , D e by 7

is fully conservative, in the sense that

Z@N’E:/(X-vu—x) Q= ¢ — ¢ .

leT T
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Proof: The proof of this proposition is obtained in a straightforward way just by computing
the sum of the element-to-node contributions:

Dod = i (K (=) Y i (S - B) =

leT leT leT

= k(=) + Y TS =) iS¢t = 9" — ¢

leT leT leT

Note that different definitions of the reduced value of the source term could be used, but
it must be kept in mind that the residual sent to each node must respect the following
dimensional scaling

ij(z;f—x;!‘n)oc/TEdQ - T Y.

In this project, the source term fluctuation (3.2) has been computed with the second order
accurate formula

E Z Zz( :
d + 1 T T
and hence
2* ZlET ( ) 2* .

ZlET ]

Extension to Systems

The matrix version of scheme (3.3) is obtained formally extending all the definition given for
the scalar case. In particular, given the hyperbolic non-homogeneous system

define the matrix parameter

=K (D)

and the local nodal reduced value of the source term

Qr

Compute the source term fluctuation

= / S dS) .
T
PROPOSITION 2
The multidimensional upwind matrix scheme defined by

o = I [KT (U — Ui) + S; — Sh] (3.4)
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with
—1 -1
leT leT leT leT

is fully conservative, in the sense that

ou
Z@f“:/ ( > Ak——S> dQ =" — &% .
T Oy,
leT k=1, ,d
Proof: Proceeding like in the scalar case:

oM=L K (U - Un)] + > L (SF = S;,) =

leT leT leT

=Y K (U= Un)+ > I'SF =) 'S =0 =¢" — ¢% .

leT leT leT
In all the computations made the source term residual has been computed as

Q
¢S:d+T1ZSl:ZSZ*’ (3.5)

leT leT

so that

ler leT

-1
Sk = (Z 1;) d(IF+1)S;,
where [ is the identity matrix.

Results obtained on steady and unsteady tests with the matrix version of the scheme are
reported in chapter 5, showing the robustness and reliability of the approach.

3.1.2 A LP Scheme for Non-Homogeneous Equations

Once the first order monotone RD scheme to discretize non-homogeneous equations is avail-
able, a second order non-linear blended scheme can be easily built as follows

Scalar Non-Homogeneous Equations :

B LP (T ) NS " — ¢
o7 = (1—=0)B7 (6" —¢%) +08, " |, 0= —F% -
Der |9
Non-Homogeneous Hyperbolic Systems :
T _ &S
| (2" — 2%), |

o = (I-O)Bf” (2" - %) + 00" 0y =4,

Accurate results obtained on several inviscid problems are reported in chapter 5. Note that in
all the computations involving the B scheme, the LDA scheme has been used as LP scheme.
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Remarks

-1
1. Although not explicitly done here, the proof of the existence of the matrices (ZJET Kf)

for any hyperbolic system, reported in [2], can be naturally extended to the matrices

-1
(ZJET I;“) needed for the application of scheme (3.4).

2. Consider a 1D system of conservation laws written in quasi-linear form

oU oU
oA =
o TAWU) 5,

Referring to figure A.1 the 1D first order upwind finite volume scheme used in [24] and
in [25] can be written for a uniformly spaced 1D grid as

urtt —yr
thle - (F?H/? N F?71/2) X Y, (3.6)

where the numerical flux functions F? /o are given by

S.

Ui + Uits

1 -
5 - §|Aiil/2|AUiil/2 )

F?il/Q = Az’il/2
being Aiyy /2 the matrix A computed in some average state. The source term contribu-
tion coming from the interface ¢ & 1/2 is computed as

n I Sgn(Aiﬂ:I 2) n
it1/2 = 9 / ii1/2A33 5 (3.7)

being ST, /2 the value of the source term at the interface, usually approximated with
second order of accuracy as

n Szn + znil
i1z T Ty
The matrix sgn(fliil/Q) in equation (3.7) is the sign of matrix Aiil/Q, defined by
|Aii1/2| = Sgn(Aiil/Z)Aiilﬂ ) |Aii1/2|sgn(121ii1/2) = Az’il/2 ) (3.8)

and computed as

N . N . N . A
Sgn(Ai:i:l/Q) = Riil/ZSgn(Aiil/Z)Liﬂ:I/Z ) Sgn(Ai:I:l/Q) = dlagkzl,...,Nequmons <|)\—Z|> ’

where Riil/g and ﬁiﬂ/g are the matrices of the right and left eigenvectors of Aiil/g and
i is the k-th eigenvalue of Aiﬂ /2-
A very interesting property of scheme (3.4) is given by the following

PROPOSITION 3
The N scheme defined by (3.4) is consistent with the RD formulation of the 1D finite
volume scheme (3.6).

The proof is reported in appendix A.
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3.2 A New Approach for Conservative RD Schemes
Based on the N Scheme

As already said, in the framework of the RD schemes, the use of the first order positive
N scheme is of crucial importance to handle discontinuous solutions retaining monotonicity.
Unfortunately this is possible only if a conservative Roe-type linearization is available for the
jacobian of the fluxes, which is not always the case. In this section an alternative formulation
of the scheme based on the same idea used for the upwind discretization of the source terms will
be presented. This new formulation relies on a computation of the integral of the fluxes over
an element through a contour integration and is always conservative. A particular section will
be devoted to the description of the integration rules used to perform the contour integration
and also to the future developments that the technique could allow.

3.2.1 A Conservative N-Scheme for General Systems of Conserva-
tion Laws

Consider the following general non-linear system of conservation laws in d space dimensions

8U —

—+V-F=0 3.9
where F = (F;l, S ,ﬁ$d> is the vector of the conservative fluxes. Define the fluctuation of
an element 7" as the following integral

o' =¢ F-idl, (3.10)
oT

where 7i is the unit vector normal to d1" and pointing outside of I". The following property
can be proven

PROPOSITION 4
The RD scheme defined by

-1

JET jET
is conservative independently of the type of average used to compute the cell jacobian KT,
ie.

doft=¢ Feiidl.

jer oT

Proof: The proof of the last proposition is easily obtained as follows

Yool =) KU - (ZKj) U= K/U-> KU+®" =",

JET jeT jeT jeT jeT
and hence
Z N ~
(P] © == f N dl .
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3.2.2 A Conservative LP Scheme for General Systems of Conser-
vation Laws

Once a first order monotone conservative scheme is in hand, the second order monotone
non-linear blended scheme can be built as

)
Sierl (#7°) |

o = (I1-0)BPe" + 00 | 0, =7d;

where ®7" is computed according to (3.10). In all the computations performed here Bf? =
BLDA,

Chapter 5 contains a number of steady and unsteady tests performed to verify the prop-
erties of the new conservative formulation. In particular, several computations have been
performed on problems involving the solution of the Euler equations in order to compare
the new treatment of conservation with the more classic one based on the use of the Struijs-
Deconinck-Roe linearization. Although the conservative N scheme (3.11) cannot be proven to
be positive, it has shown monotone perfect shock capturing properties, at least in the tests
considered here. Unfortunately, because of time restrictions, the new technique has not been
tried for the Two-Phase flow model, for which the same non-conservative formulation used in
[5] as been adopted.

3.2.3 Contour Integration

In order to have a conservative computation of the fluxes, an appropriate quadrature rule
must be used to approximate integral (3.10). In this work two different formulas have been
used: a second order formula (Trapezium rule) and a third order one based on Simpson’s rule.
In particular consider an element 1" whose nodes are locally numbered from zero to w, where
w is the number of coordinates!. The integral of the fluxes can be computed using the second
order trapezium rule as follows:

]?-ﬁdl:ZZ%ﬁ--ﬁs,

or sedT 1€s

where 7 is a vertex belonging to the side s of 91" and 7i, is the vector normal to side s, pointing
outwards and scaled by its surface (length if 7" is a triangle. One can easily show that

— 1 —
]{ Feitdi=) —F;-ii , (3.12)
or jer

where ﬁ]T is the vector normal to the side in front of node j of element 7', pointing inwards
and scaled by the surface (length if 7" is a triangle) of the side. The proof of this statement
is reported in appendix C.1.

LTf d is the number of space dimensions, one has w = d for a steady computation, while w = d + 1 for a
space-time computation
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Unfortunately, the use of a second order formula turned out to be not enough for some
computations. In particular, the steady Euler tests involving a bow-shock blew-up even with
the N¢ scheme. The reason for this can be probably found in the fact that the computation
of the integral of the fluxes through a Roe averaging process of the jacobians yields an exact
formula, at the discrete level, assuming that the Roe parameter (see equation (2.20)) varies
linearly over an element. The question is then what is the quadrature formula that one should
use to match the accuracy obtained through Roe averaging. The formula used in this work
to overcome the difficulties in the bow shock computations is based on Simpson’s rule. For
the steady 2D case it reads:

, 1> 2. 1 =
F-ndl = —Fir+ =Fom. + =Fp2 | - 1,
f, 7 mi= 5 (6% 57+ %)

where i and i? are the extrema of the edge s, while m, is its middle-point. It can be easily

shown that the previous formula can be rewritten as (see appendix C.2)

]{ f-ndzzzg<§ﬂ—2fmj>-nf, (3.13)
oT o1

where now m; is the middle-point of the edge in front of node j in T and ﬁJT is the same of
(3.12). The use of the last formula allowed to run steady simulations involving strong curved
shocks, but still the results are not fully satisfactory. The use of more accurate formulas of
the Gaussian type is probably one of the solutions to be investigated. Note that in order to
use formula (3.13) a proper way of evaluating the flux vector in the middle-point of the edges
must be found. Here different possibilities have been tried, but the best results have been
obtained with U

. - = (U +

F; = F(Un,) =F (ZT’“> :
where 7 and k are the two nodes belonging to 71" different from j and U is the vector of con-
servative variables.

Finally in all the steady computations only Simpson’s rule has been used, while the trapezium
rule was used in all the unsteady problems considered, where the additional diffusion due to
the space-time approach (see chapter 5) seemed to guarantee monotone solutions even with
the second order formula. As a matter of fact for both steady and unsteady computations
the use of higher order formulas will be a must if strong and non-uniform discontinuities have
to be handled.

Remarks

1. The possibility if using averaged states different from the Roe one, even if it exists
for the system we are interested to solve, gives the possibility to choose the one that
possibly improves the resolution of certain features of the flow. For example for the
Euler equations the number of possibilities is very large? and an investigation of this

2Averaged Conservative Variables, Averaged Primitive Variables, Averaged Entropy (or Symmetrizing)
Variables, Averaged Characteristic Variables etc.
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aspect has to be done in the future. Here for reasons of efficiency and simplicity, a simple
arithmetic average of the primitive variables has been used to linearize the jacobians

. The new approach allows in principle to evaluate the fluxes with any accuracy, if the
appropriate integration formula is adopted. Hence one could think of designing higher
order RD schemes based on a quadratic or even cubic representation of the variables.
Although some attempts in this direction have been already made [27], the way in which
the cell residual should be distributed is at the moment an open question.

. An important issue, when performing computations with systems, is to be able to com-
pute the nodal residual in the set of variables more convenient. This is allowed for the
traditional schemes by the ZST property (see section 2.1.2). In appendix B the proof
of the following important proposition is given

PROPOSITION 5
The schemes defined by equations (3.4) and (3.11) are ZST .

. It can be easily proven that the traditional formulation of the N scheme based on
the Deconinck-Struijs-Roe linearization can be obtained as a special case of the new
treatment of conservation proposed here. In order to do this, denote with [A(lT the inflow
matrix evaluated in the Roe state of the element 7" and set &7 = ZjeT Kij in equation
(3.11). Recalling the definition of Uj, given in equation (2.17), one can write:

U, = (Zf(;)l S (K- KU =

jeT jeT
—1 -1
(Tx) Tau-(Th) Thu-n. e
jeT JjeT JeET JjeT

Note that the relation KJ-T = K;r + K has been used in the last equation. As a
consequence of equation (3.14), the new N scheme reduces to the original one if the
Deconinck-Struijs-Roe linearization is used and if the cell fluctuation ®7 is computed
using the quasi-linear formulation of the system. Hence, the new approach is more
general.
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Chapter 4

Boundary Conditions and Time
Integration

This is the last chapter describing the theoretical aspects related to the computations per-
formed within the project. The first section will give all the details on the type of boundary
conditions used in the simulations, in particular the characteristics-based approach used for
wall, sub-sonic inlet and sub-sonic outlet boundary treatment will be analyzed. In the second
part, the simple time-stepping procedure implemented will be briefly recalled.

4.1 Characteristics-Based B.C.s

Given a hyperbolic system of conservation laws, it is known that for well-posedness of the
problem the number of physical conditions to be imposed at each boundary of the spatial
domain €, depends on the number of characteristics that locally enter €2 [28]. In particular
each in-going wave is associated to a positive eigenvalue A; of the jacobian

C= %nm’k )

k=1, .d

evaluated at the boundary 9Q (see sketch on the left in figure 4.1). Recall that 9F,/dU is
the jacobian matrix of the k-th component of the vector of the fluxes and U is the vector of
conserved variables. The vector 7ig = (ng,,- -+ ,ny,) is the unit vector locally orthogonal to
the boundary 02, pointing inside 2. For the systems of equations considered in this project,
the eigenvalues of C' can be written, without any loss of generality, as follows:

Alzﬁ'ng
)\QZUﬁQ
Agzﬁ'ﬁQ—Fa ’
)\4:’&"’59—@

where a is the local value of the speed of sound and # is the velocity vector. Depending on
the sign of these eigenvalues, different configurations can be encountered. From a physical
point of view, they can be classified in
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Supersonic Inlet -7 > 0 and 4 - 7ig > a: all the eigenvalues are positive, hence all the
characteristics enter the domain. Four conditions must be imposed

Supersonic Outlet @ -7 < 0 and |4 - 7ig| > a: all the eigenvalues are negative, hence all
the characteristics leave the domain. No conditions have to be imposed.

Subsonic Inlet @ -7ig > 0, but @ - i < a: there are three waves going in the domain, while
one wave is leaving it. Three conditions Must be imposed.

Subsonic Outlet @ -7g < 0, but 4 - Mg < a: there are three waves going out of the domain,
while one wave is entering it. Only one condition can be imposed.

Wall i -7ig = 0: two eigenvalues are zero, hence the correspondent characteristics are locally
parallel to the boundary. No conditions can be imposed for these waves. One condition
has to be set for the wave associated to the only positive eigenvalue A3 = a.

The right picture in figure 4.1 summarizes the five situations listed above.

Super sonic Inlet Super sonic Outlet
)\1> O A A )\1< O
A,>0 Ny No A,<0
VV5 )\3> 0 . . 7\3< 0
- Q A>0 - ~| A<O0
ol A1>0 - - M<0
Wa A2>0 N, N, A2<0
A3>0 As>0
A<O A< O
Subsonic Inlet Subsonic Outlet
A,>0
e )\l: 0
A>0 A4<0 aQ wall ﬁQ A,=0
A3<0 As>0 - ;328
4

Figure 4.1: In-going and outgoing waves at the boundaries and boundary conditions

From the computational point of view, one would like to translate the informations coming
from the local wave propagation phenomena described by the system, in algebraic equations
to couple with the equations obtained from the spatial discretization. In particular, since
the RD discretization technique used in this project relies on the knowledge of the nodal
values of the unknowns, a procedure that allows to impose the boundary conditions directly
on the nodes belonging to the boundaries of the computational domain seems to be the most
indicated. The technique actually used here is based on what in [1] has been called strong
formulation of the boundary conditions.

Consider then the boundary node ¢ of figure 4.2. The unit vector locally normal to the
computational boundary 02 can be computed as the average of the inward pointing vectors
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normal to the edges of the boundary triangles containing i, 77 and 75, weighted by their
length, i.e.

- /ﬁ:TI + /ﬁ:TZ

i = v 0 =

1722, | =+ (|7, |

where ||7iz; || is equal to the length of the boundary edge of T;. Once the components of the
normal 7i; are known, one is able to compute the jacobian C; = Zk(afk/aU)nmk and its
eigenvalue decomposition. The procedure used to impose the boundary conditions is then the
following

1. Compute the inner nodal residual R;, coming from the spatial discretization;

2. Compute the provisional increment of the nodal variables associated to the inner resid-
ual:

3. Compute the corrective boundary residual R as the linear combination
R; =) g, (4.1)
AL>0

where r¥ is the right eigenvector associated to the positive eigenvalue of the jacobian Cj,
At and the coefficients 3% are computed analytically such that the solution computed

as
UMt = UP + 6U; — R}

verifies the required boundary condition;

4. Update the nodal residual with the corrective residual R} before the nodal update.

Figure 4.2: Nodal normal at the boundary

Note that the provisional residual R; is actually the spatial residual R; (see equation (2.15))
multiplied by the factor At/S;. The same multiplication factor must be taken into account
in the computation of the 5* coefficients to avoid inconsistencies. Generally speaking the
conditions that can be imposed with this technique can be chosen freely, keeping in mind that
their number cannot be greater than the number of positive eigenvalues A. The conditions
imposed in the computations performed can be summarized as follows
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Supersonic Outlet Since there are no positive eigenvalues, no conditions are imposed, i.e.
the new solution in nodes belonging to a boundary through which there is a supersonic
outlet is determined only from the inner residual.

Supersonic Inlet All the characteristics enter the domain, hence the whole vector of vari-
ables should be imposed. Practically speaking this condition can be imposed simply by
setting to zero the nodal residual.

Wall In inviscid computations only the impermeability condition can be guaranteed at the
wall, i.e. one can require that u; - 77; = 0 in the new solution. Note that in this case
only one positive eigenvalue is present and hence only one coefficient S% is needed in
(4.1). Defining the normal velocity u; = u;n;, + vini,, the coefficient can be computed
imposing one of the two following conditions:

u =0 or AuTT'=u1T'—ul=0.
The computation of % is reported in appendix D for the 2D Euler equations.

Subsonic Outlet Also in this case only one condition can be imposed. In particular, only
one coefficient 5% is needed in (4.1) and it is computed requiring

n+1

PPt = P (") or Ap;=pitt—pl =0,

)

where p is the pressure and p,,;(t) is a given function of the time. Also for this condition
the full computation of 5 is given in appendix D for the 1D Euler equations.

Subsonic Inlet In this case three conditions must be imposed, and hence three coefficients
B, % and 3% are needed in (4.1). Of course several possibilities are available for the
choice of the physical conditions to set. Here, for the Euler equations, following [1, 2],
the conditions chosen are given by

. A\ ntl A"
AToi:T(ﬁJrl—T(ﬁ:O,APOi:pg;rl_pgi:O’A<ﬂ>:<v_l'> _<ﬂ> -

U;

vs vs n+1 vs n
Tntl — prtl — 5% AlZ2) =2 —[Z2)] =0
02 0 ) pOz Do ’ u; u; u; )

where T is the total temperature, p, is the total pressure, v/u is the tangent of the
flow angle, T is a prescribed value of the total temperature and py is a modified total

pressure defined by
_1
Po=\— Do »
p

being v = 1.4 the ratio of the specific heat coefficients. A different set of conditions
have been implemented for the Two-Phase flow model (see chapter 5):

or

Alpu); = (pu)i = (pu)f =0, Apv); = (pv)i* = (p0)i =0, Aag =t —al; =0,

% % gt
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where p is the mixture density and «, is the void fraction of the gas phase. The procedure
used to compute the coefficients for the Euler equations is described in appendix D,
where also their final expression is given. In the same appendix the expression of 3, 52
and 3% for the Two-Phase Flow model is given, while for their computation the reader
can refer to [5].

Remarks

1. Note that the boundary conditions treatment described applies indifferently to steady
computations and to space-time computations as well. In particular, in the space-time
case, the unit nodal normal to the space-time boundary given by the past plane is always
given by 7; = (0,0, 1), while all the eigenvalues reduce to A, =1 > 0, hence, consistently
with the LPS condition derived in the previous chapter, the past plane is a supersonic
inlet-like boundary for which no residual must be computed. On the other hand, for the
future plane one has \i = —1 < 0 for all the eigenvalues, hence no boundary conditions
must be imposed on the future plane that is a supersonic outlet-like boundary. As a
consequence, there is no difference in the boundary treatment of steady and space-time
computations.

2. The boundary conditions used in this project can be easily applied also if an implicit
time-stepping procedure is used. In particular, the jacobian of the algebraic system
Ji; = OR;/0U; will be modified with the following entry:

ok e,
Jij+= Z ( ;" +0 0 ) -
AL>0
Since the 3* coefficient can be expressed as (see appendix D)
g =DFU;) - Ry + K (U;)

where the vector D* and the scalar ¢* depend only on U;, one ends with

D! OR, , och
h - RSt + DF . SNk e9
it A%(aU D G g et P )
k

where OR;/0U; has been already computed to assemble the jacobian entry related to
the inner residual. Thus, the jacobian entries related to the boundary conditions can
be written as a linear combination of the entries related to the inner discretization,
which are already known at this stage of the computation, plus informations related
only to the actual value of the variables in node i, still allowing a nodal treatment of the
boundary conditions. Note that D¥ = D*(U;) and ¢f = ¢*(U;) are known analytically,
hence no numerical differentiation is necessary.

41



4.2 Local Time-Stepping Technique

The time! integration technique used for the computations is based on the very simple forward
Euler formulas already given (equation (2.15)). In particular, since is only for steady solutions
that we are seeking for?, a local nodal time-step is used to have a faster convergence, namely

At
UMt = UM — —R, .
S
Since for the positivity of the N scheme one has to impose
S

ZTGAZ' man:l:"' yNequations ()\;—)T

At; <

Y

the time-stepping formula actually coded is

14

Ria

n+l _ yrn

ZTGAi maxk:l:"' 7Nequations ()\k )T

with v < 1.

!Pseudo-time in the case of space-time computations
2Be it in time or in pseudo-time
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Chapter 5

Results

In this chapter the results obtained on a series of well known steady and unsteady test-cases
are reported and commented. Note that, since different systems of equations have been con-
sidered, it seemed more convenient not to write one chapter devoted to the presentation of
the equations, but to describe briefly the basic equations in this chapter. To avoid confu-
sion, most of the informations regarding the characteristics analysis of the models and their
eigenstructure are given in appendix E. The outline of the chapter is the following: The first
section contains the results obtained on the Euler equations. Solutions of unsteady and steady
problems are discussed and compared, when possible, to analytical or reference solutions. In
the second section the Two-Fluid Model is briefly presented and the solutions of some classic
Two-Phase unsteady problems is shown.

5.1 Euler Equations

The system of the 2D Euler equations describes the motion of an inviscid non conductive
material. They can be written in conservative form and in a cartesian frame of reference as

p gu pv
0 0 0
gl ey 9| pu +p + 2 p;“’ -0, (5.1)
ot | pv ox puv oy | pv°+p

pE puH pvH

where p is the fluid density, p its pressure, @ = (u ,v) its velocity, F and H the total energy
and enthalpy. The system is closed by the state equation

p=(-p(E-"10)

and by the definition of total enthalpy

H=£+2.
p
Introducing the vector of primitive variables P =[p u v p ]t, the system can be rewritten
in the quasi-linear form
oP oP oP
— 4+ Ap—+Bp— =0,
ot P ox F dy
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with Ap and Bp given by

v p 0 O v 0 »p 0
0w 0 1/p 0w 0 O
Ar=1y9 0 w 0 |"B"Tl0o0 1/p |
0 pa? 0 w 0 0 pa® w

where a = /vp/p is the local speed of sound. Since the system is hyperbolic, the matrix
C = Apn, + Bpn, is diagonalizable with a complete set of real eigenvalues and linearly
independent eigenvectors and its eigenstructure is given in appendix E. Although different
forms of system (5.1) with additional source terms have been considered, the flux vectors and
the jacobian matrices of the system used to compute the upwind matrices (2.12) are always
the ones just presented. In the paragraph relative to each test-case these different forms of
the equations will be given, showing their relation with (5.1).

5.1.1 Unsteady Computations
A Mach 3 Wind Tunnel with a Forward Facing Step

This is a very famous test-case proposed by Colella and Woodward in [29]. It consists of a
supersonic flow entering a channel that contains a forward facing step. The initial solution
consists of a uniform Mach 3 flow. At the very beginning, a shock develops in front of the step
and detaches from it growing and then reflecting on the upper and lower walls of the channel.
The test was performed solving the space-time formulation of system (5.1) with the non-linear
blended scheme. What usually causes some difficulties in the solution of this problem is the
upper corner of the step which is a geometrical singularity. In [29] this problem is solved with a
very particular treatment of the unknowns stored in the computational cells close to the singu-
lar point. Here no modifications of the scheme have been introduced to handle the singularity.

The effect of the presence of the singular point can be two-fold. Roe-type schemes usu-
ally show an unphysical expansion shock in correspondence of corner. The reason of this can
be qualitatively understood considering the following analysis:
A 1D Roe-type scheme can be written in finite volume formulation as

At

Uz'nH = Uz'n - A—a; (Hi+1/2 - Hz'fl/2) )

where the numerical flux function H;,/, is defined by
Fi+ Fi
2

where F'is the vector of the conservative fluxes, R and L are the matrices of the right and
left eigenvectors of its jacobian and |A| is the diagonal matrix of the absolute values of the
eigenvalues of the jacobian. In 1D A is given by

1
Hiji2 = = S RIAL (Ui = i) (5.2)

|l 0 0
IAl=1 0 Ju—ad] 0
0 0 lu + al
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At the transonic point the eigenvalue |u — a| is zero, hence no numerical dissipation is added
from the scheme along the corresponding characteristic field. In some configurations this
causes the preservation of discontinuous data and hence the appearance of what is usually
called a transonic expansion shock. An example of such a phenomenon is given on the left
of figure 5.1, where the solution of this problem obtained in [7] using standard RD schemes
with the consistent mass matrix is reported at time ¢ = 0.5. The discontinuity at the corner
is clearly visible. On the right of the same picture, the solution obtained here on the same
mesh used in [7] at the same physical time is shown. As it can be seen from the picture, apart
from being globally more diffusive, the solution obtained with the space time schemes does
not contain any transonic shock. The reason of this can be understood considering the space-
time version of the 1D Roe scheme presented above. In (5.2) the vector of the conservative
fluxes would be substituted by the vector of the space-time fluxes whose jacobian matrix will
have eigenvalues given by

UNyg + T 0 0
A= 0 ung + ng — alng| 0 ,
0 0 ung + ng + alng|

from which is clear that at the transonic point the scheme still provides some numerical
dissipation associated to | (un, +ny — a|ng|)"™™ ™| = |n,|. This extra diffusion is enough to
dissipate the expansion shock.

1.00

J
3

Figure 5.1: Expansion at the Singular Point, t = 0.5. Left: Solution From [7], Right: Solution
Obtained with the Space-Time Approach
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Figure 5.2: Unphysical Mach Stem on the Lower Wall, ¢ = 4.0. Left: Solution from [30],
Right: Solution Obtained with the Space-Time Approach
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Very often, the presence of the corner causes a completely different behavior of the solu-
tion. On the left of figure 5.2 is reported the solution of this problem obtained in [30] with
a Discontinuous Galerkin Method at time ¢ = 4.0. On the right in the same figure the result
obtained here on the grid used in [7] is shown. A Mach stem on the lower wall is clearly
visible in both results. The presence of the Mach reflection can be explained with the a great
amount of spurious numerical dissipation that causes the appearance of an unphysical entropy
layer. The entropy production at the corner is clearly visible in figure 5.3 where the entropy
contours of the solutions obtained here at times t = 0.5 and ¢ = 1.5 are reported.

S: min=0-max=1.48-n=30 S: min=0-max=1.073-n=230
B scheme B scheme

t=1.5-fine grid

05 T 15 Z 25 3
X

YOV
AVATLVATAYA

I
KRS

ININININININININININTSON,
e
SVAVAVAVAVAVAVAVAVAVAV
RS
A%AWAVAVAVA%'
o
>

Figure 5.4: Effect of the Progressive Grid Refinement Around the Corner (from [30])
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An effective way to cure this problem is suggested in [30]: refine the grid locally around the
singular point so that the false entropy layer is contained within a few cells and does not
pollute the solution downstream. The effect of the progressive refinement of the mesh as
reported in [30] is shown in figure 5.4. Here a similar technique was used. The top of figure
5.5 shows a close-up view of the grid around the singular point with and without refinement
and below the improvement obtained in the solution at ¢ = 4.0. Although a small Mach
reflection is still visible, due to the very localized refinement of the grid!, the improvement in
non-negligible.

Figure 5.5: Grid Refinement Around the Corner and Improvement of the Solution

Once the problem with the corner has been solved, a fine version of the refined mesh of
figure 5.5 has been used to compare with reference [29]. In particular, the reference solutions
reported in [29] have been obtained with a third order PPM scheme on a uniform cartesian grid
with Az = Ay = 1/80. The mesh used here contains 38740 triangles and 19715 nodes, with a
characteristic mesh-size h = 1/80 and a refined mesh-size around the corner h, = 1/1000. The
computation is made with the second order non-linear blended scheme. Taking advantage of
the double-layer space-time approach the physical C'F'L number was fixed as CFL = h./h in
order to have an effective C'F'L, ~ 1 in the uniform grid-size region. In figures 5.6 and 5.7
a few snap-shots of the time evolution of the density computed here are reported together
with the reference solution. Note that the agreement is very good, also considering that
the method used in the reference is third order accurate while the space-time computations
cannot be more than second order accurate in space. A main difference can be found in the
resolution of the contact discontinuity coming from the triple point which appears very much
smeared in the present solution. On the other hand, the space-time computations show a
very clean and monotone capturing of the discontinuities.

!The typical size of the elements of the grid is h = 1/40, while very close to the corner it goes down to
he = 1073, Despite of the small mesh-size around the corner, an entropy layer still develops due to the small
region of refinement
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Figure 5.6: Mach 3 Wind Tunnel with a Step, Solutions at ¢ = 1.0 and ¢ = 1.5. Top: Present,
Bottom: Reference Solution [29]
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Figure 5.7: Mach 3 Wind Tunnel with a Step, Solutions at ¢ = 3.0 and ¢ = 4.0. Top: Present,
Bottom: Reference Solution [29]

This problem has been used as a test for the new treatment of conservation described in
chapter 3. The space-time blended scheme fully based on a flux computation done through
contour integration of the vector of the fluxes has been tested. Figure 5.8 shows the solution
obtained with the new approach a t = 4.0 on the intermediate refined grid of figure 5.5 and
on the fine grid. Comparing the plots of figure 5.8 with the ones in figures 5.5 and 5.7 no
visible difference in the solutions can be seen. The solution is still very clean and completely
monotone, which shows the robustness of the approach. Furthermore, all the shocks are in
the correct position, indicating that the scheme is still fully conservative. This very promising
result will be confirmed by the more severe tests presented in the following sections.
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Density - 30 levels - t = 4. Density - 30 levels -t = 4.
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Figure 5.8: Mach 3 Wind Tunnel with a Step: Solution at ¢ = 4.0 Obtained with the B
Scheme Based on the New Treatment of Conservation

Transonic Flow in a Channel with a Bump with Oscillating Back-Pressure

This problem was proposed for the first time by Béles and co-workers in [31] and later on
re-computed by Hwang and Liu in [32] and by Rogiest in [33]. It consists of a channel whose
length is equal to 2 and whose height is equal to 1 with a sinusoidal bump on the upper
wall. The initial solution is a Mach 0.675 flow with a transonic shock on the bump. Starting
from this solution a sinusoidal outlet pressure is imposed. In particular, according to [33], the
following law for the outlet pressure is fixed:

| 1L\
pow = 3 1042 {1+ %Mﬁo sin (wt) | (5.3)

o

with My = 0.675 and w = 0.792. The problem was solved here using the space-time for-
mulation of system (5.1) and the subsonic inlet and outlet boundary conditions of chapter 4.
The grid and the initial steady solution computed with the space-time blended scheme are
reported in figure 5.9. Starting from the solution of figure 5.9 the unsteady outlet pressure
(5.3) was imposed. Taking advantage of the two-layers approach, the At was fixed such that
one period of outlet pressure oscillation corresponded to 200 physical time-steps. The un-
steady evolution of the Mach number is shown if figures from 5.10 to 5.17, compared with the
results of [33].

N

g
g
K

Figure 5.9: Transonic Channel: Grid (left) and Mach Contours of the Initial Solution (right)
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Figure 5.10 shows the solutions after the first cycle, when the value of the outlet pressure
is equal to the stationary one ans is increasing. The shock, which already exists on the upper
wall, is moving toward the exit of the channel and it starts to reach the lower wall. In the
solution of figure 5.11 the shock has reached the lower wall and it starts to react to the
increasing outlet pressure raise. The delay between the instant in which the pressure starts
to increase and the one in which the shock feel the pressure increase is due to the finite speed
of propagation of sound. Some time after (figures 5.12 and 5.13), although the pressure is
decreasing, the shock is moving upstream and deforming. Again the finite speed of sound
is responsible for this time lag. At times ¢ = 247 /8w and t = 267 /8w the flow is subsonic
throughout the channel, as it can be seen in figures 5.14 and 5.15. The pressure minimum is
reached at ¢ = 287 /8w when a weak shock is already present on the upper wall (figure 5.16).
The end of the second cycle is shown in figure 5.17, where the flow pattern of figure 5.10 is
restored.

Figure 5.10: Transonic Channel: Unsteady Solution, wt = 27. Left: Present, Right: [33]

Figure 5.11: Transonic Channel: Unsteady Solution, wt = 187 /8. Left: Present, Right: [33]

Figure 5.12: Transonic Channel: Unsteady Solution, wt = 207 /8. Left: Present, Right: [33]
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Figure 5.14: Transonic Channel: Unsteady Solution, wt = 247 /8. Left: Present, Right: [33]
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Figure 5.15: Transonic Channel: Unsteady Solution, wt = 267 /8. Left: Present, Right: [33]

Hisid

Figure 5.16: Transonic Channel: Unsteady Solution, wt = 287 /8. Left: Present, Right: [33]

-

Figure 5.17: Transonic Channel: Unsteady Solution, wt = 4. Left: Present, Right: [33]
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The comparison between the solution obtained here and the reference one shows a good
agreement, considering that both are obtained numerically. What is interesting to note is
that the space-time schemes seem to have a small advancing phase shift with respect to the
finite volume method used in the reference. Figures 5.11, 5.12 and 5.13 clearly show that the
shock, especially on the lower wall, is situated more upstream in the space-time solution than
in the finite volume one, as if one was looking at a later time solution. Same thing for the
smooth flow patterns of figures 5.14 and 5.15, which seem identical in the result obtained here
and in the reference one, apart from a consistent space, and hence time, shift. One element to
take into account could be the grid used in the computations, but in [33] a structured 79 x 30
grid was used, while the mesh of figure 5.9 contains 3162 nodes which is a bit more than the
number of cells used in the reference, although reasonably close to it. A different explanation
could be that the space-time approach itself might introduce a phase error when applied to
non-linear periodic problems. Other tests reported in this chapter will show the same type
of advancing phase error, which deserves further investigation. As far as the present test-
case is concerned, a computation on a finer grid could be performed to verify if the apparent
advancing phase error is still present.

A Cylindrical 1D Riemann Problem with a Source Term

To test the accuracy of the new source terms discretization, a cylindrical 1D Riemann problem
similar to the one proposed in [34] has been solved. Consider the physical state described in
figure 5.18: an initial circular discontinuity in pressure and density located in the center of
the physical domain on top of a static background?.

The idea is to use the 1D radial version of the axisymmetric Euler equations to simulate
the time evolution of such a system.

< CcCTDO
i mnn
[oNoN i

< CTO
I
OO D

Figure 5.18: Initial Physical State for the Cylindrical Riemann Problem

2Zero velocity everywhere
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The 2D axisymmetric Euler equations can be written as

p pu Py pUr
0 0 0 1
L O I +p L9 p@;xur —S, §=—— puxz;r , (5.4)
ot | puy ox PUg Uy or | pu, +p r pPUs.

pE pu. H puH puH

being = the axis of symmetry, u, the component of the velocity parallel to the axis and u,
the radial component of the velocity. Considering again figure 5.18, the = axis would be the
one perpendicular to the page and the radial would be the one starting from the center of the
circular discontinuity and going toward the external region of the domain. Note that system
(5.4) can be seen as system (5.1) with the addiction of the source term S which accounts for
the effects of the axisymmetry. In particular, assuming u, = 0 and 0/0x = 0 everywhere, one
ends with

p 5 pu; | e
ot | Pl + ar pu;+p | =S, S=—1| pu; ; (5.5)
pE " pu, H " pu. H

which is nothing else than the system of the 1D Euler equation, with the source term S.
Finally the definition of the Riemann problem is: solve system (5.5) with the initial state

The problem is that, since no analytical solution is available for such a test-case, one needs
to build a reference solution. The approach used here is the following: Solve the real 2D
Riemann problem described in figure 5.18 on a fine isotropic mesh with the 2°¢ order blended
scheme and at the same time solve the 1D Riemann problem with the source term on a very
fine 1D mesh using the blended scheme and the new source term treatment. Note that one
could simply use the 1D second order solution on the fine mesh as a reference, but the com-
parison with the 2D solution will further verify the reliability of the 1D result. For symmetry
reasons, the 2D computation was run only on one quarter of the physical domain using an
isotropic Delaunay mesh with 20000 triangles and 10201 nodes. A close-up view of the mesh
is given in figure 5.19.

Note that a 2D Riemann problem has been already proposed as a test-case in [14], but in
that case the initial discontinuity was taken to be square-shaped, so that on the symmetry
lines® a pure 1D Riemann problem was recovered. In this case one would expect, given the
symmetry of the problem and the isotropic mesh, to have the same distribution of the variables
along any ray going through the origin of the domain. The 2D solution at ¢t = 0.4 is shown in
figure 5.20 in terms of density and pressure contours. It can be noted that the solution presents
a reasonable cylindrical symmetry, considering that in the mesh no preferential orientation of
the edges of the triangles do exist.

3Parallel to the edges of the initial discontinuity
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Figure 5.19: Close-up View of the Isotropic Mesh used for the Cylindrical Riemann Problem
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Figure 5.20: Cylindrical Riemann Problem: ¢ = 0.4, B scheme. Left: density, Right: pressure

The 1D solution was computed using 4001 nodes and then compared with cuts of the
2D solution along rays going through the origin of the circular discontinuity, at different
angles. The comparison is shown in figure 5.21, where the 1D solution is the solid line
and the 2D results are plotted with symbols. Several conclusions can be drawn from the
comparison. The agreement between 1D and 2D results indicates that the 1D model is
correct and the 1D solution can be indeed considered as a reference given the agreement with
the multidimensional one. Furthermore, comparing the plots at different angles one realizes
that a very small deviation from cylindrical symmetry is present in the 2D solution.
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Figure 5.21: Cylindrical Riemann Problem: Comparison of the 1D Solution (solid line) with
cuts of the 2D Solution Along Rays at Different Angles (symbols)
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Once a reference solution has been obtained, the new source term discretization has been
tested on this new 1D Riemann problem. In particular, the N scheme and the blended
scheme with the consistent treatment of the source term have been used to solve the problem
on different meshes and the results have been compared to the reference solution. The results
are summarized in figures from 5.22 to 5.24.
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Figure 5.22: 1D Cylindrical Riemann Problem: ¢t = 0.4, density.
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Figure 5.23: 1D Cylindrical Riemann Problem: ¢ = 0.4, pressure. Left: B scheme, Right: N
scheme

From the pictures is clear that the B scheme behaves as a typical 2"¢ order scheme while the
N scheme is indeed only first order. This difference is confirmed by the direct comparison
of the two schemes given in figure 5.25. The conclusion one draws from this test is that
indeed the new source term treatment works and it is robust enough to handle discontinuous
solutions. In addition, the blending of the £LP LDA scheme with the N scheme with the
inclusion in both of the consistent discretization of the source terms gives a blended scheme
which is indeed monotone and gives a sharper resolution of the discontinuities, typical of a
second order scheme.
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Figure 5.24: 1D Cylindrical Riemann Problem: ¢ = 0.4, Mach. Left: B scheme, Right: N
scheme
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Figure 5.25: 1D Cylindrical Riemann Problem: comparison between N and B schemes both
with the new consistent treatment of the source term
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5.1.2 Steady Computations
Steady Quasi-1D Nozzle Flows

A typical 1D test-case with a source term is obtained considering the so-called quasi-1D Euler
equations, that is, the 1D Euler equations in which one takes into account the variation with
the = coordinate of the area crossed by the fluid. Indicating with A = A(z) the variation of
the cross-sectional area, the system of equation reads

pA 9 puA 0
5| A | Fop | P Ep) A =S, 5= p5
pEA v puH A 0

Defining the modified density p' = pA and modified pressure p’ = pA the equations can be
rewritten as

0 , 0 2’u / / ’gA

_ / _ / / _ _ p

y p/u + . pul+p —S,S_ a5 ,
pE puH 0

while the equation of state becomes
U2
¥ = (y - 1) (“3) |

It is clear that if the modified density and pressure are used as primitive variables, the
quasi-1D Euler equations can be considered as the 1D Euler equations with the addition of
a source term which accounts for the variation of the cross-sectional area. The advantage
of this approach is that it allows to perform simulations of flows through 1D channels of
arbitrary geometry, by simply adding to the equations a source term and by imposing the
proper initial and boundary conditions. In particular, here the same 1D nozzle geometry used
in [35] was used in the computations, for which the area variation, plotted in figure 5.26, can
be analytically expressed as

4512 -
Al) = 1+g[1_$5]2 if —5<2<0
1+1[1-28]" if 0<z<5

Figure 5.26: Cross-Sectional Area Variation for the Quasi-1D Nozzle Flow Simulations
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Figure 5.27: Steady Quasi-1D Euler: Mach Number distribution along the nozzle. (a) Fully
Subsonic, (b) Chocked Subsonic, (¢) Adapted, (d) Transonic Shock, (e) Fully Supersonic

For steady quasi-1D flows, a simple procedure to compute the exact solution exists based on
the isentropic flow relations and on the Rankine-Hugoniot shock conditions. This technique,
extensively explained in [35], was used here to compute the exact solution for five different
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cases: fully subsonic flow, chocked subsonic flow , adapted flow, a flow with a transonic shock
and a supersonic flow. Once the exact solution was known, the exact total temperature and
pressure at the inlet have been used to impose the inlet boundary condition for the subsonic
cases and the same has been done for the outlet pressure. Note that the boundary treatment
is crucial especially for the subsonic outlet, since the shock position and the appearance of
the chocking condition are very sensitive to the variation of the outlet pressure. Since it is
well known that a pure 1D upwind discretization with a consistent upwinding of the source
term yields a second order solution (see references [23, 24, 25]), and in order to further test
the new multidimensional upwind source term treatment, the computations were run with
the space-time blended scheme, starting from a uniform flow, and marching in time until a
steady state was reached in terms of the L, norm of the density residual®. The final result
of the computations on 201 points are presented in terms of Mach number distribution along
the nozzle and are plotted in figure 5.27 together with the exact solution. The agreement is
remarkable.

Jets Interaction

This is the first of a series of steady tests performed to verify the robustness and the reliability
of the new discretization techniques proposed in chapter 3. In particular, the new treatment
of conservation has been compared on this problem to the traditional approach based on the
Deconinck-Struijs-Roe linearization of the jacobians of the system. The steady matrix schemes
described in section 2.1.2 have been used and Simpson’s rule has been used for the contour
integration. The test is taken from [1] and it consists of the interaction of two horizontal
supersonic jets which are suddenly brought into contact. The upper stream is characterized
by My, = 4, pyp, = 0.5 and p,, = 0.25, while for the lower stream one has: My, = 2.4,
Plow = 1.0 and pwy = 1.0. The domain is a 1 x 1 square. The interaction of the two jets
produces a shock wave in the low pressure jet and an expansion fan in the high pressure one.
A contact discontinuity develops in the middle. The mesh used is a 100 x 100 diamond grid.
In figure 5.28 the description of the problem and a zoom of the mesh used in the computation
are reported.

Expansion Fa

Figure 5.28: Jets Interaction Problem: Problem Description and Zoom of the grid

+1 2
Ei:l,--- ,nodes (P:L _P?)

T was smaller than a fixed

4Practically speaking, the computation was stopped when
threshold € ~ 1077 = 1078, where n indicates the physical time level
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The results obtained with the schemes based on the new treatment of conservations are
reported in figure 5.29 in terms of density contours. The correct reproduction of the physics
can be seen from the picture. The outlet Mach number distribution is then compared in
figure 5.30 with the one obtained on the same mesh and using the traditional formulation of
the schemes based on the computation of the integral of the fluxes using the Roe averaged
quasi-linear form of the equations.

New N scheme: density New B scheme: density
20 contours between 0.5 and 1 20 contours between 0.5 and 1

Figure 5.29: Jets Interaction Problem: Solution obtained with the new schemes. Left: N
scheme, Right: B scheme

Both the new N scheme and B scheme have been tested and compared with their original
version. First, from the density isolines, one can recognize the complete monotone behavior
of the schemes based on the new treatment of conservation and the sharp resolution of the
discontinuities obtained with the blended scheme which seems indeed second order. The
comparison with the original schemes based on the Deconinck-Struijs-Roe averaging shows
perfect agreement.

051 Symbols: New N scheme 057 Symbols: New B scheme

Solid Line: Traditional N scheme . Solid Line: Traditional B scheme

0.25 4 0.25 4
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T 1 -0.5 4
35 4 2 25

-0.5

: : ‘. a
Maach Ma3ch 35

Figure 5.30: Jets Interaction Problem: Comparison with Roe Averaging, Outlet Mach Num-
ber. Left: N scheme, Right: B scheme
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Scramjet Inlet

This problem is also taken from [1] and consists of a supersonic inlet of a scramjet. The inlet
Mach number is M;, = 3.6, the upper wall is a symmetry line and the outlet flow is still
supersonic. The N and B schemes based on the new treatment of conservation were tested
and compared with their analogous based on Roe averaging. Figure 5.31 shows a detail of the
grid used for the computations containing 7056 nodes and 13383 triangles, while the Mach
isolines of the solutions obtained with the new N and B schemes are given in figure 5.32.

WAVTATATeY NSRS
RN EBORRRRNAREE
KRR

RRRRRRRE
SOEORRRRIAN
ERRARK

New N scheme: Mach New B scheme: Mach
20 levels 20 levels

Figure 5.32: Scramjet Inlet: Mach Number Isolines. Left: new N Scheme, Right: new B
Scheme

Both solutions show a good prediction of the compression of the flow through the series of
shocks reflecting between the symmetry line and the wedge and the better resolution of the
B scheme is clear. Moreover, the solutions are both monotone. The distribution of density
pressure and Mach number along the symmetry line were compared with the ones computed
with the classical N and B scheme based on the Deconinck-Struijs-Roe Linearization on the
same grid. The comparison is shown in figures 5.33, 5.34 and 5.35. The agreement between
the solutions obtained with the different approaches is almost perfect.
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Figure 5.33: Scramjet Inlet: density along the symmetry line, comparison with Roe averaging.
Left: N scheme, Right B scheme. Symbols: New Approach, Solid: Roe Average
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Figure 5.34: Scramjet Inlet: pressure along the symmetry line, comparison with Roe averag-
ing. Left: N scheme, Right B scheme. Symbols: New Approach, Solid: Roe Average
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Figure 5.35: Scramjet Inlet: Mach number along the symmetry line, comparison with Roe
averaging. Left: N scheme, Right B scheme. Symbols: New Approach, Solid: Roe Average
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Mach 10 Flow Around a Cylinder

In order to further test the robustness of the new N scheme based on the contour integration
of the fluxes with Simpson’s rule, a Mach 10 bow shock over a cylinder was computed. The
grid used is a quite fine Delaunay mesh containing 12085 nodes and 23740 triangles. Given
the symmetry of the problem, only the upper half of the flow was simulated. The solution
obtained with the new approach is compared with the results obtained with the original N
scheme in figure 5.36 in terms of Mach and pressure isolines. In particular, the two solutions

are plotted one on top of the other with different colors.

Blue: New N scheme with Simpson’s rule
Green: Roe average-based N scheme
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Figure 5.36: Mach 10 Flow Over a Cylinder:

Blue: New N scheme with Simpson’s rule
Green: Roe average-based N scheme
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Figure 5.37: Mach 10 Flow Over a Cylinder: Stagnation point
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A closer view of the stagnation point is also reported in figure 5.37. As it can be seen from the
pictures, one can hardly distinguish the two solutions. The conclusion is that the N scheme
based on the new treatment of conservation and contour integration with Simpson’s rule is
as much robust and reliable as the one based on Roe averaging is. This is confirmed by

the comparison of pressure and Mach number distribution along the symmetry line shown in
figure 5.38.
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Figure 5.38: Mach 10 Flow Over a Cylinder: comparison with Roe averaging. Pressure and
Mach distribution along the symmetry line

Mach 4 Flow Around a Sphere

A bow shock computation was also used to test the robustness of the source term discretiza-
tion. In particular, the steady matrix N scheme with the new consistent source term treatment
of chapter 3 was used to solve equations (5.4) on the same 2D grid used for the test-case of
the bow shock around a cylinder. This time the symmetry line has taken to be a line of axial
symmetry so that a bow shock around a sphere could be simulated. The incoming flow Mach
number was taken to be M., = 4. A computation using a centered treatment of the axisym-
metry source term was tried to compare with the new approach, but the central discretization
turned out to be not stable enough to handle this problem. The result obtained with the new
approach is shown in terms of Mach number and pressure isolines in figures 5.39 and 5.40.

The plots show a perfect and monotone shock capturing. What is very important to
underline is that no special care has been taken in the low Mach region of the flow®, i.e. the
basic matrix scheme has been applied to system (5.4) without any kind of preconditioning
technique (see references [1, 2] for details). This adds value to the results shown here. The
distribution of Mach number and pressure along the axis of symmetry is also reported (figure
5.41) to further prove the monotonicity of the solution.

SWhich is also true for the Mach 10 flow around a cylinder test-case

65



2~

.
- N° scheme: Mach

- N° scheme: pressure

Figure 5.40: Mach 4 Flow Over a Sphere: Mach (left) and pressure (right) isolines at the
Stagnation Point
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Figure 5.41: Mach 4 Flow Over a Sphere: Mach (left) and pressure (right) distribution along
the axis of symmetry
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5.2 Two-Fluid Mechanical Equilibrium Model

The two-phase flow model used in this project is probably the simplest model available in
literature. It belongs to the class of models called Two-Fluid models and it can be obtained
from the most general model under the assumptions of inviscid and isentropic flow of both
phases and of a very strong mechanical coupling of the two fluids (see [5, 17, 18] for details).
The two phases considered are a liquid phase and a gas phase chosen to be representative of
water and air. As a consequence of the hypothesis of isentropic flow one does not need to solve
the energy equations, while the strong mechanical coupling between the phases translates into
the condition of equal velocities of the two phases [5]. The system of equations can be written
in the following conservative form

aipy QU Qv 0

9 | agp, 4+ 9O | agpgu + 9 | agpg _ (l

ot | pu or | pu’+p dy puv P9, |’
pv puv pv* 4 p p(9),

where o; and « are the liquid and gas void fractions, p; and p, are the liquid and gas densities,
@ = (u v) is the velocity vector, § is the gravity vector and p is the mixture density defined
by

P = up;+ Qypg .

The system is closed by the relation between the void fractions
ap+og=1
and by the state equations

P—DPo
PL = P + CL2 y P = nggg .
l

In the last equation pyy and py are reference density and pressure for the liquid phase, a; is the
speed of sound of the liquid phase, assumed to be constant and v, is the ratio of the specific
heat coefficients of the gas phase. In all the computations the following values have been used

for these quantities
po = 1000 kg/m?

Po = ]_05 Pa
a; = 1000 m/s
v =14

The value of the constant I', in the gas state equation has been fixed to 'y, = 10° Pa (m?/kg)".

Note that the equations of state used are consistent with the hypothesis of isentropic flow.
Although the model is written in conservative form, no Roe-type linearization exists for it,
hence this would be the typical case in which the new treatment of conservation should be
applied. Unfortunately, because of the small amount of time left for this part of the project,
only the non-conservative formulation used in [5] could be implemented. In particular, defining
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the vector of primitive variables

the system can be rewritten in the quasi-linear form

oP . P _ 0P

— +Ap—+Bp—=S5 5.6
ot * P ox * P oy P (56)
with Ap and Bp given by
w pa? 0 0 v 0 pa*® 0
|1/p uw 00 0 » 0 0
Ar=1"09 o wo| Br= 1/p 0 v 0]
0 B 0 u 0 0 B w
where @ is a mixture speed of sound given by
a = Ay %
PPs

with

_ Ps _
o = [ agp TG Ps = Qupg + Qg
ag af

being a, = \/v4p/p, the speed of sound in the gas phase, while § is defined by

2
_ Wty [Py P
f=——— <_2 o _> :

Ps a; ag
Since the system is hyperbolic, the matrix C' = A pn,+Bpn, is diagonalizable with a complete
set of real eigenvalues and linearly independent eigenvectors. The eigenvalue decomposition
of C' is given in appendix E. The space-time formulation of system (5.6) has been solved
using the non-linear blended scheme on three unsteady two-phase flow problems. The first
and the second one are very well known tests for which has been possible to compare the
solution obtained with analytical or experimental results. The third test has to be considered
more as an application of the new space-time schemes to the simulation of relatively complex
two-phase flows. In all the tests considered the gravity term played a major role, hence we
could apply the new source term treatment.

The Oscillating Manometer Problem

This is a rather simple 1D problem to set-up and it is very interesting since an analytical
solution is available. It consists of a U shaped tube filled partially with liquid and partially
with gas (see figure 5.42). The total length of the tube is 20 m, 10 m of which are filled
with liquid. In the initial condition the liquid is at the bottom of the tube and both liquid
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Figure 5.42: Oscillating Manometer: Problem Statement and Initial Condition

and gas are moving with the same speed. In the computations the tube has been considered
one-dimensional and closed, so that simple periodic boundary conditions could be used at its
extrema.

The initial condition is given by

[10°, 2.1, 1] if 0<z<5
(0, u, a,]= 105+plog§sm(”<xg5>),2.1,0] if 5<z<15 |
[10°, 2.1, 1] it 15 < 2 < 20

where ¢ = 9.81 m/s? is the magnitude of the gravity vector and L = 10 m is the length of
the liquid column. The effect of the curvature is taken into account in the initial pressure
distribution in the liquid phase and in the gravity term which is defined as

g it 0 <z<5b
g(z) = { gcos (”(IL75)> if 5 <z<15
g if 15 < <20

The problem has an analytical solution. In particular, the velocity at the bottom of the tube®

u*(t) is given by
u*(t) =2.1cos (wt) , w=+/2g/L.

The computation was performed with two spatial resolutions and until time ¢ = 15s which
is slightly more than three periods of oscillation of the column. A first computation on 201
nodes was performed with different C'F'L numbers. In particular, thanks to the double layer
approach, computations with CFL =1, CFL = 10 and CFL = 20 were performed.

z = 10m
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Figure 5.43: Oscillating Manometer Problem: Comparison with the Exact Solution. Left:
201 nodes - CFL =1, Right: 201 nodes - CFL = 10
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Figure 5.44: Oscillating Manometer Problem: Comparison with the Exact Solution. Left:
201 nodes - CFL = 20, Right: 401 nodes - CFL = 20

The comparison between analytical solution and the solutions computed at different C'F'L
numbers is shown in figure 5.43 and on the left in figure 5.44. Common feature of all the solu-
tions is a very small numerical damping of the amplitude of the oscillation and an advancing
phase error. Surprisingly, the smaller the C'F'L number, and hence the value of the time-step,
the larger the phase error. This somehow contradicts the fact that for smaller time-steps one
would expect a better time accuracy of the solution. The computation made with C'F'L = 20
is indeed the best one, although a phase error is still visible. This can be attributed to the
accumulation of the phase error in the computations made with smaller C' F'L numbers, due
to the larger number of iterations needed to reach a fixed time with a smaller time-step.
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Figure 5.45: Oscillating Manometer Problem: Comparison with the Exact Solution. Left:
201 nodes - influence of C F'L number, Right: C'F'L = 20 - Influence of grid resolution

The advancing phase shift observed here seems to be consistent to the one observed in the
computations of the transonic channel with fluctuating back-pressure. Whether the space-
time treatment itself could introduce a phase error, when applied to non-linear equations, is
not clear at the moment and further investigation of this aspect has to be done in the future.
The computation at CFL = 20 was repeated on a finer mesh containing 401 nodes. The
result is reported on the right in figure 5.44. The agreement with the exact solution is very
good, but a phase shift starts to be visible already at the beginning of the fourth cycle. Figure
5.45 summarizes the analysis made. As a matter of fact, the results obtained are not too bad,
although the reasons of the advancing phase error should be investigated. Another important
point is to perform some computations using the conservative formulation of the equations
coupled with the new treatment of conservation, which will help to understand if the phase
shift is related to the non-conservative approach used.

Sloshing of a Water Column in a Tank

This problem has been used by several authors as a validation test for two-phase flow codes
[5, 37] and has been also experimentally studied [36, 37]. The problem consists of a liquid
column initially at rest in hydrostatic equilibrium in a tank. The height of the initial water
column is 2L and its width is L. The tank is a square with side 4L and in the experiments
its top side is open. Figure 5.46 summarizes the geometry of the problem.

At time ¢ = 0 the water column is left free to move and an instability due to gravity causes
its break down. The water starts to move toward to opposite wall of the tank until it splashes
against it and then moves back. Some experimental data are available in literature for the
position of the leading edge of the moving liquid front. The distance of the front from the left
wall of the tank Z scaled by the initial width of the water column L is given as a function of

the reduced time t* defined by
t* =t\/2¢g/L,

71



4L

[ IGas
2L M Liquid

Figure 5.46: Sloshing of a Water Column: Geometry of the Problem and Initial Condition

being ¢ the gravity acceleration. The initial column width used in the computations is
L = 0.146 m, which is the same used for the experiments in [37]. Unfortunately, because
of the numerical diffusion, the interface between the phases is spread over several computa-
tional cells, so that a precise interface is not defined. What is usually done to compare with
experimental data is to assume that the interface is located in the position where the gas
void fraction assumes the value o, = 0.5. Using this criterion, the numerical position of the
liquid front was compared with the experimental data of references [36, 37]. The numerical
simulation was performed using the space-time formulation of system (5.6) and the non-linear
blended scheme. The mesh used is an isotropic Delaunay mesh similar to the one in figure
5.19, containing 11804 nodes and 23206 triangles. The C'F'L number was fixed to 100. The
comparison between the numerical prediction and the experimental data is shown in figure
5.47. The numerical results predict correctly the parabola-like behavior of the experimental
data and it is also quantitatively very good at the earlier times of the movement of the water
front, until ¢* ~ 2 which corresponds to a physical time ¢ & 0.172 s. The agreement worsens,
although still qualitatively acceptable, at later times. The reason of this could be of course
in the poor modeling of the physics. The model used is indeed one of the simplest one can
think of. It does not include any viscous effect and, even more important, no modeling of
the surface tension effects is included”. From the numerical point of view, a possible way
of improving the result is certainly the use of a conservative approach that would guarantee
a numerically correct prediction of the position of the interface which is not guaranteed by
the present non-conservative formulation. Of course this would not overcome the problems
related to the modeling issue.

The unsteady motion of the liquid mass has been also visualized plotting the isolines of
the gas void fraction. The visualizations are reported in figures from 5.48 to 5.51, where the
liquid phase is in blue and the gas phase in red. The initial condition is shown on the left in
figure 5.48. On the right in the same figure the water column has already broken apart and
it is moving toward the right end of the tank.

"The equilibrium of the stresses at the interface is probably what influences the real shape and motion of
the interface
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Figure 5.47: Sloshing of a Water Column: Comparison with Experimental Data

Figure 5.48: Sloshing of a Water Column: Gas Void Fraction. Left:t* = 0, Right:t* ~ 1.2

On the right in figure 5.49 the liquid front has reached the wall and the splashing of the liquid
on the wall is visible on the left in figure 5.50. The beginning of the sloshing of the water is
finally shown on the right in figure 5.50 and in figure 5.51. In the caption of each picture the
relative reduced time t* is indicated.
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Figure 5.49: Sloshing of a Water Column: Gas Void Fraction. Left:t* ~ 2.5, Right:t* ~ 3.8

Figure 5.50: Sloshing of a Water Column: Gas Void Fraction. Left:t* ~ 5.2, Right:t* ~ 6.5

The visualizations show the effect of the numerical diffusion spreading the void fraction dis-
continuity over a region covering several triangles. Note that the discontinuity in the void
fraction is a linearly degenerated discontinuity, exactly like a slip line is for the Euler equa-
tions. As remarked when speaking about the Mach 3 flow over a forward step problem, the
space-time schemes, because of the time upwinding, tend to badly smear this kind of dis-
continuities. As a last remark, it must be mentioned that, because the interface between
the phases spreads over several cells, its position is not uniquely defined. In particular, the
comparison with the experimental data of figure 5.47 was done assuming the interface to be
located where the void fractions reach the value 0.5.
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Figure 5.51: Sloshing of a Water Column: Gas Void Fraction. Left:t* ~ 7.8, Right:t* ~ 9

Gas Plume Test-Case

The evolution of a gas mass injected vertically into a liquid column initially at rest is con-
sidered here. The water is initially in hydrostatic equilibrium and the gas is injected with an
inlet vertical velocity of 0.2 m/s. At the top the liquid phase is in contact with gas at atmo-
spheric pressure. The injection starts at £ = 0 s and the entrainement of the gas phase into
the liquid due to the formation of two symmetric vortices is observed. Given the symmetry
of the problem, only half of it was simulated on a isotropic Delaunay grid (see figure 5.19)
with a mesh-size h & 0.01 corresponding to one tenth of the injection hole. System (5.6) was
solved in its space-time formulation using the non-linear blended scheme and a C'F'L = 100.
A similar test was performed in [5] with the same geometry, a higher injection speed and
a much coarser mesh, solving system (5.6) with a first order residual distribution method.
What is important to underline is that this test has a pure academical meaning, given the very
simple model used® and the geometry of the problem®. The initial evolution of the injected
gas, close to the inlet, and the formation of the two vortices is visualized using the isolines of
the gas void fraction and the velocity vectors in figures from 5.52 to 5.55 where the red color
denotes pure gas and the blue pure liquid. Note that the formation of the two counter-rotating
vortices is related to the coupled effect of the gravity and of the equal velocity of the phases.
Because of the last, in particular, in the regions where the void fraction goes from one to zero
the liquid moves with the same velocity of the gas as if an infinite friction at the interface
was acting!®.

8Viscous and surface tension effects are not included
9The injection hole has a width of about 0.1 m which is practically too much to consider a jet of pure air
10Which is actually the basic assumption in the model
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Figure 5.52: Gas Plume Problem: Gas Void Fraction at the inlet. Left: ¢ = 0.2 s, Right:
t=04s

Figure 5.53: Gas Plume Problem: Gas Void Fraction at the inlet. Left: ¢ = 0.6 s, Right:
t=028s
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= 1.0 s, Right:

Figure 5.54: Gas Plume Problem: Gas Void Fraction at the inlet. Left: ¢

t=12s

Figure 5.55: Gas Plume Problem: Gas Void Fraction at the inlet. Left: ¢ = 1.4 s, Right:

t=16s
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Chapter 6

Conclusions, Final Remarks and
Future Perspectives

Achievements and Conclusions

The main goal of this project was to investigate the capabilities of a new Space-Time for-
mulation of the Residual Distribution schemes and eventually to show its application to the
simulation of unsteady two-phase flows on unstructured grids. The starting point was a code
in which the basic method was implemented. The strategy adopted to reach the objective has
been that of implementing step by step all the utilities and features needed to run more com-
plex simulations and in parallel to develop the necessary theoretical background. Following
this path the main achievements of the project can be summarized as follows

Validation of the Code and of the Method
Starting already with the initial version of the code, the new method has been intensively
tested on a large number of problems, eventually comparing the solution obtained with
reference solutions available in literature or with analytical solutions.

Boundary Conditions
To enlarge the capabilities of the code, a set of characteristics-based boundary conditions
consistent with the nodal variable representation of the numerical method and based
on the work done previously in [1] has been developed and analyzed, showing how
to obtain an extension to implicit computations without the need of computing any
numerical jacobian.

Source Term Discretization
To be able to perform two-phase flow simulations, there must be a way to include in the
discretization the source terms present in the equations in a consistent manner which
does not spoil the accuracy of the basic scheme and at the same time is robust enough
to handle discontinuous or stiff sources. One possible way to do this has been developed
and tested on rather severe problems within this project.

New Conservative Formulation
Residual Distribution schemes were born for the solution of multidimensional scalar ad-
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vection problems and then later extended to the system of the Euler equations. This was
possible thanks to their matrix formulation and to the extension of the Roe linearization
to the multidimensional upwind method. A problem common to anybody willing to use
the RD method to solve a different system of equations is that, if no Roe linearization
exists for the system, the method is not able to guarantee full conservation. The MHD
equations, the equations of a chemically reacting flows and the two-phase Two-Fluid
models are examples of systems for which no conservative linearization of the jacobians
exists. Here, a new formulation of the RD schemes has been proposed which guarantees
full conservation without the need of any Roe-type linearization. The new approach has
been tested and compared with the traditional formulation of the schemes.

Application to Two-Phase Flows

The last item of this project was the application of the space-time approach to the simu-
lation of two-phase flows. The model used is one of the simplest present in the literature,
but still very interesting two-phase problems could be solved. The new theoretical re-
sults concerning source term discretization and conservation are of course of primary
interest because they allow to discretize the two-phase flow equations in a consistent,
accurate and conservative manner. Unfortunately, because of the time restrictions, the
new conservative formulation could not be implemented, hence only the new treatment
of the source term coupled with the space-time approach has been used.

The main achievements of the project are certainly the new developments relative to source
terms and conservation. The results presented indeed prove their robustness although more
testing is needed. The two-phase flow simulations have shown very promising results, besides
the simple model used. As far as the space-time schemes are concerned, at the moment
they are indeed the most robust and accurate formulation of the RD schemes for unsteady
simulation. As a matter of fact, in their present formulation, they are by far more expensive
than a finite volume method coupled with a Runge-Kutta time integrator and their extension
to three spatial dimensions! would probably not be competitive enough especially in terms
of memory requirements. Nevertheless they could still be optimized and be very useful for
two dimensional and axisymmetric computation. According to the author, the space-time
schemes do not represent the ultimate way of performing accurate unsteady simulations using
the RD method.

Future Perspectives

Several topics related to the work done deserve further attention

1. The strong node-wise boundary condition treatment used here, that allows a true control
of the nodal value of the unknowns on the boundaries, should be implemented in an
implicit solver and compared with the ghost-nodes approach used now in most of the
RD codes. In particular, the advantage of being able of computing analytically the new
jacobian entries should be exploited.

L Apart from the trouble in extending the constrained space-time meshing to 4D
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2. The new conservative formulation of the schemes enables to extend the use of the fluc-
tuation splitting schemes to any system of equations. Of course one of the first items
to take into consideration is to use it to solve the two-phase problems considered here.
Further application to chemically reacting flows and to the MHD equations should be
also tried.

3. A different use of the possibility of computing the cell residual through a numerical
contour integration could be to build more accurate schemes. In fact, since the contour
integral and hence the cell residual can be computed with any accuracy just by changing
the quadrature rule, third order or even even more accurate schemes could be built.
Two important issues have to be dealt with: how to define the residual distribution
strategy and how to retain positivity when higher order polynomial representations of
the variables are used. Help might come for the second issue from the work done in the
field of the discontinuous Galerkin method [30].

4. Being able to perform 3D accurate unsteady computations using residual distribution
schemes still remain a challenge, since the space-time approach would probably be too
expensive. A way to go could be to go back to the finite elements formulation of the
schemes, coupling it with the ideas at the basis of stabilized finite elements methods.
A blending of the consistent mass matrix with the lumped one could be one of the first
things to try. Following the work of Sidilkover [38] the computation of the blending
coefficient should be based on the time variation of the unknown. Investigation of the
application to the time derivative of the same technique used for the discretization of
the source terms and for the treatment of conservation could be also interesting

5. Even for two dimensional and axisymmetric flows, the space-time schemes are very
expensive and a long computational time can be required also for simple problems. The
explicit pseudo-time iterative procedure in use at the moment could be abandoned in
favor of a Newton or quasi-Newton iterative method, but the large memory requirements
associated to the method have to be kept in mind.

6. Cheaper space-time meshing techniques, like the one proposed in [22], should be con-
sidered.

7. The dual time loop intrinsic in the space-time method of solution could be easily used
to perform incompressible flow simulation by the use of the artificial compressibility
approach.

8. Dual time preconditioning techniques could be easily coupled with the space-time method,
thanks to its intrinsic dual time-stepping formulation.
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Appendix A

Consistency of the N 5 Scheme in 1D

It is known that the 1D upwind finite volume Roe scheme can be rewritten as a RD scheme
(see [1, 26]). In particular, with reference to figure A.1, scheme (3.6) can be rewritten as

(@5)"” (Usgs — Uy) — sgntdo s (g g,y

(@) = AF (U - Uiy) - %g (S; + Si_1)

2

and similarly for the nodes ¢ +1 and ¢ — 1.

U i+1
Uiy
U
X | ° o
i-1 ‘ i i+1
i-1/2 i+1/2
RDS FV
U i+1’,,'/
. Uiy U
X i
@ e-1 P e s
i-1 i i+1

Figure A.1: RD formulation of a 1D Finite Volume Scheme

In order to derive the 1D version of scheme (3.4) consider the following relations:

( Kze —_A Kz_ _ *A2*|A\ — _At = I+sg2n(A)A
K;r _ %%HAW — A — 7I+sgn(A)A
1=K (K| - _=tizgnla
K¢ =A K, =A =gy : (A.1)

I+sgn(A
Kj, = At = e %El)A I
IiH = KZL (Kze+1) = +Sgn( :

Z]Ee K+ Z]Ee |A| ) Z]Ee Ij+ = I
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Note that the subscript e has been dropped for clearness.

The source term fluctuation (3.5) is given by

Az, A
@ = S+ Sf = S5+ S S

and the inflow states can be proven to be

Sz*n — Ifsg2r1(A) S;k + I+sg2r1(A) S£k+1 _|_ @S

Ui _ I+S%H(A) Uz + I—sg2n(A) Ui-{—l ‘

Then, according to (3.4) and using relations (A.1), the element-to-node contribution for node
¢ from element e is

I —sgn(A)

(89" = —A7 (Ui = Un) + ——S = (57 = 57,) - (A.2)
For the first term in the last equation one has
— A" (U; = Uy) =
AU I-— sgn(A)AI + sgn(A) U+ I— sgn(A)AI — sgn(A) Uiy =

1
- A_Ul + A_IA_A+Ui + Z (A - |A|) (I - sgn(A)) Ui—i—l == —A_Ui + A_Ui—i—l s (AS)

and finally
—A (U =Uy)=A" U1 = U;) .

Note that in equation (A.3) the relation A~A™ = 0, the definition of the sign of a matrix
(equation (3.8)) and the fact that sgn(A) = sgn(A~!) has been used. For the second term
in equation (A.2) one has

I —sgn(A)

2
I —sgn(A) <Sz* 1 —sgn(4) s+ I+ sgn(A) st - <I>S> _
2 2 2
1 —sgn(4) o5 4 I —sgn(A) (I—l— sgn(A) 5 - I +sgn(A) S;+1> _
2 2 2 2
- sgn(A) o5 4 I— sgn(A) I+ sgn(A) (S5 —s5,) =
I — A I— A
_ Sgl’l( )(I)S _|_A71A7A+A71 (S:c N S;+1) _ sgn( )(I)S )

Assembling the two contributions and writing explicitly the source term fluctuation one ends

with A

I —sgn(A,) Ax
2 2

Similarly one can prove that (q)gz—l)N,S _ ((Pf_l)up‘

(@)™ = A7 (Upsr — U;) — (Si + Siv1) = ()7 .
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Appendix B
The New N Scheme is ZS7T

Consider the scheme given by the combination of the N° and the N¢ schemes introduced in
chapter 3:
®; = I} [K] (U —U) + S5 — S

being
—-1 -1
S: = (Z 1;) (Z IACH +<1>5) , U= (Z Kj) (Z Kju; - <1>T> ,
ler leT JET JET
and
o' =¢ F-idd |, @S:/Sdg.
orT T

What we would like to do is to extend the proof of the ZS7T property also to this scheme. In
order to do this, consider two sets of variables U and W, linked by the relation

ow
oW = —0U .
oU
It is easy to prove that
oU ow
KY = —— gW-___
J oW 1 oU '’
and hence oW 50 W 50
K:l:W K:I:U I+W I+U B.1
J oU oW’ ou " oW - (B.1)

Suppose U is the vector of conserved variables, of course ® must be computed using the
conservative fluxes, hence ®7 = ®7°U. Suppose that also ®° is computed in conservative
variables, consistently with what is done for the fluxes. So we also have ®° = ®%V_ Define
now the following quantities

ow ow ow ow
@T,W (I)TU (pSW (I)SU *W__ * = U, . B.2
oU oU i oU S5, W oU U (B-2)

The nodal residual of the new scheme will be computed in the W variables as

*, W W
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with

-1 -1
S:;;W — (Z I;—,W) (Z Il-l-,WSl*,W + @S,W) ,Wc — <Z KJ—I—,W) <Z K;—,WWj . (I)T’W

leT leT jeT jeT

Using relations (B.1) and (B.2) one can easily check that

ow ow
*,W * —
SZTL aU S ’ WC aU UC )

and hence, using again (B.2)

oY = 1" {K]Waavg U; —Ue) + (ng (S; —S;‘n)} :

J

Applying one last time (B.1) to last equation, one can write

ow oU oW __,; oU oW ou ow
QW = 1tV KY iy
iU [aW oU "7 oW oU (U= U+ oW U (57 - Sm)] ’
and finally
oW . oW
oY = 0 —— VK (U; - U.) + S5 — S| = %@U

hence the new scheme is ZST .
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Appendix C

Flux Computations

C.1 Second Order Flux Integration

The proof of relation (3.12) will be given here, first in the case of a triangle and then for a
tetrahedron. Consider then the triangle of figure C.1; applying the trapezium rule one obtains

%an_t-ﬁdl:—% (ﬁO‘f‘f.l)-ﬁg_%<fl+ﬁ2>-ﬁo—%<f2—|—f'0>.ﬁ1:

1 - R 1 - . 1 - .
—5.7:0'(711+n2)—§f1'(n0+n2)—§.7:2'(n0+n1) .

Using the relation 7ig + 717 + 775 = 0, one ends with
— o 1 — o — N — o
f f-ndl:—(fo-n0+f1-n1+.7:2-n2) ,
ar 2

that is exactly what (3.12) says.

Figure C.1: Contour Integration with Trapezium Rule
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In the case of a tetrahedron the trapezium rule becomes

f;ﬁﬁm:
orT

(77"0+]7'1+77"2) ) (77"1+77"2+]7“3> ) (]7'0+77"2+]7“3> ) (77"0+]7'1+ﬁ3) )

— .n — .n _— .n JE— .n
3 3 3 0 3 ! 3 2

- ﬁ1+ﬁ2+ﬁ3 = ﬁ0+ﬁ2+ﬁ3 = ﬁ0+ﬁ1+ﬁ3 = ﬁ0+ﬁ1+ﬁ2

=he s Ty 3 3

Using the relation 7y + 71y + 7iy + 73 = 6, one ends with
— = 1 — 5 — N — 5 — N
f-ndle(]:O-n0+.7:1-n1+.7:2-n2+.7:3-n3> s
oT

as we wanted to prove.

C.2 Third Order Flux Integration

Using the notation of figure C.2, Simpson’s rule contour integration reads:

1/12 = = 112 = = 171~ - 1 =
-3 <— 0+2.7:m2+§ 1 'ﬁ2—§ <—f1+2.7:m0+§.7:2>'ﬁ0—— <§f2+2fm1+§f1>'ﬁ1:

3\2 2 3
111 _ 1. ., 1> . - S = S 7 S
33 0-(n1+n2)+§ 1'(n0+n2)+§f2'(0+n1)+2fm0'n0+2fm1'n1+2fm2'n2 :

Figure C.2: Contour Integration on a Triangle with Simpson’s Rule
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Using the relation 7ig + 717 + 7io = 0 one ends with

%f-ﬁdl:
oT

1 /1~ = L, 1 /1~ = L, 1 /1% > .
§<§f0_2fmo>'n0+§<§f1_2fm1>'n1+§<§f2_2fm2>'n27

exactly as stated by equation (3.13).
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Appendix D

Boundary Conditions

Consider the following update formula:

UM = U — kiaRy

)

where the coefficient k;a is a function of the time-step and of the local geometry, for example
kian = At/S;. The correction related to the boundary treatment will be of the type

SU* = Z Bkrk :
AL >0

where r* is the right eigenvector relative to the k-the positive eigenvalue of the jacobian of
the differential system A; (see section 4.1). The final update formula becomes

1

B >0
Since the eigenvectors r* are known analytically, the only information missing is the one
relative to the 5¥ coefficient. As already explained, they are computed from the imposition of
the required boundary condition on U**!. Instead of giving the general procedure to compute
the coefficients, here the way they were computed for the Euler equations will be reported
as an example. In a second section the value of the ¥ coefficient for imposing the boundary
conditions for the Two-Fluid model are also given. For their computation one can refer to [5].

D.1 Euler Equations

Inviscid Wall Condition for the 2D Euler equations

The condition we want to impose is either Au; = 0 or v/} = 0. What we need to compute

is the provisional increment dU; of our variables and then derive an equation for 8*. Indicate
with P = [p,u,v,p]" the vector of primitive variables, one has in a first order approximation

oOP\" oOP\"
or = (5p), 0= =bs (57), %o
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where the jacobian OP/0U is known analytically (see appendix E). The last expression gives
for the provisional increment of the primitive variables

0p = —kina (Ri)1
(Ri)o—u (Ri),

51,1/ — _kZA o7

op=(v-1) [_k;iA (R;), — kLop — pl (uldu + v}*év)]

where £, is the kinetic energy per unit mass. In the case of wall boundary conditions, there
is only one ingoing wave associated to the eigenvalue 4 - 7i; + a, with relative eigenvector given
in primitive variables as follows (see appendix E)

pi/ai
w Mg
Ny
pi ai
Writing the final update in primitive variables, one obtains for the velocity components

n+l __
U= uj + ou + By
ntl _ . n w ’
v = v+ ov + By

and finally multiplying the first equation by n,,, the second by n; and remembering that

2 2 _ : n+1
ni; +n;, =1, one obtains for u 7" and Au

uttt = 't + duy + BY = Auy = Suy + B,

being du; = dun;; + dvn;,. Finally the value of ¥ is obtained simply by setting u'ttt =0 or
Au; =0:

uttt =0 —  BY=—(u" +duy)

AUL =0 — 511} = —5UL
Note that " can be written as the following linear combination of the values of the nodal
residual:

ki
8" =D"(U;) - Ry + ¢*(U;) , D"(U;) = TA[ —ut mg oy 0], (U = —ul

Subsonic Outlet Condition for the 1D Euler equations

Proceeding exactly as in the previous case, one obtains for the provisional increment of the
primitive variables

op = —kia (R;);

oy )
op = (v — 1) [=kia (Ri); — k&dp — piluiou
Also in this case the only ingoing wave is associated to the eigenvalue u - 77; + a, with relative
eigenvector given in primitive variables as (see appendix E)

P/ a;
= | ng/|nel
Py ag
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Writing the final update in primitive variables one obtains for the pressure
pitt = pf 4 op+ Bpfar
and finally 3¢ is obtained either imposing pI't! = p,u:(t"™1) or Ap = 0:

p?—i—l — pout(tn+1) — /Ba = p?la,? (_5]9 +pOUt(tn+1) _p?)
Ap=0 — po=--0

T AT
Py ay

Note that the expression of 3% is exactly the same for the 2D Euler equations. Making use
of the definition of dp, 5% can be easily expressed as 3% = D*(U;) - R; + ¢*(u;). In particular
one can easily show that in the 2D case

a _ pout(tn+1) - p?
pra; '

—1
DY(U) = Lhia[ K —u = 1],

=— '
Pi ;

Subsonic Inlet Condition for the 2D Euler equations

Because of the lengthy algebra, only the general procedure will be explained and the final
results will be given. In this case there are three positive eigenvalues given by 4 - 77; + a and
@ - 1; two times. The eigenvectors associated to these eigenvalues are written in primitive
variables as (see appendix E)

7 n
pi/a; 1 0
n; 0 —n;
rl — 1T : 1‘2 — , 1‘3 — 1Y
Ny 0 Mg
pia; 0 0

As in the case of the wall boundary conditions, one can easily derive the provisional increment
for the primitive variables:

0p = —kia (Ry),
Su = —kyp Bda W R,
v = —kjp BlamtiRaly
5}9 = (’7 - 1) [_kiA (Rz)4 - kZ-(SP - P? (u?éu + U?(S’U)]

The variables we are interested in are the total temperature Tj, the total pressure py and the
tangent of the flow angle tg, = v/u. The idea is to write the increment of these variables as
a linear combination of the increments of the primitive variables. This can be obtained as
follows:

ToH — T3 = 6Ty + 0Ty =
T,

0Ty 0Ty Ty
— (Op+p*)+— (0 ou*) + — (v + 6v*) + — (dp + op* D.1
8p(p+ pr) o (But+ du) + =2 (v + v%+8p(p+ p*) . (D.1)

Pt — ply; = dpo + 0pf =

Ipo * Ipo * Ipo * % *
9 (6p+6p") + 9 (0u + ou*) + 9 (dv + 6v*) + o (0p +6p*) , (D.2)
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tgnit — tgh; = 6tge + Otgl =
Otga
dp

Otga
ov

Otga

Otga
o (0v + dv*) + J (0p +dp*) , (D.3)

Op

(dp+6dp") +

(0u + ou*) +

where the vector of the corrective increments of the primitive variables is given by
= plrl + B%r? + B33 . (D.4)

Substituting the expression of the eigenvectors in (D.4) and then inserting the expressions
of the corrective increments of the primitive variables in equations (D.1), (D.2) and (D.3)
one obtains a linear system for the unknowns 3% coefficients which can be solved as soon as
informations are given on the time increments of Tj, py and tg,. The final results are:

53 —pndu _ ,ndv ﬁlﬂ

v ouf ut ult
52 = BZ:O + ABZ !
51 = Bk:o + Aﬂl

where u| = un;, —vn;g, fr—o and fi_, are the values of 3! and 5* obtained requiring AT, = 0
and Apy = 0 and are given by

BL_ = _ p/(pai)+20u kg /(afu'} )
A=0 = 1+2k7, /(aFu™)

5

/BZZO = wiTp)? - 6p
By imposing a required value of 7Tp'™" and pi*™' (see section 4.1), one can compute the addi-
tional terms AB' and AB? which are given by

1 Apg /k:i""Yp?ATO/(a?)Z
Ap pra . (142K /(a}ult))
A= (y- 0% (14

a

?

b) A8~ A

with . .
_ 7=
)\* - k_:z + (a;’)2

Ary, = R(T5 —1T7)
A= (B) 7 (05— pb)

where 77 and pj are the required total temperature and pressure required at the inlet.

Although less easy to prove, 3!, 3% and 3 can be written, as in the previous cases, as
ﬂk:Dk-Ri+Ck.

Y
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D.2 Two-Phase Equilibrium Model

Inviscid Wall Condition for the 2D Mechanical Equilibrium Model

Only one positive eigenvalue is present in this case and it is given by - 7i;. The correspondent
right eigenvector is
pia;
w Nig
niy

B ai

The coefficient 8" required for the wall boundary condition Au,; = 0 is given by

5w:5UL.

Subsonic Outlet Condition for the 2D Mechanical Equilibrium Model

Also in this case the only positive eigenvalue is given by u - 77; with the correspondent right
eigenvector
Py 4
a Mg
Ny

gi/ai
The coefficient 8* required for the wall boundary condition Ap = 0 is given by

)
gr=——

T onont
P; a;

Subsonic Inlet Condition for the 2D Mechanical Equilibrium Model

In this case three positive eigenvalues are present: -7i; and «-7; two times. The correspondent
right eigenvectors are

piai 0 0
n; —n; 0

I‘l — 1T 7 1'2 — 1Y ) 1‘3 —
B/ ad 0 1

The coefficients needed to impose the conditions A(pu) =0, A(pv) =0 and A, = 0 are

alt o’
(—%-Ir 52 ) w i Op+pfouy

ﬂl _ aj  lag;
o n a?i agi n,n
P+ g‘FW wlp;a;

afj , _%gi n
2 (#"‘(ag;)z)“ndp"'ﬂi ou
/8 - al
g9

ot (S 28t Yy prar
i i alz (a;ti)z (1P 44

B
ﬂ3 — —50ég _ 51@
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For all the boundary conditions related to the Two-Fluid Model is also very easy to check that
¥ = DF . R;. In particular, note that since the computations were actually run in primitive
variables, the provisional increments were simply computed as

5[) = _kiA (Rz)l
(SU = _kiA (:R,l)2
ov = _kiA (Rl)g
ooy = —kia (Ri),

96



Appendix E

Equations, Jacobians and Eigenvalue
Decompositions

E.1 2D Euler Equations

For the Euler equations, two different sets of variables are used in the computations: the
conservative variables given by

p
v=| ",

pU

pE

and the primitive variables, given by

p
p=|"

v

p

The transformations jacobian matrices between the two sets of variables are

1 0 0 0 1 0 0 0
AW _fu p 0 0 opP — 5 0 0
op | v 0 p 0 | 79U — 0 5 0 ’
ke pu pv 35 (y=Dke —(y=Du =(y=1v 7-1

being k. the kinetic energy per unit mass. In primitive variables the jacobian of the system
is given by

97



where V -1 = @+ in the steady computations, while Vit = un, +vn, +n, for the space-time
computations. The eigenvalues and eigenvectors of C' can be computed as

1
.= 1 _ 0
)\1—‘/'7’1,,1'— 0 s
0
0
— N —nNn
)\QZV'TL,I‘2: Y s
Ny
0
14
a
— N n
Ns=V-ii4a,r’= S I
Ty
pa
P
a
— = —N
M=V-i—a, = “
pa

For the boundary conditions the knowledge of the eigenvectors in conservative variables is
needed. If ry indicates the generic eigenvector in conservative variables and rp indicates the
generic eigenvector in primitive variables, one can easily prove that

ry = aUr
T
Using the previous relation one obtains
1 0
R 2 _ — PNy
'y = v Ty = Py )
ke —puny + pung
e 2
p(”x + %) p(_nx + %)
r3 — v 1‘4 — v
v p(?’l,y + E) S U p(—ny —+ 5)
p (% + 75 +ung + vny> P (% + 75— ung — vny)

Note that all the previous matrices have been computed with the hypothesis n2 +n2 =1

E.2 1D Euler Equations

Also for the 1D Euler equations, two different sets of variables are used in the computations:
the conservative variables given by



and the primitive variables, given by

P=1u
p

The transformations jacobian matrices between the two sets of variables are

oU

v 0] :
oP 3

1 0

U Y Y Arr -
oU .

ke =

pu S (y=Dke =(v=Du ~v—1

being k. the kinetic energy per unit mass. Since in 1D only space-time computations have
been performed, it is the space-time jacobian that is reported here. In primitive variables it
reads

UNg + Ny PNy 0
C = 0 ung + ng ”7’“‘ ,
0 pa’n,  ung +n,

The eigenvalues and eigenvectors of C' can be computed as

M=V.id,rt=1]0

[ P
o=V -i+alng|, = | ng/|na| | |
| e ]

p

. a
Ay =V it —alng|, = | —ng/|n.
pa
For the boundary conditions the knowledge of the eigenvectors in conservative variables is

needed. If ry indicates the generic eigenvector in conservative variables and rp indicates the
generic eigenvector in primitive variables, one can easily prove that

aUr
ry = ——=Ip.
v=gptr
Using the previous relation one obtains
P P
1 n @ u Tba u
r%]: U , r2U: p(|nz| +E , r?(’]: p(_\nﬂ +E) ,
ke T ke T
ke p (% + 5 i) ot + 5% —up)
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E.3 2D Two-Phase Equilibrium Model

The complete jacobian of the system reads in primitive variables

Vi pa*ng pa*n, 0
ng/p Vit 0 0
ny/p 0 Vi 0 ’

—

0 png,  pBn, V-ii

C =

where in the case of space-time computations Vit = un, +wvn, +n;. The following eigenvalue
decomposition can be proven:

C = RAL ,
with . . .
pa pa 0 0 30 ale 3y 0
R | T The Ty 0 I 2’%‘1 —%nw —%ny 0
ny, —ny, ng 0|~ —ny n, 0]~
Bla Bla 0 1 —pi 0 0 1
and .
Veii4+a 0 0 0
A= 0 V.n—a 40 ) 0
0 0 Vet 0
0 0 0o V-#@

Note that all the previous matrices have been computed with the hypothesis n? + nf/ =1

E.4 1D Two-Phase Equilibrium Model

The 1D space-time jacobian of the system reads in primitive variables

ung +mng  pa’ng 0
C = ng/p  ung +mny 0
0 Bng UN, + Ny

The following eigenvalue decomposition can be proven:

C = RAL ,

with .

pa pa 0 % 2|7le 0

R=| ng/|ns| —ng/lng| 0| , L= %oa —Qﬁfﬂ 01,

sja Bla 1 S
and

ung + ng + alng| 0 0

A= 0 ung + ng — alng| 0
0 0 UNy + 1y
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