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AbstratThe extension of Residual Distribution Shemes to general unsteady and omplex inhomoge-neous systems of onservation laws poses several tehnial diÆulties whih have made manye�orts unsuessful until now. First, the shemes in their original formulation annot be morethan �rst order aurate in spae in unsteady omputations due to an inonsistent treatmentof the time derivative in the disretization. Furthermore, the onservation property stronglyrelies on the existene of a Roe-type linearization of the Jaobians of the system whih is notavailable in general. Finally, inluding foring terms in the disretization in a onsistent wayhas not been ahieved until now.The goal of this projet was therefore to ure the above problems and to demonstrate theappliation towards omplex hyperboli systems on a two-uid two-phase ow model. Seondorder of auray in time and spae was obtained by using a spae-time approah for whihgeneral boundary onditions based on harateristi eigenvetor deomposition were imple-mented. A new soure-term disretization, onsistent with the Residual Distribution method,has been proposed and tested. This new treatment of the foring terms has been shown tobe robust and extendable to seond order of auray. The same idea at the basis of thesoure term disretization allowed rewriting the shemes in a way that does not require anyRoe-type linearization of the Jaobians to guarantee disrete onservation. Comparison withthe lassial formulation has shown the robustness and reliability of the approah. Finally,the spae-time shemes, ombined with the new treatment of the soure terms, have beenapplied to a simple two-phase ow model. The solution of some well known two-phase owproblems involving separated ow is shown.
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Chapter 1IntrodutionOver the last deade, a lass of upwind spatial disretization shemes has been developedfor the solution of systems of hyperboli onservation laws on unstrutured grids [1, 2℄. TheResidual Distribution (RD) or Flutuation Splitting Shemes inorporate the same propertieswhih are at the basis of all Godunov-type upwind �nite volume shemes, but arried over toa ell-vertex framework with a ontinuous representation of the variables, like in the standard�nite element method. The strength of the method lays in the fat that both monotoniityand seond order of auray an be obtained on the ompat stenil of nearest neighbors,whih also enables an easier impliit and parallel implementation. The key feature of theRD method is the truly multidimensional upwinding at its basis, whih allows to reproduenumerially the multidimensionality of the physis. Suessful appliation of the shemes tothe steady 2D and 3D Euler and Navier Stokes Equations, to the MHD equations and toTwo-Fluid Models for two-phase ow simulation, has been shown in the past [1, 2, 3, 4, 5℄.However, those methods still have several limitations. First of all, the shemes have been de-veloped for the solution of steady state problems and when they are applied to the simulationof unsteady ows, their auray is degradated even if used in ombination with the methodof lines ( Runge-Kutta shemes for example ). Furthermore, their appliation to ows withstrong disontinuities strongly relies on the existene of a onservative Roe-type linearizationof the Jaobian matries of the system, whih is not always guaranteed, as, for example, inthe ase of two-phase ow models suh as the Two-Fluid models and of the MHD equations.In addition, up to now a onsistent disretization of the soure terms has not been found. Inpartiular the point-wise treatment that has been used until now, redues the auray of theseond order shemes to �rst order, while a entered treatment is most of the times unstable.In the following setions these three problems will be analyzed and explained, summarizingthe work done in the past years to ure them, and antiipating some of the results obtainedin the ourse of this work. In the last setion some information will be given on the two-phaseow modeling and on the related numerial issues. In partiular the work previously doneat the von Karman Institute will be briey summarized and the simple model used in theomputations introdued.
1



1.1 Unsteady Computations, LP property and MassMatrixConsider the following simple salar problem�u�t + ~� � ru = 0 ; (1.1)where ~� is a onstant vetor. We wish to solve equation (1.1) on an unstrutured mesh(triangles in 2D, tetrahedra in 3D). The basi idea of the Flutuation Splitting shemes is toompute the integral of the advetive uxes on every omputational ell and then to distributeportions of it to every node belonging to the element. In formulas:�T = ZT ~� � ru d
 Ri += �Ti �T ; (1.2)where �Ti is the so-alled distribution oeÆient, Ri is the global residual for node i andthe symbol += indiates that the value of the residual is updated with the portion of theadvetive uxes oming from element T . It an be shown [1℄ that if the distribution oeÆientis bounded, i.e. for �T going to zero, �Ti �T also goes to zero, then the sheme is able toreprodue exatly steady linear solutions of (1.1) and hene is seond order aurate at steadystate. This property is usually alled LP property or residual property. Of ourse the LPproperty holds only for steady state omputations, in fat for an unsteady solution one anwrite �T = � ZT �u�t d
 6= 0 :As a onsequene one has that in unsteady omputations shemes that are LP at steadystate, lose this property, hene seond order of auray is lost.A di�erent way to explain the lower auray that linearity preserving shemes show in un-steady omputations an be found in the work done by Maerz [6℄. He started observing thatany LP sheme an be written as a �nite element Petrov-Galerkin method with test funtiongiven by !Ti = NTi + (�Ti � 1d+ 1)T ;where NTi is the linear Galerkin base funtion, d the number of spatial dimensions, and T is apiee-wise onstant funtion whih is zero outside of element T and 1 on it. As a onsequene,for onsisteny, the disretization of unsteady problems should inlude a so-alled mass matrixde�ned on eah element T asmTij = ZT !Ti NTj d
 = 
T3 266664 12 + �T1 � 13 14 + �T1 � 13 14 + �T1 � 1314 + �T2 � 13 12 + �T2 � 13 14 + �T2 � 1314 + �T3 � 13 14 + �T3 � 13 12 + �T3 � 13
377775 :The �nal semi-disrete equation for node i then beomesXT2�iXj2T mTij dujdt + XT2�i �Ti �T = 02



where �i represents the set of elements surrounding node i. It must be noted that, sine themass matrix is not diagonal, the method beomes impliit. Although the use of the massmatrix allows to reover seond order of auray in unsteady omputations, as shown in [6℄,monotoniity problems arise from the fat that the matrix is not positive de�ned. In [7℄ Fer-rante tried to ure this problem through the use of a limiting proedure of the Flux CorretedTransport (FCT ) type (see referene [8, 9℄), but without satisfatory results, at least for theEuler equations.A di�erent approah to solve the problem of the auray has been tried in [10, 11, 12℄. Theauthors used the RD formulation of the Lax-Wendro� sheme ombined with a Flux Cor-reted Transport limiting proedure to obtain seond order monotone solutions of unsteadyproblems. The seond order of auray of the Lax-Wendro� sheme was shown for a 2Dadvetion equation like the (1.1) in [11℄ through the use of the 2D modi�ed equation, and in[10℄ through an equivalent equation and grid re�nement studies. Although for salar prob-lems the results shown ompare reasonably well with the ones obtained using the onsistentmass matrix with the FCT limiting, for the Euler equations monotoniity problems are stillpresent.More reently another tehnique to get bak seond order of auray in unsteady omputa-tions has been, and is being, investigated. The basi idea is to maintain the LP property inunsteady problems by inluding the time derivative in the de�nition of the ell residual �T(see equation (1.2)): �Ts�t = ZT ��u�t + ~� � ru� d
 :One this has been done, the use of a positive linearity preserving sheme in spae-time willguarantee seond order aurate monotone solutions also for unsteady omputations. This isthe idea at the basis of the spae-time formulation of the RD shemes whih are the basis ofthis projet and that will be extensively desribed in setion 2.2. Promising results obtainedusing this new formulation have been shown in [13℄ and in [14, 15℄.It is important to underline that positive linearity preserving shemes do exist; an overviewof their design methods an be found in [16℄.1.2 Soure terms and LP propertyConsider now the following 1D salar non-homogeneous advetion problem:�u�t + a�u�x = � : (1.3)The 1D version of a LP utuation splitting sheme is obtained as follows:�e = Z xe2xe1 �a�u�x � �� dx Ri+= �ei �e ; (1.4)where xe1 and xe2 are the oordinates of the extrema i and i + 1 of segment e (see �gure 1.1).Any steady solution of (1.3) will be reprodued with seond order of auray by any sheme3
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Figure 1.1: 1D RD shemeof the form (1.4) beause of the linearity preservation property. A seond order positiveupwind sheme, for example, is de�ned by8><>: ��ei ; �ei+1� = �a�a ; a+a �a� = min (a; 0)a+ = max (a; 0) : (1.5)What happens if only the advetive term is inluded in the de�nition of the element residual�e ? For a steady problem one will have that�e = Z xe2xe1 a�u�x dx = Z xe2xe1 � dx 6= 0 ;hene one an say that shemes that are LP at steady state for homogeneous problems,lose this property, and hene the seond order of auray, when applied to in-homogeneousequations, if the soure term is not inluded in the de�nition of the element residual.As a onsequene of the last statement one would like to extend to the multidimensional asethe upwind sheme (1.5). In 2D and 3D, equation (1.3) an be written as�u�t + ~� � ru = � : (1.6)The extension of a linearity preserving sheme to equation (1.6) an be done in the followingstraightforward way: �T = ZT �~� � ru� �� d
 Ri += �Ti �T :The problem is that most of the LP shemes are linear and they are not positive (see setion2.1), hene, in presene of strong gradients of the solution, they usually give non-monotoneresults. Seond order positive shemes do exist, but they are based on a non-linear blendingbetween a linear LP sheme and a linear �rst order sheme, usually the so-alled N-sheme(see setion 2.1). The N-sheme, being linear and positive, annot be seond order aurate,beause of Godunov's theorem (see referene [1℄). For this sheme the distribution oeÆient4



is not de�ned, but one an ompute diretly the nodal ontribution of an element T as follows(see setion 2.1): �Ni = max ~� � ~ni2 ; 0! (ui � uin) ; (1.7)where ~ni is the inward pointing normal to the edge (surfae in 3D) in front of node i (see�gure 2.2) and the state uin is the so-alled inow state of element T . Note that the indexT has been dropped in (1.7) to simplify the notation. More details on the shemes will begiven in the next hapter, what is important to underline here is that the ruial point inthe onstrution of a positive sheme whih is LP also in presene of soure terms is theextension of (1.7) to non-homogeneous equations. The way in whih this has been done willbe explained extensively in setion 3.1.1.1.3 Conservative Linearization and Quasi-Linear Equa-tionsConsider the following simple 2D salar non-linear onservation law�u�t + �f�x + �g�y = 0 ; (1.8)where the uxes f and g depend in general on the unknown u. Equation (1.8) an be solvedin a fully onservative way with a LP sheme omputing the residual in the following way:�T = I�T ~F � ~n dl Ri+= �Ti �T ; (1.9)where �T is the boundary of the generi triangle T of the grid, ~F = (f; g) and ~n is theoutward pointing unit normal to �T . Note that1. The integral in (1.9) an be omputed very aurately by hoosing the appropriatequadrature rule.2. The distribution oeÆients �Ti depend usually on the jaobiankTi = �f�unix + �g�vniy ; (1.10)where ~ni � (nix; niy) is the inward pointing vetor normal to the edge in front of node i.It is important to underline that kTi for a non-linear equation is in general a funtion ofthe unknown u and that the sheme de�ned by (1.9) remains onservative, independentlyon how kTi (u) is omputed, as long as the distribution oeÆients respet the ondition:Xj2T �Tj = 1 :The salar kTi is usually alled inow parameter.5



The problem with sheme (1.9) is that it is linear and hene, being LP, it annot be positive.So non-monotone solutions are obtained in presene of disontinuities. As already mentionedspeaking about the disretization of the soure terms, the onstrution of a seond ordersheme whih is also monotone is based on a non linear blending between a seond orderlinear LP sheme, whih is non-positive, with a �rst order positive sheme. The �rst ordersheme usually used in the omputations is an extension of the N-sheme (equation (1.7))where the produt ~� � ~ni is substituted by the parameter kTi of equation (1.10) evaluated insome averaged state. The problem is that the sheme obtained in this way is onservativeprovided that the ell residual is omputed using the quasi-linear form of equation (1.8), asfollows �T =Xj2T k̂Tj uj ;where k̂Tj indiates the inow parameter evaluated in an average state ûT suh that the identityXj2T k̂Tj uj = I ~F � ~n dl ;holds at a disrete level. For example for the invisid Burger's equation one has (f; g) =(u22 ; u), and, if linear variation of the unknown over eah element is assumed, a onservativeN-sheme is obtained if all the jaobians are evaluated in the average state:ûT = 13 Xv=1;3 uv :When suh a onservative linearization exists, it is usually alled a Roe linearization. For theEuler equations a Roe linearization is obtained by omputing the arithmeti average of thevalues at the verties of an element T of the Roe parameter Z given byZ = p� [1; u; v;H℄t ;where � is the uid density, u and v are the x and y veloity omponents and H is the totalenthalpy. Sine not all the systems of equations admit suh a linearization one should ideallyuse always a ontour integral for the evaluation of the ux balane of eah element (equation(1.9)) in order to be onservative. An the other hand, the neessity of using the N-sheme tobuild a non-linear positive and LP blended sheme fores to use the quasi-linear form of theequations. In the ourse of this projet a new tehnique has been developed whih allows torewrite the N-sheme in a way ompatible with the evaluation of the ux balane through aontour integral. In setion 3.2.1 details about this new formulation of the shemes will begiven together with some onsequenes and future developments.1.4 Physial and Numerial Modeling of Two-Phase FlowTwo-Phase ows are enountered in wide variety of engineering appliations ranging frompower generation and onversion to biologial ows. The understanding of the physis of6



two-phase ows and the apability of prediting the performanes of multi-phase systems areruial to ontrol and to design them. In the reent years, the use of the so-alled Two-Fluid models to analyze two-phase ows is beoming more and more ommon among thesienti� ommunity. The reason for this is that these models are obtained diretly from thesingle phase Navier-Stokes equations through an averaging proess, hene their mathematialderivation is exat. Furthermore, they are able to handle real non-equilibrium e�ets sinethe mehanial and thermal variables of eah phase are desribed as distint �elds. The mostgeneral formulation of the Two-Fluid equations for a liquid-gas system is the following [17℄:Mass Conservation � (�k�k)�t +r � (�k�k~uk) = �Mk ; k = l; gMomentum Conservation� (�k�k~uk)�t +r � (�k�k~uk 
 ~uk) + �krpk = r � (�k��� k) + ~F extk + ~F intk + �Mk ~uintk ; k = l; gEnergy Conservation� (�k�kEk)�t + pk ��k�t +r � (�k�k~ukHk) = r � (�k��� k � ~uk)+~F extk � ~uk + ~F intk � ~uk +r � (�kqqqk) + �Qk + �Mk �hintk + ~u2k2 � ; k = l; gwhere �k is the void fration or volume fration of phase k, �k its density, ~uk its veloity, pkits pressure, Ek and Hk its total energy and enthalpy, ��� k its stress tensor , qqqk the heat uxand ~F extk an external fore ating on the phase, usually the gravity fore. The terms �Mk ,~F intk , �Qk , ~uintk and hintk represent the interfae exhange of mass, momentum and heat betweenthe phases, the interfae veloity and enthalpy of phase k. All these terms ome from theaveraging proess of the equations and must be somehow modeled. Unfortunately no uniquemodel exists and one usually resorts to some engineering assumptions that simplify the systemgiving a omputable model for the simulations. Moreover the use of high resolution upwindshemes to disretize the Two-Fluid equations turns out to be often very diÆult and usuallyan ad-ho re-formulation of the numerial methods is needed [18℄. Here the work previouslydone at the von Karman Institute [5, 19℄ will be followed. In partiular, the model used inthe omputations is the simple single pressure isentropi-mehanial equilibrium model usedin [5℄. In this model the ow of the two phases is assumed to be isentropi and the pressureof the two phases to be equal, hene no energy equations are solved. A strong mehanialoupling between the phases is assumed, leading to the hypothesis ~ul = ~ug = ~u. Moreoverthe model is invisid and of ourse no phase hange is onsidered1. The �nal form of theequations is (see hapter 5 and appendix E for more details):Mass Conservation � (�k�k)�t +r � (�k�k~u) = 0 ; k = l; g1It would require the modeling of the thermal evolution of eah phase and hene the hypothesis of isentropiow should be dropped 7



Mixture Momentum Conservation� (�~u)�t +r � (�~u
 ~u) +rp = ~F extwhere � = �g�g+�l�l is the so-alled mixture density. Note that beause of the hypothesis ofequal veloities, only the mixture momentum equation needs to be solved. Di�erently frommost of the Two-Fluid models (see [5, 18, 19℄) this model is always hyperboli and well posedin the limiting single-phase ases. This will allow to perform simulations involving well knownproblems with strong phase separation. Note also that, although the system of equation iswritten in a strong onservative form, no Roe linearization exists for it. This is the typialase in whih the new onservative formulation developed here should be used, but, unfor-tunately, beause of the limited time, the spae-time approah ould be applied only to thesame non-onservative formulation used in [5℄. Note also that the two-phase ow simulationsperformed here are to be intended as simple tests for the new theoretial developments andnot as real appliations.The outline of the report is the following: in hapter 2 the steady RD shemes will bedesribed, realling where neessary details regarding their implementation for the solutionof the Euler equations. In the same hapter the new spae-time approah will be illustratedwith partiular attention to tehnial problems related to the spae-time meshing. Chapter 3will be devoted to the new theoretial developments regarding the disretization of the soureterms and the treatment of onservation. Boundary onditions and time integration will bedesribed in hapter 4 while hapter 5 will ontain the results obtained on well doumentedsteady and unsteady test-ases. The report will be losed by some onlusions and futuredevelopments.
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Chapter 2Residual Distribution ShemesThis hapter is devoted to the illustration of the Residual Distribution Shemes. In a �rstpart the steady shemes will be realled together with the most important properties thatharaterize them. Referenes will be given for a more detailed desription. In the seondpart of the hapter the spae-time approah will be analyzed with some emphasis on thespae-time meshing issues.2.1 RD Shemes for Steady Hyperboli Problems2.1.1 RD Shemes for Salar AdvetionConsider a simple homogeneous salar advetion equation�u�t + ~� � ru = 0 ;disretize the 2D or 3D physial domain 
 with an unstrutured mesh omposed of triangles(resp. tetrahedra) and assume that the unknown u varies linearly in spae, like in the standardlinear �nite element method. In formulasu =Xi2
 Niui ;where ui indiates the nodal value of the unknown and Ni is the linear tent-shaped interpo-lation funtion (see �gure 2.1).
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Figure 2.1: Tent-shaped interpolation funtion Ni9



The utuation or residual of an element T is de�ned as the integral of the advetiveuxes, namely �T = ZT ~� � ru d
T = � ZT �u�t d
T : (2.1)De�ne now the so-alled inow parameter of node j in ell T as the following quantity:kTj = 1d~� � ~nTj ; (2.2)where d is the number of spatial dimensions and ~nTj is the inward pointing vetor, perpendi-ular to the edge (fae in 3D) in front of node j and saled by its length (surfae in 3D), asillustrated in �gure 2.2.
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Figure 2.2: 2D and 3D grid geometryIt an be easily shown that the utuation �T an be omputed as the following weightedaverage of the element nodal values �T =Xj2T kTj uj :The idea at the basis of the residual distribution shemes is that the evolution of the nodalvalues of the unknown is determined by a fration of the utuation of eah element ontainingthat spei� node. In partiular, the global nodal residual is obtained by assembling theontribution oming from all the elements surrounding the node. In formulas:Ri = XT2�i �Ti = XT2�i �Ti �T = XT2�iXj2T �Ti kTj uj ;being �i the set of elements ontaining node i and �Ti the so-alled distribution oeÆient.One the nodal residual is assembled, the solution an be marhed forward in time untilonvergene to steady state is reahed. A very simple update formula is obtained if expliitforward Euler time integration is used:un+1i = uni � �tSi Ri ; (2.3)10
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Figure 2.3: Median Dual Cell in 2Dwhere Si is the area of the so-alled median dual ell of node i, obtained joining the gravityenters of all the elements surrounding node i with the midpoints of the edges meeting at thenode, as depited in �gure 2.3 for the 2D ase. Note that:1. For onsisteny and onservation the element-to-node residual ontributions must re-spet the onstraint Xj2T �Tj = �T ! Xj2T �Tj = 1 : (2.4)2. The nodal residual an be omputed using the very ompat stenil of nearest neighbors,whih allows an easy impliit and parallel implementation.The design of the shemes involves the hoie of the distribution oeÆients or the de�nitionof the element-to-node ontribution �Tj . The most important design priniples are based onthe following properties:Multidimensional Upwinding (MU) A multidimensional upwind sheme does not sendany portion of the element utuation to upstream nodes. In formulas:kTj < 0 ! �Tj = 0 ; �Tj = 0 : (2.5)Positivity (P) The positivity property ensures that monotone solutions are always obtained.For a positive sheme the new value of the unknown a an be written as a onvex sumof its old values in the surrounding nodes, i.e.un+1i =X ijunj ; ij > 0 : (2.6)For the simple update formula (2.3) ondition (2.6) beomes (see referene [1℄):�Ti kTj < 0 ; �t < SiPT2�i �Ti kTi :
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Linearity Preservation (LP) A linearity preserving sheme is a sheme whose distributionoeÆients are bounded. In partiular for a linearity preserving sheme one has thatlim�T!0�Tj = lim�T!0 �Tj �T = 0 :It an be shown [1℄ that a linearity preserving sheme is able to reprodue exatlysteady linear solutions, hene the LP property is equivalent to seond order of aurayat steady state.A more detailed desription of the properties whih an be used for the design of the shemesan be found in [1℄. In the same referene the proof of the extension of Godunov's theoremto the utuation splitting shemes an be found. The above-mentioned theorem states thatlinear shemes annot be positive and linearity preserving at the same time. Unfortunately,most of the basi shemes are linear and hene, to have a seond order positive sheme,some non-linearity must be introdued. Here we will not follow [1℄ where a review of sometehniques to obtain non-linear seond order shemes is made, but we will more losely followthe work reported in [3, 16, 20℄.In partiular a non-linear sheme ould be de�ned from the following blending:��Ti �P;LP = (1� �) ��Ti �LP + � ��Ti �P ; (2.7)where the blending oeÆient � should be de�ned in suh a way that in orrespondene ofsmooth solutions, where �T � 0, one has � = 0, while in orrespondene of strong gradients ordisontinuities, one has � = 1. In this way the LP property will be preserved by the blending,although in presene of sharp variations of the solution monotone results are guaranteed bythe stabilizing ontribution of the P sheme. Information and details about possible hoiesof the blending fator and their relation with the work made in [1℄ an be found in [20℄, whilein [3, 16℄ a review of the design priniples of blended shemes for the solution of the Eulerequations is made. In the ourse of this projet the following blending fator has been usedin all the omputations: � = j�T jPj2T j ��Tj �P j : (2.8)It an be easily seen from de�nition (2.8) that at onvergene, whenever one has that �T = 0,the blended sheme de�ned by (2.7) beomes atually the seond order LP sheme. On theother hand, although there is no formal proof of the positivity of suh a blended sheme,numerial evidene indiates that this property atually holds.De�nition of the ShemesNow that the basi ideas behind the utuation splitting shemes have been given, it remainsto speify how the element residual is atually distributed. The number of shemes that havebeen designed and tested in the past years is relatively large. For an overview one an referto [1℄. Here the following shemes have been used1:1LP stands for Linearity Preserving, P stands for Positive,MU stands for Multidimensional Upwind andL stands for Linear 12



LDA sheme (LP, L, MU) The LDA sheme is de�ned by�LDAi = �LDAi �T ; �LDAi = k+iPj2T k+j ;with k+i = max(kTi ; 0). Note that the index T has been dropped where non-neessary,to simplify the notation.N sheme (P, L, MU) The N sheme is de�ned by�Ni = k+i �ui � uTin� ; uin = Pj2T k�j ujPj2T k�j ;with k�i = min(kTi ; 0). The state uTin is the so-alled inow state.B sheme (P, LP, MU) The blended sheme is de�ned by�Bi = (1� �)�LDAi + ��Ni ; � = j�T jPj2T j�Nj j :A geometrial interpretation of the shemes is available in [1, 2℄, while the proof of theirproperties an be found in [1, 20℄.Remarks1. The shemes de�ned above of ourse are applied also to non-linear equations where either~� = ~� (u) or ~� = ru ~F , beingru = (~1x;~1y;~1z) ��u , and ~F is a vetor of onservative uxes.In the last ase, in partiular, the use of the N sheme is possible only if a linearizationof the jaobians suh thatI�T ~F � ~n dl = ZT r � ~F d
 = 
T[ru ~F � ru ;is available. Note that in the last equation ru is onstant, sine u is assumed to belinear, and ~n is the outward pointing unit normal to the boundary of T . The reason ofthis is that the distribution oeÆient of the N sheme annot be expliitly de�ned andhene a truly onservative formulation of the type�Ti = �Ti I�T ~F � ~n dlannot be used.2. The positivity of the N sheme (and hene of the B sheme) is obtained, in ase of atime marhing proedure like (2.3), under the time-step onstraint:�t < SiPT2�i k+i : (2.9)Of ourse this is not true anymore if an impliit time integration strategy is used2.2In any ase, the steady state solution u� satis�es minj2�i u�j < u�i < maxj2�i u�j13



2.1.2 Matrix Shemes for Hyperboli SystemsConsider the hyperboli system �U�t + dXi=1 Ai �U�xi ; (2.10)where U is the vetor of the unknown, d is the number of spae dimensions and the Ai's areonstant matries suh that Pdi=1Ai�i is diagonalizable with real eigenvalues and real andindependent eigenvetors for every ~� � (�1; � � � ; �d) in Rd. In order to solve system (2.10)disretize the spae domain 
 with an unstrutured grid and assume that the vetor U varieslinearly in spae, namely U =Xi2
 NiUi ; (2.11)where Ui represents the value of the unknown at node i and the Ni's are the Galerkin tentshaped linear test funtion (see �gure 2.1). De�ne the residual of an element T (triangle in2D and tetrahedron in 3D) as�T = ZT dXi=1 Ai �U�xi d
 = � ZT �U�t d
 :For the hypotheses made on the matries Ai, it is possible to de�ne the following multidimen-sional generalizations of the inow parameters (2.2) and of their sign:KTj = 1d dXi=1 Ainji ; K�j = Rj��j Lj ; (2.12)being ~nj the vetor normal to the edge (fae in 3D) in front of node j and saled by itslength (resp. surfae), Rj and Lj the matries of the right and left eigenvetors of KTj ,�+ = diagk=1;��� ;d [max (�k; 0)℄ and �� = diagk=1;��� ;d [min (�k; 0)℄ with �k k-th eigenvalue ofKTj . Thanks to the hypothesis of linear variation of U , it an be easily shown that the ellresidual an be omputed as �T =Xj2T KTj Uj : (2.13)Exatly like in the salar ase, the global nodal residual is obtained assembling portions ofthe utuation of the elements surrounding it. In formulas:�Ti = BTi �T ; Ri = XT2�iBTi �T = XT2�iXj2T BTi KTj Uj : (2.14)The matrix BTi is alled the distribution matrix, and the lass of shemes de�ned by (2.14)are usually referred to as the matrix shemes.One the nodal residual has been assembled, the solution an be marhed forward in timetoward the steady state. If expliit forward Euler time integration is used, one has:Un+1i = Uni � �tSi Ri = Un � �tSi XT2�iXj2T BTi KTj Uj : (2.15)14



As in the salar ase, the properties of the method are fully determined by the distributionriterion. For an optimal design of the shemes is then of primary importane to be able togeneralize properties of the salar distribution to the system ase. The set of riteria on whihthe hoie of the distribution riteria is based are the following:Multidimensional Upwinding (MU) In the ase of hyperboli systems theMU propertymust be intended in a harateristi sense. The idea is that if the eigenvalue �ik of KTiis negative, then the k-th harateristi �eld of node i is not updated. Mathematiallythis implies that the nodal residual must be loally proportional to the positive part ofKTi , namely �Ti = BTi �T / K+i :Positivity (P) Following [2℄, in order to generalize this property to the matrix shemes, theupdate formula (2.15) is rewritten asUn+1i � Uni�t Si +Xm Clm(Unl � Unm) = 0 :The sheme will be said positive if all the matries Clm are non-negative, i.e. theireigenvalues are all positive or zero.Linearity Preservation (LP) Simply as in the salar ase, a sheme is said to be linearitypreserving if lim�T!0�Tj = lim�T!0BTj �T = 0 :Invariane for Similarity Transformations (IST ) This is a very important property forthe design of the shemes. Consider a set of variables W , de�ned by�W = �W�U �U ;the invariane property requires that the following relation between the residual ex-pressed in the old set of variables and the one expressed in the new one:RUi = �U�W RWi :From the last equation one dedues for the distribution matries [2℄BWi = �W�U BUi �U�W ; BUi = �U�W BWi �W�U :The importane of this property is that it allows to ompute the residual in the set ofvariables more onvenient3 and then transform it to the original variables, being surethat the �nal result will be exatly the as as if the residual were omputed diretly inthe original set of variables.3For example the one that symmetrizes the matries of the system or redues their entries15



Like in the salar ase, no linear shemes that have both the LP property and the P propertyexist. In this work, a seond order positive sheme has been used, whih is de�ned by thefollowing non-linear blending of a linear positive sheme and a linear linearity preservingsheme: ��Ti �P;LP = (I � �) ��Ti �LP +� ��Ti �P ; �ij = Æij ���[�T ℄j���Pk2T ����h(�Ti )Pij����Also for this sheme, like for the one de�ned by (2.7) and (2.8), no analytial proof of posi-tivity is available. Strong numerial evidene is available, though, that it produes monotonesolutions also in presene of strong disontinuities.A di�erent lass of blended shemes have been reently developed by Abgrall for the solu-tion of the Euler equations, that are designed using a more analytial approah. The readerinterested an refer to referene [16℄.De�nition of the ShemesIn this projet, the shemes used in the omputations are a generalization of the salar shemespresented in the previous setion. For a more extensive overview on the matrix shemes, onean refer to [1, 2℄.Matrix LDA sheme (LP, L, IST , MU) The matrix LDA sheme is a formal general-ization of its salar ounterpart. Its distribution matrix is given by:BLDAi = K+i  Xj2T K+j !�1 : (2.16)Matrix N sheme (P, L, IST , MU) Like the matrix LDA sheme, the matrix N shemeis obtained through a formal extension of its salar ounterpart. Its element-to-nodeontribution is de�ned as:�Ni = K+i (Ui � Uin) ; Uin =  Xj2T K�j !�1Xj2T K�j Uj (2.17)Matrix B sheme (P, LP, IST , MU) The matrix blended sheme used in the ourse ofthis projet is de�ned by:�Bi = (I ��)�LDAi +��Ni ; �ij = Æij ���[�T ℄j���Pk2T ���[�Ni ℄j���For a more detailed desription of the properties of the matrix shemes and for the proof ofsome of their properties, the interested reader an refer to [1, 2, 3, 16℄.16



Remarks1. Of ourse the matrix shemes an be used to solve a system of non-linear equations. Inpartiular they are used to solve the system of the Euler equations whih, in 3D, anbe written in the form �U�t + �F (U)�x + �G (U)�y + �H (U)�z = 0 ; (2.18)where U is the vetor of the onserved variables U = [�; �u; �v; �w; �E℄t4 and the vetor~F = (F;G;H) represents the onservative uxes. Although for the LDA sheme system(2.18) an be solved fully onservatively omputing the ell residual as�T = I�T ~F � ~n dl ; (2.19)one usually rewrites the equations in a quasi-linear form, sine the use of the N sheme,and hene of the B sheme, obliges to do that. In partiular, the ell utuation is stillomputed using (2.13) where nowKTi = bKTi = �F (bU)�U nix + �G(bU )�U niy + �H(bU )�U niz ;where, for onservation, the average state bU has to be the Roe average obtained throughthe omputation of the onserved variables in orrespondene of the arithmeti averageof the nodal values of Roe's parameter vetorZ = p� [1; u; v; w;H℄t : (2.20)In the framework of residual distribution shemes, this linearization is known as theStruijs-Deonink-Roe linearization. For the proof of the fat that the relationI�T ~F � ~n dl =Xj2T bKTj Ujatually holds at the disrete level, one an refer to [1, 2, 3, 21℄. Here it is of primaryimportane to underline that not for all the system of onservation laws a Roe-typelinearization exist. As a onsequene, the possibility to ompute �T using (2.19), evenin onjuntion with the N sheme, turns out to be very appealing.2. For the matrix N sheme, of ourse, one annot write down diretly the positivity ondi-tion, but has to take into aount the harateristi formulation of the MultidimensionalUpwinding. In partiular, by doing it, one ends up with the time-step restrition5�t < SiPT2�i maxk=1;��� ;Nequations(�+k )T ;where Nequations is the number of equations, and hene of eigenvalues, of the system.4Density, x-momentum, y-momentum, z-momentum, Total Energy5Of ourse not if an impliit time-integration strategy is used17



3. From (2.16) and (2.17) it an be seen that to use the matrix LDA sheme and the matrixN sheme one needs to perform the matrix inversion (Pj2T K�j )�1. In [2℄ the proof ofthe existene of these inverse matries is given for any hyperboli system. Some troublein their omputation atually arises for stagnant ows where, in fat, the matriesPj2T K�j are singular. Although Abgrall has proven that the RD shemes remainwell-de�ned in these degenerate ases, speial are is required to treat the singularity.The informations given on the RD shemes as applied to steady problems, far from beingomplete, are only intended to serve as a basis for the desription of the spae-time shemesof next setion. Additional notions on the general shemes an be found in the referenesgiven.
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2.2 Spae-Time RD ShemesIn this seond part of the hapter the new spae-time RD approah will be desribed. Duringthe last year, two di�erent spae-time formulations of the utuation splitting shemes havebeen developed. Although based on the very same idea, the two approahes di�er in theway the extension of the steady shemes to the spae-time domain is obtained. In partiular,while the group of the von Karman Institute [14, 15℄ has foused its attention to the use oflinear spae-time elements, Abgrall and o-workers [13℄ make use of prismati elements. Theapproah used here is the same of [14, 15℄.2.2.1 Unsteady Salar Conservation LawsConsider a salar hyperboli onservation law in d spatial dimensions over the spatial andtemporal domain 
 = 
S � [0; tmax℄:�u�t +r~G = 0 ; 8 (~x; t) 2 
 ; (2.21)where u(~x; t) is the onserved quantity and ~G(u) the orresponding ux funtion. De�nethe jaobian of the ux funtion ~� = � ~G=�u. Equation (2.21) an be reformulated in thefollowing spae-time approah: ~r � ~F = 0 ; ��� � ~ru = 0 ; (2.22)where ~r denotes the spae-time operator ~r = (r; �=�t), ~F is the spae-time ux funtion~F = ~G+ut̂, being t̂ the versor of the time oordinate diretion, and ��� = ~�+ t̂ is the spae-timejaobian of ~F .The basi idea behind the spae-time RD approah is to solve equation (2.22) using thestandard utuation splitting shemes, desribed in the �rst part of this hapter, on a dis-retization of the spae-time domain 
 made of triangles and tetrahedra in one and two spatialdimensions respetively. In partiular the disretization proedure will be exatly the sameas the one desribed for the solution of steady problems, exept for the fat that now theutuation (2.1) will be omputed with an integral over a spae-time element and the inowparameter (2.2) will be omputed askTi = 1d+ 1��� � ~nTi = 1d+ 1 �~� � ~nSi + nti� ; (2.23)where d is the number of spatial dimensions, ~nSi is the vetor ontaining the spatial oordinatesof the vetor normal to the boundary fae (or edge) whih stands in front of node i in the spae-time element T and saled by its surfae (rep. length), while nti is the temporal omponentof this vetor that, for the spae-time meshes onsidered in this projet (see next subsetionon the spae-time geometry), is equal to half of the length of the initial 1D segment if d = 1and one third of the surfae of the base triangle in the initial spatial grid, if d = 2.Note that if a standard ontinuous spae-time �nite element method was to be used, this wouldlead to a oupling of all the points in the spae-time grid, whih would be very expensive. Thisis the reason why most of the �nite element methods are based on a ontinuous representation19



in spae of the variable, but disontinuous in time. The strength of the spae-time RDapproah lays in the fat that the MU property allows to deouple the spae-time solutionon temporal slabs of thikness �t, maintaining a ontinuous variable representation in time.Hene, advaning of one time-step �t, is equivalent to solve the steady problem (2.22) on thespae-time slie 
S � �t. Note that if d is the number of spatial dimensions, the shemeswill be applied to a domain with dimension d + 1. It turns out that if the spae-time grid isbuilt in a proper way, the multidimensional upwinding guarantees the temporal deouplingof the spae-time slabs automatially. As a onsequene, the hoie of the grid geometry is offundamental importane. The next subsetion will be fully devoted to the desription of thetype of spae-time grids used for the omputations within this projet. More details an befound in [14, 15, 22℄Spae-Time Grid GeometryThe grids used in this projet ontain three levels of nodes and two levels of elements in thetime diretion, for a reason that will be lear after the analysis that follows.Denote with tn, tn+1=2 and tn+1 the temporal oordinates of the nodes in the �rst, seondand third layer respetively. For learness they will be referred to as the past, intermediateand future nodes. Denote with �t1 = tn+1=2 � tn the time di�erene between intermediateand past nodes and with �t2 = tn+1� tn the time di�erene between future and intermediatenodes. The global time-step is ontrolled by the parameter Q de�ned byQ = �t2�t1 : (2.24)Spae-Time Grid for 1D Problems Given an initial disretization of the 1D spae do-main, the type of spae-time grids that an be built are shown in �gure 2.4. It an beseen that both on�guration have some nodes in the intermediate level whih are stag-gered in spae, in partiular they are loated in orrespondene of the midpoints of thesegments in the past level. Note also that in both ases the seond layer is obtained justby mirroring the �rst one and strething it aording to the fator Q. The on�gurationon the left is of ourse omputationally more onvenient and, in fat, is the one atuallyused in the simulations. The interest in the seond on�guration omes from the fatthat it an be easily generalized to the ase of two spatial dimensions. In order to derivethe ondition for the deoupling of the spae-time slab, one an fous only on the �rstlayer6. In partiular note that both on�gurations have a similar topology, in partiularthey both have two types of triangles: one with two nodes in the past layer and one inthe intermediate and the other with two intermediate nodes and one past node. Fromnow on the disussion will fous on the grid on�guration on the left in �gure 2.4, but,given the similar topology of the two on�gurations, the same analysis an be appliedto on�guration on the right in the same piture. Denote with E1 the �rst type oftriangle and with E2 the seond one as indiated in �gure 2.5. In order to deouplethe solution, allowing time marhing, no residual must be sent to the past. Using the6The deoupling of the past level from the intermediate one already guarantees the preservation of thepast solution, allowing a true time-marhing solution proedure20
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Figure 2.4: Spae-time mesh in 1D. Nodes at levels n, n+1=2 and n+1 are labeled by blak,gray and empty irles, respetively.
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Figure 2.5: Basi triangular elements in the �rst layerMU property, we an obtain this by hoosing �t1 suh that the upwind parameter kTi(equation (2.2)) is negative for all the past nodes. In order to do this, it is useful toreall that in one spatial dimension the quasi-linear form of equation (2.22) redues to(�; 1) ���u�x; �u�t� = 0 ; � = �G�u :With the loal numbering of �gure 2.5, on has that for the triangle of type E2kE21 = ��x2 < 0 ;for the only past node 1. Hene triangles of this type impose no onstraints on thehoie of �t1. On the other hand for the E1 triangle one has8<: ~n1 = ���t1; �x2 � ! kE11 = ���t12 � �x4~n2 = ��t1; �x2 � ! kE12 = ��t12 � �x4~n3 = �0; �x2 � ! kE13 = �x2 ;hene to be sure that both kE11 and kE12 are negative, one has to respet the onstraint:��t1j�j�x �E1 = CFL1 � 12 : (2.25)21



Condition (2.25) is alled the loal past shield (LPS) ondition, sine it guarantees thatpast nodes are proteted from any information oming from the future.The global time-step �t1 is omputed as the minimum of the loal ones, i.e.�t1 = minE2E1CFL1��x2j�j�E :Obviously the intermediate nodes an be oupled with both past and future nodes,hene there are no restritions on �t2 in the seond layer. This enables to marh intime with arbitrarily large time-steps, keeping unonditional stability if a positive RDsheme is used. The global time-step an be written in fat as�t = �t1 +�t2 = (1 +Q)�t1 = (1 +Q) minE2E1CFL1��x2j�j�E ;while for the global CFL number one gets:CFL = j�j�t�x = 1 +Q2 CFL1 : (2.26)From equation (2.26) and from the freedom in the hoie of the strething parameterQ, one dedues that the two layers spae-time shemes allow to have very large CFLnumbers, whih an be very useful, espeially if the spatial grid ontains highly re�nedregions.
t

∆

∆ t

t

2

1

∆

Figure 2.6: Spae-time mesh in 2D. Nodes at levels n,n + 1=2 and n + 1 are respetivelylabeled by blak, gray and empty irles. Squares indiate intermediate nodes positioned inthe entroid of the triangles of the level n spatial mesh.Spae-Time Grid for 2D Problems As in 1D, starting from a 2D spatial grid, di�erenton�gurations are possible. The one used here is probably the simplest, although alsothe more expensive. A similar, but more onvenient, approah an be found in [22℄.The grid used is a generalization of the right on�guration of �gure 2.4. A global view22



of the nodes on�guration an be seen in �gure 2.6. As an be seen from this piture,every node in the initial spatial mesh is also present in the intermediate level wherenew nodes are added in orrespondene of the entroids of the triangles of the initialgrid. Also in the 2D ase the seond layer is obtained just by mirroring the �rst oneand strething it by the strething fator Q (2.24). The �rst layer is omposed by threetypes of elements: the �rst has three past nodes and one intermediate node, the seondhas two past nodes and two intermediate ones and the third has one node in the pastlevel and three in the intermediate level. The three element types are highlighted in�gure 2.7, where they have been labeled as E1, E2 and E3 respetively.
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Figure 2.7: Basi tetrahedra used to build the �rst layer of the spae-time mesh in two spaedimensions, and shemati view of the mesh.The LPS ondition (2.25) an be derived for this ase following exatly the same pro-edure of the 1D ase. For the mesh in �gure 2.7 the element E3 gives no onstraintson �t1, while two di�erent onditions are obtained for elements E1 and E2. Using thenotation of �gure 2.8 one has (see [14℄):maxj=1;2;3�k+;E1j �t1ntj � < 1maxj=1;2�k+;E2j �t1ntj � < 1 ; (2.27)where ntj is the temporal omponent of the vetor normal to the fae in front of node jand saled by its surfae, k+;E1j = max(0; kE1j ), k+;E1j = max(0; kE1j ), kE1j = ~� � ~n123j =2 isthe spatial inow parameter orresponding to the base triangle7 and kE2j is the spatial7 ~n123j is the normal to the base edge in front of node j and saled by its length, ~� is the jaobian � ~G=�u(equation (2.21)) 23



inow parameter of node j in the triangle �j34 obtained projeting nodes 3 and 4 onthe past level and joining them to node j8.Conditions (2.27) have to be respeted simultaneously in all the tetrahedra of type E1and E2, hene �t1 is �nally omputed as�t1 = CFL1min264minE2E10B� 1maxj=1;2;3 k+;E1jntj 1CA ; minE2E20B� 1maxj=1;2 k+;E2jntj 1CA375 ;with CFL1 < 1. The global time-step is then omputed as �t = (1+Q)�t1 and, like inthe 1D ase, from the freedom in the hoie of the Q fator, one dedues that arbitrarilylarge CFL numbers an be taken retaining unonditional stability if a positive shemeis used.
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xFigure 2.8: Elementary tetrahedra of types E1 (left) and E2 (right)One the spae-time grid has been built, equation (2.22) is solved using one of the shemesdesribed in setion 2.1. In partiular, the solution of the algebrai equations obtained apply-ing the shemes to one spae-time slab is obtained marhing in a pseudo-time � exatly likethe solution of steady problems is usually obtained marhing in time. This means that, onethe spae-time residual has been assembled, the solution will be updated until onvergenein pseudo-time is reahed for the present spae-time slab. For example, using forward Eulertime integration, one ends with u�+1i = u�i � ��Si Ri ;where Si is the surfae of the spae-time median dual ell of node i and Ri is a spae-timeresidual.8kE2j = ~� � ~nj34j =2, with ~nj34j normal to the projeted edge �34 in the past plane and pointing toward nodej. ~� is the same as in the previous footnote
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2.2.2 Unsteady Hyperboli SystemsConsider now a hyperboli system of onservation laws�U�t +r � ~G = 0 ; 8 (~x; t) 2 
 = 
S � [0; tmax℄ ; (2.28)where U is the vetor of onserved variables and ~G(U) is the vetor of the onservative uxes.Equation (2.28) an also be written in the quasi-linear form�U�t + Xk=1;��� ;d �Gk�U �U�xk ;where d is the number of spatial dimensions and the matries �Gk=�U are the jaobian of theuxes. Like in the salar ase, the spae-time formulation of the system an be introdued,whih, with the notation of equation (2.22), reads~r � ~F = 0 ; ��G1�U ; � � � ; �Gd�U ; I� � ~rU ; (2.29)where ~F = ~G + Ut̂ is the spae-time ux vetor and I is the identity matrix. The unsteadysolution of system (2.28) is then obtained marhing in time by solving at eah time-step thespae-time steady problem (2.29) using standard RD matrix shemes on a spae-time slab
S � �t. Of ourse also in the system ase the utuation of an element is omputed as aspae-time integral, while the inow matries KTi (2.12) are substituted byKTi = 1d+ 1  Xk=1;��� ;d �Gk�U nxki + Inti! ; (2.30)where nxki is the k-th spatial omponent of the vetor normal to the boundary fae in frontof node i in the spae-time element T , saled by its surfae (or length if d = 1) and nti is itstemporal omponent. The matries with sign K�i an be omputed straightforwardly as [14℄(see equation 2.12): K�i = 1d+ 1Ri ���i + Inti�Li ; (2.31)where �i, Ri and Li ome from the eigenvalue deomposition of Pk=1;��� ;d �Gk�U nxki .Of ourse, are must be taken in building the spae-time grid and in imposing the LPSondition. In partiular in the 1D ase, the j�j of equation (2.25) is substituted by the largestwave-speed assoiated to the harateristi form of the equations9, while in the 2D ase thespatial inow parameters in equation (2.27) are replaed by the largest positive eigenvalueof the orresponding spatial inow matrix. Also in the ase of the solution of a system ofequations, the solution of one time-step is obtained by marhing in a pseudo-time aordingto U �+1i = U �i � ��Si Ri :9Largest eigenvalue of the jaobians. Foe example for the Euler equations one uses k~uk+ a, where ~u is theveloity vetor and a is the speed of sound 25



Remarks1. Although not expliitly proven, the use of a linearity preserving spae-time shemeshould guarantee seond order of auray in spae and time. This is a onsequene ofthe fat that the LP property guarantees that solutions whih are linear in spae-timewill be reprodued exatly.2. The pseudo-time marhing proedure, if done in an expliit way, imposes a onstrainton the �� . As for steady omputations, in fat, the N matrix sheme will be positiveunder the ondition �� < SiPT2�i maxk=1;��� ;Nequations(�+k )T ;where now �k is an eigenvalue of the inow matrix KTi of equation (2.30)10.3. As noted in [14℄, one a Roe-type linearization is known for the system, it an be usedalso for the spae-time jaobians. In partiular, in all the Euler omputation performedin the ourse of this projet, the Struijs-Deonink-Roe linearization has been used tolinearize the jaobians on eah spae-time element.4. Equation (2.31) shows one of the important properties of the spae-time shemes: asalready remarked, the use of the LDA matrix sheme and of the N matrix shemerequires the inversion of the matries Pj2T K�j . Even if the spatial jaobians of thesystem are singular in stagnation regions, the spae-time inow matries are still regularthere beause of the additional term Inti. This allows to simulate ows with large regionsof zero or vanishing veloity without any problem. Examples of suh omputations anbe found in [14℄.

10In the salar ase ondition (2.9) must be applied, using the spae-time inow parameter (2.23)26



Chapter 3New Developments for RD Shemes:Soure Terms and ConservationThis hapter desribes the new theoretial results obtained in the ourse of this projet. Firstthe onsistent soure term disretization used in the omputations will be desribed, showingits onsisteny with the 1D approah pioneered by Roe [23℄ and later further developed(see [24, 25℄ for example) and its extension to seond order auray. In the seond halfof the hapter it will be shown how the same idea used to disretize the soure terms anbe used to build a �rst order onservative N sheme whih does not need any Roe-typelinearization. Possible developments of the approah are also disussed. It is important tostress the generality of the theory desribed in this hapter that remains valid whenever RDshemes are used to solve a hyperboli system of equations.3.1 RD Shemes for Non-Homogeneous EquationsMost of the disretization tehniques urrently used nowadays for the approximation of theonvetive uxes of systems of onservation laws are based on some kind of upwinding proe-dure. The use of suh kind of disretization �nds its reasons in arguments of physial nature,related to the way informations propagate in the ow, and of numerial nature, related tothe stability of the methods. Although at a �rst glane not physially evident, the upwindingshould be extended also to the soure terms eventually present in the equations. The rea-son for this is intuitively explained by the following simple 1D example: onsider the salarproblem �u�t + a�u�x = � ; a > 0 :Disretizing this equation with the upwind sheme given in the introdution (equation (1.5))one obtains at steady state a (ui � ui�1)� �x2 (�i + �i�1) = 0 ;whih is learly a entered, and hene seond order aurate, approximation of the steadyequation around the ell-enter i + 1=2. A more detailed and onvining analysis an be27



found in [24, 25℄, where the authors show the enhaned auray and onsisteny obtainedby upwinding the soure terms on a variety of 1D and 2D problems.In the ontext of RD shemes, the ruial point is how to derive a multidimensionalextension of the �rst order upwind sheme. This extension has been obtained within thisprojet and is desribed in the next setion.3.1.1 An N-Sheme for Non-Homogeneous EquationsConsider the salar non-homogeneous problem�u�t + ~� � ru = � : (3.1)For simpliity we will fous on the problem of �nding a steady solution of (3.1) with givenboundary onditions using a fully multidimensional upwind disretization. De�ne the follow-ing parameter: i+j = ( k+jkTj if kTj 6= 00 if kTj = 0 ;where kTj and k+j are the inow parameter (2.2) and its positive part. De�ne the redued valueof the soure term in the node i on the element T , ��i , as its nodal value multiplied by thesurfae (volume in 3D) of the element 
T and divided by its number of verties, namely��i = 
Td+ 1�i :Compute the soure term utuation �� = ZT � d
 ; (3.2)where the last integral an be approximated with any quadrature rule.Proposition 1The multidimensional upwind RD sheme de�ned by�N;�j = i+j �kTj (uj � uin) + ��j � ��in� ; (3.3)with ��in = Pl2T i+l ��l + ��Pl2T i+l ; uin = Pl2T k�l ulPl2T k�l ;is fully onservative, in the sense thatXl2T �N;�l = ZT �~� � ru� �� d
 = �T � �� :28



Proof: The proof of this proposition is obtained in a straightforward way just by omputingthe sum of the element-to-node ontributions:Xl2T �N;�l =Xl2T i+l �kTl (ul � uin)�+Xl2T i+l (��l � ��in) ==Xl2T k+l (ul � uin) +Xl2T i+l ��l �Xl2T i+l ��l � �� = �T � �� :Note that di�erent de�nitions of the redued value of the soure term ould be used, butit must be kept in mind that the residual sent to eah node must respet the followingdimensional saling i+j ���j � ��in� / ZT � d
 ! ��j / 
T� :In this projet, the soure term utuation (3.2) has been omputed with the seond orderaurate formula �� = 
Td+ 1Xl2T �l =Xl2T ��l ;and hene ��in = Pl2T �i+l + 1���lPl2T i+l :Extension to SystemsThe matrix version of sheme (3.3) is obtained formally extending all the de�nition given forthe salar ase. In partiular, given the hyperboli non-homogeneous system�U�t + Xk=1;��� ;dAk �U�xk = S ;de�ne the matrix parameter I+j = K+j �KTj ��1 ;and the loal nodal redued value of the soure termS�i = 
Td+ 1Si :Compute the soure term utuation �S = ZT S d
 :Proposition 2The multidimensional upwind matrix sheme de�ned by�N;Sj = I+j �KTj (Uj � Uin) + S�j � S�in� ; (3.4)29



with S�in =  Xl2T I+l !�1 Xl2T I+l S�l + �S! ; Uin =  Xl2T K�l !�1 Xl2T K�l Ul!is fully onservative, in the sense thatXl2T �N;Sl = ZT  Xk=1;��� ;dAk �U�xk � S! d
 = �T � �S :Proof: Proeeding like in the salar ase:Xl2T �N;�l =Xl2T I+l �KTl (Ul � Uin)�+Xl2T I+l (S�l � S�in) ==Xl2T K+l (Ul � Uin) +Xl2T I+l S�l �Xl2T I+l S�l � �S = �T � �S :In all the omputations made the soure term residual has been omputed as�S = 
Td+ 1Xl2T Sl =Xl2T S�l ; (3.5)so that S�in =  Xl2T I+l !�1Xl2T �I+l + I�S�l ;where I is the identity matrix.Results obtained on steady and unsteady tests with the matrix version of the sheme arereported in hapter 5, showing the robustness and reliability of the approah.3.1.2 A LP Sheme for Non-Homogeneous EquationsOne the �rst order monotone RD sheme to disretize non-homogeneous equations is avail-able, a seond order non-linear blended sheme an be easily built as followsSalar Non-Homogeneous Equations :�Bi = (1� �)�LPi ��T � ���+ ��N;�i ; � = j�T � ��jPl2T j�N;�l j :Non-Homogeneous Hyperboli Systems :�Bi = (I � �)BLPi ��T � �S�+��N;Si ; �ij = Æij j ��T � �S�j jPl2T j��N;Sl �j j :Aurate results obtained on several invisid problems are reported in hapter 5. Note that inall the omputations involving the B sheme, the LDA sheme has been used as LP sheme.30



Remarks1. Although not expliitly done here, the proof of the existene of the matries �Pj2T K+j ��1for any hyperboli system, reported in [2℄, an be naturally extended to the matries�Pj2T I+j ��1 needed for the appliation of sheme (3.4).2. Consider a 1D system of onservation laws written in quasi-linear form�U�t + A (U) �U�x = S :Referring to �gure A.1 the 1D �rst order upwind �nite volume sheme used in [24℄ andin [25℄ an be written for a uniformly spaed 1D grid asUn+1i � Uni�t �x = � �Fni+1=2 � Fni�1=2�+ �ni+1=2 + �ni�1=2 ; (3.6)where the numerial ux funtions Fni�1=2 are given byFni�1=2 = Âi�1=2Ui + Ui�12 � 12 jÂi�1=2j�Ui�1=2 ;being Âi�1=2 the matrix A omputed in some average state. The soure term ontribu-tion oming from the interfae i� 1=2 is omputed as�ni�1=2 = I � sgn(Âi�1=2)2 Sni�1=2�x ; (3.7)being Sni�1=2 the value of the soure term at the interfae, usually approximated withseond order of auray as Sni�1=2 = Sni + Sni�12 :The matrix sgn(Âi�1=2) in equation (3.7) is the sign of matrix Âi�1=2, de�ned byjÂi�1=2j = sgn(Âi�1=2)Âi�1=2 ; jÂi�1=2jsgn(Âi�1=2) = Âi�1=2 ; (3.8)and omputed assgn(Âi�1=2) = R̂i�1=2sgn(�̂i�1=2)L̂i�1=2 ; sgn(�̂i�1=2) = diagk=1;��� ;Nequations � �kj�kj� ;where R̂i�1=2 and L̂i�1=2 are the matries of the right and left eigenvetors of Âi�1=2 and�k is the k-th eigenvalue of Âi�1=2.A very interesting property of sheme (3.4) is given by the followingProposition 3The N sheme de�ned by (3.4) is onsistent with the RD formulation of the 1D �nitevolume sheme (3.6).The proof is reported in appendix A. 31



3.2 A New Approah for Conservative RD ShemesBased on the N ShemeAs already said, in the framework of the RD shemes, the use of the �rst order positiveN sheme is of ruial importane to handle disontinuous solutions retaining monotoniity.Unfortunately this is possible only if a onservative Roe-type linearization is available for thejaobian of the uxes, whih is not always the ase. In this setion an alternative formulationof the sheme based on the same idea used for the upwind disretization of the soure terms willbe presented. This new formulation relies on a omputation of the integral of the uxes overan element through a ontour integration and is always onservative. A partiular setion willbe devoted to the desription of the integration rules used to perform the ontour integrationand also to the future developments that the tehnique ould allow.3.2.1 A Conservative N-Sheme for General Systems of Conserva-tion LawsConsider the following general non-linear system of onservation laws in d spae dimensions�U�t +r � ~F = 0 ; (3.9)where ~F = � ~Fx1 ; � � � ; ~Fxd� is the vetor of the onservative uxes. De�ne the utuation ofan element T as the following integral�T = I�T ~F � ~n dl ; (3.10)where ~n is the unit vetor normal to �T and pointing outside of T . The following propertyan be provenProposition 4The RD sheme de�ned by�N;i = K+i (Ui � U) ; U =  Xj2T K+j !�1 Xj2T K+j Uj � �T! ; (3.11)is onservative independently of the type of average used to ompute the ell jaobian KTi ,i.e. Xj2T �N;j = I�T ~F � ~n dl :Proof: The proof of the last proposition is easily obtained as followsXj2T �N;j =Xj2T K+j Uj � Xj2T K+j !U =Xj2T K+j Uj �Xj2T K+j Uj + �T = �T ;and hene Xj2T �N;j = I�T ~F � ~n dl :32



3.2.2 A Conservative LP Sheme for General Systems of Conser-vation LawsOne a �rst order monotone onservative sheme is in hand, the seond order monotonenon-linear blended sheme an be built as�Bi = (I ��)BLPi �T +��N;i ; �ij = Æij j�Tj jPl2T j��N;l �j j ;where �T is omputed aording to (3.10). In all the omputations performed here BLPi =BLDAi .Chapter 5 ontains a number of steady and unsteady tests performed to verify the prop-erties of the new onservative formulation. In partiular, several omputations have beenperformed on problems involving the solution of the Euler equations in order to omparethe new treatment of onservation with the more lassi one based on the use of the Struijs-Deonink-Roe linearization. Although the onservative N sheme (3.11) annot be proven tobe positive, it has shown monotone perfet shok apturing properties, at least in the testsonsidered here. Unfortunately, beause of time restritions, the new tehnique has not beentried for the Two-Phase ow model, for whih the same non-onservative formulation used in[5℄ as been adopted.3.2.3 Contour IntegrationIn order to have a onservative omputation of the uxes, an appropriate quadrature rulemust be used to approximate integral (3.10). In this work two di�erent formulas have beenused: a seond order formula (Trapezium rule) and a third order one based on Simpson's rule.In partiular onsider an element T whose nodes are loally numbered from zero to w, wherew is the number of oordinates1. The integral of the uxes an be omputed using the seondorder trapezium rule as follows:I�T ~F � ~n dl = Xs2�TXi2s 1w ~Fi � ~ns ;where i is a vertex belonging to the side s of �T and ~ns is the vetor normal to side s, pointingoutwards and saled by its surfae (length if T is a triangle. One an easily show thatI�T ~F � ~n dl =Xj2T 1w ~Fj � ~nTj ; (3.12)where ~nTj is the vetor normal to the side in front of node j of element T , pointing inwardsand saled by the surfae (length if T is a triangle) of the side. The proof of this statementis reported in appendix C.1.1If d is the number of spae dimensions, one has w = d for a steady omputation, while w = d + 1 for aspae-time omputation 33



Unfortunately, the use of a seond order formula turned out to be not enough for someomputations. In partiular, the steady Euler tests involving a bow-shok blew-up even withthe N  sheme. The reason for this an be probably found in the fat that the omputationof the integral of the uxes through a Roe averaging proess of the jaobians yields an exatformula, at the disrete level, assuming that the Roe parameter (see equation (2.20)) varieslinearly over an element. The question is then what is the quadrature formula that one shoulduse to math the auray obtained through Roe averaging. The formula used in this workto overome the diÆulties in the bow shok omputations is based on Simpson's rule. Forthe steady 2D ase it reads:I�T ~F � ~n dl = Xs2�T �16 ~Fi1s + 23 ~Fms + 16 ~Fi2s� � ~ns ;where i1s and i2s are the extrema of the edge s, while ms is its middle-point. It an be easilyshown that the previous formula an be rewritten as (see appendix C.2)I�T ~F � ~n dl =X�2T 13 �12 ~Fj � 2 ~Fmj� � ~nTj ; (3.13)where now mj is the middle-point of the edge in front of node j in T and ~nTj is the same of(3.12). The use of the last formula allowed to run steady simulations involving strong urvedshoks, but still the results are not fully satisfatory. The use of more aurate formulas ofthe Gaussian type is probably one of the solutions to be investigated. Note that in order touse formula (3.13) a proper way of evaluating the ux vetor in the middle-point of the edgesmust be found. Here di�erent possibilities have been tried, but the best results have beenobtained with ~Fmj = ~F(Umj ) = ~F �Ui + Uk2 � ;where i and k are the two nodes belonging to T di�erent from j and U is the vetor of on-servative variables.Finally in all the steady omputations only Simpson's rule has been used, while the trapeziumrule was used in all the unsteady problems onsidered, where the additional di�usion due tothe spae-time approah (see hapter 5) seemed to guarantee monotone solutions even withthe seond order formula. As a matter of fat for both steady and unsteady omputationsthe use of higher order formulas will be a must if strong and non-uniform disontinuities haveto be handled.Remarks1. The possibility if using averaged states di�erent from the Roe one, even if it existsfor the system we are interested to solve, gives the possibility to hoose the one thatpossibly improves the resolution of ertain features of the ow. For example for theEuler equations the number of possibilities is very large2 and an investigation of this2Averaged Conservative Variables, Averaged Primitive Variables, Averaged Entropy (or Symmetrizing)Variables, Averaged Charateristi Variables et. 34



aspet has to be done in the future. Here for reasons of eÆieny and simpliity, a simplearithmeti average of the primitive variables has been used to linearize the jaobians2. The new approah allows in priniple to evaluate the uxes with any auray, if theappropriate integration formula is adopted. Hene one ould think of designing higherorder RD shemes based on a quadrati or even ubi representation of the variables.Although some attempts in this diretion have been already made [27℄, the way in whihthe ell residual should be distributed is at the moment an open question.3. An important issue, when performing omputations with systems, is to be able to om-pute the nodal residual in the set of variables more onvenient. This is allowed for thetraditional shemes by the IST property (see setion 2.1.2). In appendix B the proofof the following important proposition is givenProposition 5The shemes de�ned by equations (3.4) and (3.11) are IST .4. It an be easily proven that the traditional formulation of the N sheme based onthe Deonink-Struijs-Roe linearization an be obtained as a speial ase of the newtreatment of onservation proposed here. In order to do this, denote with K̂Ti the inowmatrix evaluated in the Roe state of the element T and set �T =Pj2T K̂Tj Uj in equation(3.11). Realling the de�nition of Uin given in equation (2.17), one an write:U =  Xj2T K̂+j !�1Xj2T �K̂+j � K̂Tj �Uj =� Xj2T K̂+j !�1Xj2T K̂�j Uj =  Xj2T K̂�j !�1Xj2T K̂�j Uj = Uin : (3.14)Note that the relation KTj = K+j + K�j has been used in the last equation. As aonsequene of equation (3.14), the new N sheme redues to the original one if theDeonink-Struijs-Roe linearization is used and if the ell utuation �T is omputedusing the quasi-linear formulation of the system. Hene, the new approah is moregeneral.
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Chapter 4Boundary Conditions and TimeIntegrationThis is the last hapter desribing the theoretial aspets related to the omputations per-formed within the projet. The �rst setion will give all the details on the type of boundaryonditions used in the simulations, in partiular the harateristis-based approah used forwall, sub-soni inlet and sub-soni outlet boundary treatment will be analyzed. In the seondpart, the simple time-stepping proedure implemented will be briey realled.4.1 Charateristis-Based B.C.sGiven a hyperboli system of onservation laws, it is known that for well-posedness of theproblem the number of physial onditions to be imposed at eah boundary of the spatialdomain 
, depends on the number of harateristis that loally enter 
 [28℄. In partiulareah in-going wave is assoiated to a positive eigenvalue �j of the jaobianC = Xk=1;��� ;d � ~Fk�U nxk ;evaluated at the boundary �
 (see sketh on the left in �gure 4.1). Reall that � ~Fk=�U isthe jaobian matrix of the k-th omponent of the vetor of the uxes and U is the vetor ofonserved variables. The vetor ~n
 = (nx1; � � � ; nxd) is the unit vetor loally orthogonal tothe boundary �
, pointing inside 
. For the systems of equations onsidered in this projet,the eigenvalues of C an be written, without any loss of generality, as follows:�1 = ~u � ~n
�2 = ~u � ~n
�3 = ~u � ~n
 + a�4 = ~u � ~n
 � a ;where a is the loal value of the speed of sound and ~u is the veloity vetor. Depending onthe sign of these eigenvalues, di�erent on�gurations an be enountered. From a physialpoint of view, they an be lassi�ed in 37



Supersoni Inlet ~u � ~n
 > 0 and ~u � ~n
 > a: all the eigenvalues are positive, hene all theharateristis enter the domain. Four onditions must be imposedSupersoni Outlet ~u � ~n
 < 0 and j~u � ~n
j > a: all the eigenvalues are negative, hene allthe harateristis leave the domain. No onditions have to be imposed.Subsoni Inlet ~u � ~n
 > 0, but ~u � ~n
 < a: there are three waves going in the domain, whileone wave is leaving it. Three onditions Must be imposed.Subsoni Outlet ~u � ~n
 < 0, but ~u � ~n
 < a: there are three waves going out of the domain,while one wave is entering it. Only one ondition an be imposed.Wall ~u �~n
 = 0: two eigenvalues are zero, hene the orrespondent harateristis are loallyparallel to the boundary. No onditions an be imposed for these waves. One onditionhas to be set for the wave assoiated to the only positive eigenvalue �3 = a.The right piture in �gure 4.1 summarizes the �ve situations listed above.
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4λ  < 0Figure 4.1: In-going and outgoing waves at the boundaries and boundary onditionsFrom the omputational point of view, one would like to translate the informations omingfrom the loal wave propagation phenomena desribed by the system, in algebrai equationsto ouple with the equations obtained from the spatial disretization. In partiular, sinethe RD disretization tehnique used in this projet relies on the knowledge of the nodalvalues of the unknowns, a proedure that allows to impose the boundary onditions diretlyon the nodes belonging to the boundaries of the omputational domain seems to be the mostindiated. The tehnique atually used here is based on what in [1℄ has been alled strongformulation of the boundary onditions.Consider then the boundary node i of �gure 4.2. The unit vetor loally normal to theomputational boundary �
 an be omputed as the average of the inward pointing vetors38



normal to the edges of the boundary triangles ontaining i, T1 and T2, weighted by theirlength, i.e. ~ni = ~nT1 + ~nT2k~nT1k+ k~nT2k ;where k~nTjk is equal to the length of the boundary edge of Tj. One the omponents of thenormal ~ni are known, one is able to ompute the jaobian Ci = Pk(� ~Fk=�U)nixk and itseigenvalue deomposition. The proedure used to impose the boundary onditions is then thefollowing1. Compute the inner nodal residual Ri, oming from the spatial disretization;2. Compute the provisional inrement of the nodal variables assoiated to the inner resid-ual: ÆUi = � ~Ri3. Compute the orretive boundary residual R�i as the linear ombinationR�i = X�ik>0 �krk ; (4.1)where rk is the right eigenvetor assoiated to the positive eigenvalue of the jaobian Ci,�ik and the oeÆients �k are omputed analytially suh that the solution omputedas Un+1i = Uni + ÆUi �R�iveri�es the required boundary ondition;4. Update the nodal residual with the orretive residual R�i before the nodal update.
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iFigure 4.2: Nodal normal at the boundaryNote that the provisional residual ~Ri is atually the spatial residual Ri (see equation (2.15))multiplied by the fator �t=Si. The same multipliation fator must be taken into aountin the omputation of the �k oeÆients to avoid inonsistenies. Generally speaking theonditions that an be imposed with this tehnique an be hosen freely, keeping in mind thattheir number annot be greater than the number of positive eigenvalues �ik. The onditionsimposed in the omputations performed an be summarized as follows39



Supersoni Outlet Sine there are no positive eigenvalues, no onditions are imposed, i.e.the new solution in nodes belonging to a boundary through whih there is a supersonioutlet is determined only from the inner residual.Supersoni Inlet All the harateristis enter the domain, hene the whole vetor of vari-ables should be imposed. Pratially speaking this ondition an be imposed simply bysetting to zero the nodal residual.Wall In invisid omputations only the impermeability ondition an be guaranteed at thewall, i.e. one an require that ~ui � ~ni = 0 in the new solution. Note that in this aseonly one positive eigenvalue is present and hene only one oeÆient �w is needed in(4.1). De�ning the normal veloity u? = uinix + viniy, the oeÆient an be omputedimposing one of the two following onditions:un+1? = 0 or �un+1? = un+1? � un? = 0 :The omputation of �w is reported in appendix D for the 2D Euler equations.Subsoni Outlet Also in this ase only one ondition an be imposed. In partiular, onlyone oeÆient �a is needed in (4.1) and it is omputed requiringpn+1i = pout(tn+1) or �pi = pn+1i � pni = 0 ;where p is the pressure and pout(t) is a given funtion of the time. Also for this onditionthe full omputation of �a is given in appendix D for the 1D Euler equations.Subsoni Inlet In this ase three onditions must be imposed, and hene three oeÆients�1, �2 and �3 are needed in (4.1). Of ourse several possibilities are available for thehoie of the physial onditions to set. Here, for the Euler equations, following [1, 2℄,the onditions hosen are given by�T0i = T n+10i � T n0i = 0 ; �p0i = pn+10i � pn0i = 0 ; ��viui� = � viui�n+1� �viui�n = 0or T n+10i = T �0 ; ~pn+10i = ~p�0 ; �� viui� = �viui�n+1� �viui�n = 0 ;where T0 is the total temperature, p0 is the total pressure, v=u is the tangent of theow angle, T �0 is a presribed value of the total temperature and ~p0 is a modi�ed totalpressure de�ned by ~p0 = �p0p �� 1 p0 ;being  = 1:4 the ratio of the spei� heat oeÆients. A di�erent set of onditionshave been implemented for the Two-Phase ow model (see hapter 5):�(�u)i = (�u)n+1i � (�u)ni = 0 ; �(�v)i = (�v)n+1i � (�v)ni = 0 ; ��gi = �n+1gi ��ngi = 0 ;40



where � is the mixture density and �g is the void fration of the gas phase. The proedureused to ompute the oeÆients for the Euler equations is desribed in appendix D,where also their �nal expression is given. In the same appendix the expression of �1, �2and �3 for the Two-Phase Flow model is given, while for their omputation the readeran refer to [5℄.Remarks1. Note that the boundary onditions treatment desribed applies indi�erently to steadyomputations and to spae-time omputations as well. In partiular, in the spae-timease, the unit nodal normal to the spae-time boundary given by the past plane is alwaysgiven by ~ni = (0; 0; 1), while all the eigenvalues redue to �ik = 1 > 0, hene, onsistentlywith the LPS ondition derived in the previous hapter, the past plane is a supersoniinlet-like boundary for whih no residual must be omputed. On the other hand, for thefuture plane one has �ik = �1 < 0 for all the eigenvalues, hene no boundary onditionsmust be imposed on the future plane that is a supersoni outlet-like boundary. As aonsequene, there is no di�erene in the boundary treatment of steady and spae-timeomputations.2. The boundary onditions used in this projet an be easily applied also if an impliittime-stepping proedure is used. In partiular, the jaobian of the algebrai systemJij = �Ri=�Uj will be modi�ed with the following entry:Jij+= X�ik>0���k�Uj rk + �k �rk�Uj Æij� :Sine the �k oeÆient an be expressed as (see appendix D)�k = Dk(Ui) �Ri + k(Ui) ;where the vetor Dk and the salar k depend only on Ui, one ends withJij+= X�ik>0��Dki�Uj �RiÆijrk +Dki � �Ri�Uj rk + �ki�Uj Æijrk + �k �rk�Uj Æij� ;where �Ri=�Uj has been already omputed to assemble the jaobian entry related tothe inner residual. Thus, the jaobian entries related to the boundary onditions anbe written as a linear ombination of the entries related to the inner disretization,whih are already known at this stage of the omputation, plus informations relatedonly to the atual value of the variables in node i, still allowing a nodal treatment of theboundary onditions. Note that Dki = Dk(Ui) and ki = k(Ui) are known analytially,hene no numerial di�erentiation is neessary.
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4.2 Loal Time-Stepping TehniqueThe time1 integration tehnique used for the omputations is based on the very simple forwardEuler formulas already given (equation (2.15)). In partiular, sine is only for steady solutionsthat we are seeking for2, a loal nodal time-step is used to have a faster onvergene, namelyUn+1i = Uni � �tSi Ri :Sine for the positivity of the N sheme one has to impose�ti < SiPT2�i maxk=1;��� ;Nequations(�+k )T ;the time-stepping formula atually oded isUn+1i = Uni � �PT2�i maxk=1;��� ;Nequations(�+k )TRi ;with � < 1.

1Pseudo-time in the ase of spae-time omputations2Be it in time or in pseudo-time 42



Chapter 5ResultsIn this hapter the results obtained on a series of well known steady and unsteady test-asesare reported and ommented. Note that, sine di�erent systems of equations have been on-sidered, it seemed more onvenient not to write one hapter devoted to the presentation ofthe equations, but to desribe briey the basi equations in this hapter. To avoid onfu-sion, most of the informations regarding the harateristis analysis of the models and theireigenstruture are given in appendix E. The outline of the hapter is the following: The �rstsetion ontains the results obtained on the Euler equations. Solutions of unsteady and steadyproblems are disussed and ompared, when possible, to analytial or referene solutions. Inthe seond setion the Two-Fluid Model is briey presented and the solutions of some lassiTwo-Phase unsteady problems is shown.5.1 Euler EquationsThe system of the 2D Euler equations desribes the motion of an invisid non ondutivematerial. They an be written in onservative form and in a artesian frame of referene as��t 2664 ��u�v�E 3775 + ��x 2664 �u�u2 + p�uv�uH 3775 + ��y 2664 �v�uv�v2 + p�vH 3775 = 0 ; (5.1)where � is the uid density, p its pressure, ~u = (u ; v) its veloity, E and H the total energyand enthalpy. The system is losed by the state equationp = ( � 1)��E � u2 + v22 �and by the de�nition of total enthalpy H = E + p� :Introduing the vetor of primitive variables P = [ � u v p ℄t, the system an be rewrittenin the quasi-linear form �P�t +AP �P�x +BP �P�y = 0 ;43



with AP and BP given byAP = 2664 u � 0 00 u 0 1=�0 0 u 00 �a2 0 u 3775 ; BP = 2664 v 0 � 00 v 0 00 0 v 1=�0 0 �a2 v 3775 ;where a = pp=� is the loal speed of sound. Sine the system is hyperboli, the matrixC = APnx + BPny is diagonalizable with a omplete set of real eigenvalues and linearlyindependent eigenvetors and its eigenstruture is given in appendix E. Although di�erentforms of system (5.1) with additional soure terms have been onsidered, the ux vetors andthe jaobian matries of the system used to ompute the upwind matries (2.12) are alwaysthe ones just presented. In the paragraph relative to eah test-ase these di�erent forms ofthe equations will be given, showing their relation with (5.1).5.1.1 Unsteady ComputationsA Mah 3 Wind Tunnel with a Forward Faing StepThis is a very famous test-ase proposed by Colella and Woodward in [29℄. It onsists of asupersoni ow entering a hannel that ontains a forward faing step. The initial solutiononsists of a uniform Mah 3 ow. At the very beginning, a shok develops in front of the stepand detahes from it growing and then reeting on the upper and lower walls of the hannel.The test was performed solving the spae-time formulation of system (5.1) with the non-linearblended sheme. What usually auses some diÆulties in the solution of this problem is theupper orner of the step whih is a geometrial singularity. In [29℄ this problem is solved with avery partiular treatment of the unknowns stored in the omputational ells lose to the singu-lar point. Here no modi�ations of the sheme have been introdued to handle the singularity.The e�et of the presene of the singular point an be two-fold. Roe-type shemes usu-ally show an unphysial expansion shok in orrespondene of orner. The reason of this anbe qualitatively understood onsidering the following analysis:A 1D Roe-type sheme an be written in �nite volume formulation asUn+1i = Uni � �t�x �Hi+1=2 �Hi�1=2� ;where the numerial ux funtion Hi+1=2 is de�ned byHi+1=2 = Fi + Fi+12 � 12Rj�jL (Ui+1 � Ui) ; (5.2)where F is the vetor of the onservative uxes, R and L are the matries of the right andleft eigenvetors of its jaobian and j�j is the diagonal matrix of the absolute values of theeigenvalues of the jaobian. In 1D � is given byj�j = 24 juj 0 00 ju� aj 00 0 ju+ aj 35 :44



At the transoni point the eigenvalue ju� aj is zero, hene no numerial dissipation is addedfrom the sheme along the orresponding harateristi �eld. In some on�gurations thisauses the preservation of disontinuous data and hene the appearane of what is usuallyalled a transoni expansion shok. An example of suh a phenomenon is given on the leftof �gure 5.1, where the solution of this problem obtained in [7℄ using standard RD shemeswith the onsistent mass matrix is reported at time t = 0:5. The disontinuity at the orneris learly visible. On the right of the same piture, the solution obtained here on the samemesh used in [7℄ at the same physial time is shown. As it an be seen from the piture, apartfrom being globally more di�usive, the solution obtained with the spae time shemes doesnot ontain any transoni shok. The reason of this an be understood onsidering the spae-time version of the 1D Roe sheme presented above. In (5.2) the vetor of the onservativeuxes would be substituted by the vetor of the spae-time uxes whose jaobian matrix willhave eigenvalues given by�s�t = 24 unx + nt 0 00 unx + nt � ajnxj 00 0 unx + nt + ajnxj 35 ;from whih is lear that at the transoni point the sheme still provides some numerialdissipation assoiated to j (unx + nt � ajnxj)transoni j = jntj. This extra di�usion is enough todissipate the expansion shok.
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Figure 5.1: Expansion at the Singular Point, t = 0:5. Left: Solution From [7℄, Right: SolutionObtained with the Spae-Time Approah
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Figure 5.2: Unphysial Mah Stem on the Lower Wall, t = 4:0. Left: Solution from [30℄,Right: Solution Obtained with the Spae-Time Approah45



Very often, the presene of the orner auses a ompletely di�erent behavior of the solu-tion. On the left of �gure 5.2 is reported the solution of this problem obtained in [30℄ witha Disontinuous Galerkin Method at time t = 4:0. On the right in the same �gure the resultobtained here on the grid used in [7℄ is shown. A Mah stem on the lower wall is learlyvisible in both results. The presene of the Mah reetion an be explained with the a greatamount of spurious numerial dissipation that auses the appearane of an unphysial entropylayer. The entropy prodution at the orner is learly visible in �gure 5.3 where the entropyontours of the solutions obtained here at times t = 0:5 and t = 1:5 are reported.
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Figure 5.3: Entropy Prodution at the Corner

Figure 5.4: E�et of the Progressive Grid Re�nement Around the Corner (from [30℄)46



An e�etive way to ure this problem is suggested in [30℄: re�ne the grid loally around thesingular point so that the false entropy layer is ontained within a few ells and does notpollute the solution downstream. The e�et of the progressive re�nement of the mesh asreported in [30℄ is shown in �gure 5.4. Here a similar tehnique was used. The top of �gure5.5 shows a lose-up view of the grid around the singular point with and without re�nementand below the improvement obtained in the solution at t = 4:0. Although a small Mahreetion is still visible, due to the very loalized re�nement of the grid1, the improvement innon-negligible.
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Figure 5.6: Mah 3 Wind Tunnel with a Step, Solutions at t = 1:0 and t = 1:5. Top: Present,Bottom: Referene Solution [29℄
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Figure 5.7: Mah 3 Wind Tunnel with a Step, Solutions at t = 3:0 and t = 4:0. Top: Present,Bottom: Referene Solution [29℄This problem has been used as a test for the new treatment of onservation desribed inhapter 3. The spae-time blended sheme fully based on a ux omputation done throughontour integration of the vetor of the uxes has been tested. Figure 5.8 shows the solutionobtained with the new approah a t = 4:0 on the intermediate re�ned grid of �gure 5.5 andon the �ne grid. Comparing the plots of �gure 5.8 with the ones in �gures 5.5 and 5.7 novisible di�erene in the solutions an be seen. The solution is still very lean and ompletelymonotone, whih shows the robustness of the approah. Furthermore, all the shoks are inthe orret position, indiating that the sheme is still fully onservative. This very promisingresult will be on�rmed by the more severe tests presented in the following setions.48
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Figure 5.8: Mah 3 Wind Tunnel with a Step: Solution at t = 4:0 Obtained with the BSheme Based on the New Treatment of ConservationTransoni Flow in a Channel with a Bump with Osillating Bak-PressureThis problem was proposed for the �rst time by B�ols and o-workers in [31℄ and later onre-omputed by Hwang and Liu in [32℄ and by Rogiest in [33℄. It onsists of a hannel whoselength is equal to 2 and whose height is equal to 1 with a sinusoidal bump on the upperwall. The initial solution is a Mah 0:675 ow with a transoni shok on the bump. Startingfrom this solution a sinusoidal outlet pressure is imposed. In partiular, aording to [33℄, thefollowing law for the outlet pressure is �xed:pout = 1M21 "1 + 0:12�1 +  � 12 M21� �1 sin (!t)# ; (5.3)with M1 = 0:675 and ! = 0:792. The problem was solved here using the spae-time for-mulation of system (5.1) and the subsoni inlet and outlet boundary onditions of hapter 4.The grid and the initial steady solution omputed with the spae-time blended sheme arereported in �gure 5.9. Starting from the solution of �gure 5.9 the unsteady outlet pressure(5.3) was imposed. Taking advantage of the two-layers approah, the �t was �xed suh thatone period of outlet pressure osillation orresponded to 200 physial time-steps. The un-steady evolution of the Mah number is shown if �gures from 5.10 to 5.17, ompared with theresults of [33℄.

Figure 5.9: Transoni Channel: Grid (left) and Mah Contours of the Initial Solution (right)49



Figure 5.10 shows the solutions after the �rst yle, when the value of the outlet pressureis equal to the stationary one ans is inreasing. The shok, whih already exists on the upperwall, is moving toward the exit of the hannel and it starts to reah the lower wall. In thesolution of �gure 5.11 the shok has reahed the lower wall and it starts to reat to theinreasing outlet pressure raise. The delay between the instant in whih the pressure startsto inrease and the one in whih the shok feel the pressure inrease is due to the �nite speedof propagation of sound. Some time after (�gures 5.12 and 5.13), although the pressure isdereasing, the shok is moving upstream and deforming. Again the �nite speed of soundis responsible for this time lag. At times t = 24�=8! and t = 26�=8! the ow is subsonithroughout the hannel, as it an be seen in �gures 5.14 and 5.15. The pressure minimum isreahed at t = 28�=8! when a weak shok is already present on the upper wall (�gure 5.16).The end of the seond yle is shown in �gure 5.17, where the ow pattern of �gure 5.10 isrestored.
Figure 5.10: Transoni Channel: Unsteady Solution, !t = 2�. Left: Present, Right: [33℄

Figure 5.11: Transoni Channel: Unsteady Solution, !t = 18�=8. Left: Present, Right: [33℄
Figure 5.12: Transoni Channel: Unsteady Solution, !t = 20�=8. Left: Present, Right: [33℄
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Figure 5.13: Transoni Channel: Unsteady Solution, !t = 22�=8. Left: Present, Right: [33℄
Figure 5.14: Transoni Channel: Unsteady Solution, !t = 24�=8. Left: Present, Right: [33℄
Figure 5.15: Transoni Channel: Unsteady Solution, !t = 26�=8. Left: Present, Right: [33℄
Figure 5.16: Transoni Channel: Unsteady Solution, !t = 28�=8. Left: Present, Right: [33℄
Figure 5.17: Transoni Channel: Unsteady Solution, !t = 4�. Left: Present, Right: [33℄51



The omparison between the solution obtained here and the referene one shows a goodagreement, onsidering that both are obtained numerially. What is interesting to note isthat the spae-time shemes seem to have a small advaning phase shift with respet to the�nite volume method used in the referene. Figures 5.11, 5.12 and 5.13 learly show that theshok, espeially on the lower wall, is situated more upstream in the spae-time solution thanin the �nite volume one, as if one was looking at a later time solution. Same thing for thesmooth ow patterns of �gures 5.14 and 5.15, whih seem idential in the result obtained hereand in the referene one, apart from a onsistent spae, and hene time, shift. One element totake into aount ould be the grid used in the omputations, but in [33℄ a strutured 79� 30grid was used, while the mesh of �gure 5.9 ontains 3162 nodes whih is a bit more than thenumber of ells used in the referene, although reasonably lose to it. A di�erent explanationould be that the spae-time approah itself might introdue a phase error when applied tonon-linear periodi problems. Other tests reported in this hapter will show the same typeof advaning phase error, whih deserves further investigation. As far as the present test-ase is onerned, a omputation on a �ner grid ould be performed to verify if the apparentadvaning phase error is still present.A Cylindrial 1D Riemann Problem with a Soure TermTo test the auray of the new soure terms disretization, a ylindrial 1D Riemann problemsimilar to the one proposed in [34℄ has been solved. Consider the physial state desribed in�gure 5.18: an initial irular disontinuity in pressure and density loated in the enter ofthe physial domain on top of a stati bakground2.The idea is to use the 1D radial version of the axisymmetri Euler equations to simulatethe time evolution of suh a system.
u = 0
p = 3

v = 0

ρ = 3
u = 0
p = 1

v = 0

ρ = 1

Figure 5.18: Initial Physial State for the Cylindrial Riemann Problem
2Zero veloity everywhere 52



The 2D axisymmetri Euler equations an be written as��t 2664 ��ux�ur�E 3775 + ��x 2664 �u�u2x + p�uxur�uxH 3775 + ��r 2664 �ur�uxur�u2r + p�urH 3775 = S ; S = �1r 2664 �ur�uxur�u2r�urH 3775 ; (5.4)being x the axis of symmetry, ux the omponent of the veloity parallel to the axis and urthe radial omponent of the veloity. Considering again �gure 5.18, the x axis would be theone perpendiular to the page and the radial would be the one starting from the enter of theirular disontinuity and going toward the external region of the domain. Note that system(5.4) an be seen as system (5.1) with the addition of the soure term S whih aounts forthe e�ets of the axisymmetry. In partiular, assuming ux = 0 and �=�x = 0 everywhere, oneends with ��t 24 ��ur�E 35 + ��r 24 �ur�u2r + p�urH 35 = S ; S = �1r 24 �ur�u2r�urH 35 ; (5.5)whih is nothing else than the system of the 1D Euler equation, with the soure term S.Finally the de�nition of the Riemann problem is: solve system (5.5) with the initial state� [ � ur p ℄ = [ 3 0 3 ℄ if r < r0[ � ur p ℄ = [ 1 0 1 ℄ if r > r0 :The problem is that, sine no analytial solution is available for suh a test-ase, one needsto build a referene solution. The approah used here is the following: Solve the real 2DRiemann problem desribed in �gure 5.18 on a �ne isotropi mesh with the 2nd order blendedsheme and at the same time solve the 1D Riemann problem with the soure term on a very�ne 1D mesh using the blended sheme and the new soure term treatment. Note that oneould simply use the 1D seond order solution on the �ne mesh as a referene, but the om-parison with the 2D solution will further verify the reliability of the 1D result. For symmetryreasons, the 2D omputation was run only on one quarter of the physial domain using anisotropi Delaunay mesh with 20000 triangles and 10201 nodes. A lose-up view of the meshis given in �gure 5.19.Note that a 2D Riemann problem has been already proposed as a test-ase in [14℄, but inthat ase the initial disontinuity was taken to be square-shaped, so that on the symmetrylines3 a pure 1D Riemann problem was reovered. In this ase one would expet, given thesymmetry of the problem and the isotropi mesh, to have the same distribution of the variablesalong any ray going through the origin of the domain. The 2D solution at t = 0:4 is shown in�gure 5.20 in terms of density and pressure ontours. It an be noted that the solution presentsa reasonable ylindrial symmetry, onsidering that in the mesh no preferential orientation ofthe edges of the triangles do exist.3Parallel to the edges of the initial disontinuity 53
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Figure 5.20: Cylindrial Riemann Problem: t = 0:4, B sheme. Left: density, Right: pressureThe 1D solution was omputed using 4001 nodes and then ompared with uts of the2D solution along rays going through the origin of the irular disontinuity, at di�erentangles. The omparison is shown in �gure 5.21, where the 1D solution is the solid lineand the 2D results are plotted with symbols. Several onlusions an be drawn from theomparison. The agreement between 1D and 2D results indiates that the 1D model isorret and the 1D solution an be indeed onsidered as a referene given the agreement withthe multidimensional one. Furthermore, omparing the plots at di�erent angles one realizesthat a very small deviation from ylindrial symmetry is present in the 2D solution.
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Figure 5.21: Cylindrial Riemann Problem: Comparison of the 1D Solution (solid line) withuts of the 2D Solution Along Rays at Di�erent Angles (symbols)55



One a referene solution has been obtained, the new soure term disretization has beentested on this new 1D Riemann problem. In partiular, the N sheme and the blendedsheme with the onsistent treatment of the soure term have been used to solve the problemon di�erent meshes and the results have been ompared to the referene solution. The resultsare summarized in �gures from 5.22 to 5.24.
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Figure 5.22: 1D Cylindrial Riemann Problem: t = 0:4, density. Left: B sheme, Right: Nsheme
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Figure 5.23: 1D Cylindrial Riemann Problem: t = 0:4, pressure. Left: B sheme, Right: NshemeFrom the pitures is lear that the B sheme behaves as a typial 2nd order sheme while theN sheme is indeed only �rst order. This di�erene is on�rmed by the diret omparisonof the two shemes given in �gure 5.25. The onlusion one draws from this test is thatindeed the new soure term treatment works and it is robust enough to handle disontinuoussolutions. In addition, the blending of the LP LDA sheme with the N sheme with theinlusion in both of the onsistent disretization of the soure terms gives a blended shemewhih is indeed monotone and gives a sharper resolution of the disontinuities, typial of aseond order sheme. 56
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Figure 5.24: 1D Cylindrial Riemann Problem: t = 0:4, Mah. Left: B sheme, Right: Nsheme
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Figure 5.25: 1D Cylindrial Riemann Problem: omparison between N and B shemes bothwith the new onsistent treatment of the soure term
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5.1.2 Steady ComputationsSteady Quasi-1D Nozzle FlowsA typial 1D test-ase with a soure term is obtained onsidering the so-alled quasi-1D Eulerequations, that is, the 1D Euler equations in whih one takes into aount the variation withthe x oordinate of the area rossed by the uid. Indiating with A = A(x) the variation ofthe ross-setional area, the system of equation reads��t 24 �A�uA�EA 35+ ��x 24 �uA(�u2 + p)A�uHA 35 = S ; S = 24 0p�A�x0 35 :De�ning the modi�ed density �0 = �A and modi�ed pressure p0 = pA the equations an berewritten as ��t 24 �0�0u�0E 35+ ��x 24 �0u�0u2 + p0�0uH 35 = S 0 ; S 0 = 24 0p0A �A�x0 35 ;while the equation of state beomesp0 = ( � 1)�0�E � u22 � :It is lear that if the modi�ed density and pressure are used as primitive variables, thequasi-1D Euler equations an be onsidered as the 1D Euler equations with the addition ofa soure term whih aounts for the variation of the ross-setional area. The advantageof this approah is that it allows to perform simulations of ows through 1D hannels ofarbitrary geometry, by simply adding to the equations a soure term and by imposing theproper initial and boundary onditions. In partiular, here the same 1D nozzle geometry usedin [35℄ was used in the omputations, for whih the area variation, plotted in �gure 5.26, anbe analytially expressed asA(x) = ( 1 + 32 �1� x+55 �2 if � 5 � x � 01 + 12 �1� x+55 �2 if 0 � x � 5 :
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XFigure 5.26: Cross-Setional Area Variation for the Quasi-1D Nozzle Flow Simulations58



-5 -4 -3 -2 -1 0 1 2 3 4 5
x

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

M
ac

h
 N

um
be

r

Num
Exact

(a) -5 -4 -3 -2 -1 0 1 2 3 4 5
x

0.2

0.4

0.6

0.8

1

M
ac

h 
N

um
b

er

Num
Exact

(b)

-5 -4 -3 -2 -1 0 1 2 3 4 5
x

0.5

1

1.5

M
ac

h 
N

u
m

be
r

Num
Exact

()

-5 -4 -3 -2 -1 0 1 2 3 4 5
x

0.25

0.5

0.75

1

1.25

M
ac

h
 N

um
be

r

Num
Exact

(d) -5 -4 -3 -2 -1 0 1 2 3 4 5
x

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

M
ac

h
 N

u
m

be
r

Num
Exact

(e)Figure 5.27: Steady Quasi-1D Euler: Mah Number distribution along the nozzle. (a) FullySubsoni, (b) Choked Subsoni, () Adapted, (d) Transoni Shok, (e) Fully SupersoniFor steady quasi-1D ows, a simple proedure to ompute the exat solution exists based onthe isentropi ow relations and on the Rankine-Hugoniot shok onditions. This tehnique,extensively explained in [35℄, was used here to ompute the exat solution for �ve di�erent59



ases: fully subsoni ow, hoked subsoni ow , adapted ow, a ow with a transoni shokand a supersoni ow. One the exat solution was known, the exat total temperature andpressure at the inlet have been used to impose the inlet boundary ondition for the subsoniases and the same has been done for the outlet pressure. Note that the boundary treatmentis ruial espeially for the subsoni outlet, sine the shok position and the appearane ofthe hoking ondition are very sensitive to the variation of the outlet pressure. Sine it iswell known that a pure 1D upwind disretization with a onsistent upwinding of the soureterm yields a seond order solution (see referenes [23, 24, 25℄), and in order to further testthe new multidimensional upwind soure term treatment, the omputations were run withthe spae-time blended sheme, starting from a uniform ow, and marhing in time until asteady state was reahed in terms of the L2 norm of the density residual4. The �nal resultof the omputations on 201 points are presented in terms of Mah number distribution alongthe nozzle and are plotted in �gure 5.27 together with the exat solution. The agreement isremarkable.Jets InterationThis is the �rst of a series of steady tests performed to verify the robustness and the reliabilityof the new disretization tehniques proposed in hapter 3. In partiular, the new treatmentof onservation has been ompared on this problem to the traditional approah based on theDeonink-Struijs-Roe linearization of the jaobians of the system. The steady matrix shemesdesribed in setion 2.1.2 have been used and Simpson's rule has been used for the ontourintegration. The test is taken from [1℄ and it onsists of the interation of two horizontalsupersoni jets whih are suddenly brought into ontat. The upper stream is haraterizedby Mup = 4, �up = 0:5 and pup = 0:25, while for the lower stream one has: Mlow = 2:4,�low = 1:0 and plow = 1:0. The domain is a 1 � 1 square. The interation of the two jetsprodues a shok wave in the low pressure jet and an expansion fan in the high pressure one.A ontat disontinuity develops in the middle. The mesh used is a 100� 100 diamond grid.In �gure 5.28 the desription of the problem and a zoom of the mesh used in the omputationare reported.
M = 4.0
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Shock
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Figure 5.28: Jets Interation Problem: Problem Desription and Zoom of the grid4Pratially speaking, the omputation was stopped when Pi=1;��� ;nodes(�n+1i ��ni )2nodes was smaller than a �xedthreshold � � 10�7 � 10�8, where n indiates the physial time level60



The results obtained with the shemes based on the new treatment of onservations arereported in �gure 5.29 in terms of density ontours. The orret reprodution of the physisan be seen from the piture. The outlet Mah number distribution is then ompared in�gure 5.30 with the one obtained on the same mesh and using the traditional formulation ofthe shemes based on the omputation of the integral of the uxes using the Roe averagedquasi-linear form of the equations.
New N scheme: density
20 contours between 0.5 and 1

New B scheme: density
20 contours between 0.5 and 1

Figure 5.29: Jets Interation Problem: Solution obtained with the new shemes. Left: Nsheme, Right: B shemeBoth the new N sheme and B sheme have been tested and ompared with their originalversion. First, from the density isolines, one an reognize the omplete monotone behaviorof the shemes based on the new treatment of onservation and the sharp resolution of thedisontinuities obtained with the blended sheme whih seems indeed seond order. Theomparison with the original shemes based on the Deonink-Struijs-Roe averaging showsperfet agreement.
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Figure 5.30: Jets Interation Problem: Comparison with Roe Averaging, Outlet Mah Num-ber. Left: N sheme, Right: B sheme 61



Sramjet InletThis problem is also taken from [1℄ and onsists of a supersoni inlet of a sramjet. The inletMah number is Min = 3:6, the upper wall is a symmetry line and the outlet ow is stillsupersoni. The N and B shemes based on the new treatment of onservation were testedand ompared with their analogous based on Roe averaging. Figure 5.31 shows a detail of thegrid used for the omputations ontaining 7056 nodes and 13383 triangles, while the Mahisolines of the solutions obtained with the new N and B shemes are given in �gure 5.32.

Figure 5.31: Sramjet Inlet. Partiular of the Grid
New N scheme: Mach
20 levels

New B scheme: Mach
20 levelsFigure 5.32: Sramjet Inlet: Mah Number Isolines. Left: new N Sheme, Right: new BShemeBoth solutions show a good predition of the ompression of the ow through the series ofshoks reeting between the symmetry line and the wedge and the better resolution of theB sheme is lear. Moreover, the solutions are both monotone. The distribution of densitypressure and Mah number along the symmetry line were ompared with the ones omputedwith the lassial N and B sheme based on the Deonink-Struijs-Roe Linearization on thesame grid. The omparison is shown in �gures 5.33, 5.34 and 5.35. The agreement betweenthe solutions obtained with the di�erent approahes is almost perfet.
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Figure 5.33: Sramjet Inlet: density along the symmetry line, omparison with Roe averaging.Left: N sheme, Right B sheme. Symbols: New Approah, Solid: Roe Average
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Figure 5.34: Sramjet Inlet: pressure along the symmetry line, omparison with Roe averag-ing. Left: N sheme, Right B sheme. Symbols: New Approah, Solid: Roe Average
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Mah 10 Flow Around a CylinderIn order to further test the robustness of the new N sheme based on the ontour integrationof the uxes with Simpson's rule, a Mah 10 bow shok over a ylinder was omputed. Thegrid used is a quite �ne Delaunay mesh ontaining 12085 nodes and 23740 triangles. Giventhe symmetry of the problem, only the upper half of the ow was simulated. The solutionobtained with the new approah is ompared with the results obtained with the original Nsheme in �gure 5.36 in terms of Mah and pressure isolines. In partiular, the two solutionsare plotted one on top of the other with di�erent olors.
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A loser view of the stagnation point is also reported in �gure 5.37. As it an be seen from thepitures, one an hardly distinguish the two solutions. The onlusion is that the N shemebased on the new treatment of onservation and ontour integration with Simpson's rule isas muh robust and reliable as the one based on Roe averaging is. This is on�rmed bythe omparison of pressure and Mah number distribution along the symmetry line shown in�gure 5.38.
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Figure 5.38: Mah 10 Flow Over a Cylinder: omparison with Roe averaging. Pressure andMah distribution along the symmetry lineMah 4 Flow Around a SphereA bow shok omputation was also used to test the robustness of the soure term disretiza-tion. In partiular, the steady matrix N sheme with the new onsistent soure term treatmentof hapter 3 was used to solve equations (5.4) on the same 2D grid used for the test-ase ofthe bow shok around a ylinder. This time the symmetry line has taken to be a line of axialsymmetry so that a bow shok around a sphere ould be simulated. The inoming ow Mahnumber was taken to be M1 = 4. A omputation using a entered treatment of the axisym-metry soure term was tried to ompare with the new approah, but the entral disretizationturned out to be not stable enough to handle this problem. The result obtained with the newapproah is shown in terms of Mah number and pressure isolines in �gures 5.39 and 5.40.The plots show a perfet and monotone shok apturing. What is very important tounderline is that no speial are has been taken in the low Mah region of the ow5, i.e. thebasi matrix sheme has been applied to system (5.4) without any kind of preonditioningtehnique (see referenes [1, 2℄ for details). This adds value to the results shown here. Thedistribution of Mah number and pressure along the axis of symmetry is also reported (�gure5.41) to further prove the monotoniity of the solution.5Whih is also true for the Mah 10 ow around a ylinder test-ase
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Figure 5.40: Mah 4 Flow Over a Sphere: Mah (left) and pressure (right) isolines at theStagnation Point
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5.2 Two-Fluid Mehanial Equilibrium ModelThe two-phase ow model used in this projet is probably the simplest model available inliterature. It belongs to the lass of models alled Two-Fluid models and it an be obtainedfrom the most general model under the assumptions of invisid and isentropi ow of bothphases and of a very strong mehanial oupling of the two uids (see [5, 17, 18℄ for details).The two phases onsidered are a liquid phase and a gas phase hosen to be representative ofwater and air. As a onsequene of the hypothesis of isentropi ow one does not need to solvethe energy equations, while the strong mehanial oupling between the phases translates intothe ondition of equal veloities of the two phases [5℄. The system of equations an be writtenin the following onservative form��t 2664 �l�l�g�g�u�v 3775 + ��x 2664 �l�lu�g�gu�u2 + p�uv 3775 + ��y 2664 �l�lv�g�gv�uv�v2 + p 3775 = 2664 00� (~g)x� (~g)y 3775 ;where �l and �g are the liquid and gas void frations, �l and �g are the liquid and gas densities,~u = (u v) is the veloity vetor, ~g is the gravity vetor and � is the mixture density de�nedby � = �l�l + �g�g :The system is losed by the relation between the void frations�l + �g = 1and by the state equations �l = �l0 + p� p0a2l ; p = �g�gg :In the last equation �l0 and p0 are referene density and pressure for the liquid phase, al is thespeed of sound of the liquid phase, assumed to be onstant and g is the ratio of the spei�heat oeÆients of the gas phase. In all the omputations the following values have been usedfor these quantities �l0 = 1000 kg=m3p0 = 105 Paal = 1000 m=sg = 1:4 :The value of the onstant �g in the gas state equation has been �xed to �g = 105 Pa (m3=kg)g .Note that the equations of state used are onsistent with the hypothesis of isentropi ow.Although the model is written in onservative form, no Roe-type linearization exists for it,hene this would be the typial ase in whih the new treatment of onservation should beapplied. Unfortunately, beause of the small amount of time left for this part of the projet,only the non-onservative formulation used in [5℄ ould be implemented. In partiular, de�ning67



the vetor of primitive variables P = 2664 puv�g 3775 ;the system an be rewritten in the quasi-linear form�P�t +AP �P�x +BP �P�y = SP ; (5.6)with AP and BP given byAP = 2664 u �a2 0 01=� u 0 00 0 u 00 � 0 u 3775 ; BP = 2664 v 0 �a2 00 v 0 01=� 0 v 00 0 � v 3775 ;where a is a mixture speed of sound given bya = a0r�l�g��swith a0 =s �s�g�la2g + �l�ga2l ; �s = �l�g + �g�lbeing ag =pgp=�g the speed of sound in the gas phase, while � is de�ned by� = a20�l�g�s ��ga2l � �la2g� :Sine the system is hyperboli, the matrix C = APnx+BPny is diagonalizable with a ompleteset of real eigenvalues and linearly independent eigenvetors. The eigenvalue deompositionof C is given in appendix E. The spae-time formulation of system (5.6) has been solvedusing the non-linear blended sheme on three unsteady two-phase ow problems. The �rstand the seond one are very well known tests for whih has been possible to ompare thesolution obtained with analytial or experimental results. The third test has to be onsideredmore as an appliation of the new spae-time shemes to the simulation of relatively omplextwo-phase ows. In all the tests onsidered the gravity term played a major role, hene weould apply the new soure term treatment.The Osillating Manometer ProblemThis is a rather simple 1D problem to set-up and it is very interesting sine an analytialsolution is available. It onsists of a U shaped tube �lled partially with liquid and partiallywith gas (see �gure 5.42). The total length of the tube is 20 m, 10 m of whih are �lledwith liquid. In the initial ondition the liquid is at the bottom of the tube and both liquid68
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Figure 5.42: Osillating Manometer: Problem Statement and Initial Conditionand gas are moving with the same speed. In the omputations the tube has been onsideredone-dimensional and losed, so that simple periodi boundary onditions ould be used at itsextrema.The initial ondition is given by[ p ; u ; �g ℄ = 8><>: [ 105 ; 2:1 ; 1 ℄ if 0 � x � 5h 105 + �l0gL� sin��(x�5)L � ; 2:1 ; 0 i if 5 � x � 15[ 105 ; 2:1 ; 1 ℄ if 15 � x � 20 ;where g = 9:81 m=s2 is the magnitude of the gravity vetor and L = 10 m is the length ofthe liquid olumn. The e�et of the urvature is taken into aount in the initial pressuredistribution in the liquid phase and in the gravity term whih is de�ned as�g(x) = 8><>: g if 0 � x < 5g os��(x�5)L � if 5 � x < 15�g if 15 � x < 20 :The problem has an analytial solution. In partiular, the veloity at the bottom of the tube6u�(t) is given by u�(t) = 2:1 os (!t) ; ! =p2g=L :The omputation was performed with two spatial resolutions and until time t = 15s whihis slightly more than three periods of osillation of the olumn. A �rst omputation on 201nodes was performed with di�erent CFL numbers. In partiular, thanks to the double layerapproah, omputations with CFL = 1, CFL = 10 and CFL = 20 were performed.6x = 10m 69
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Figure 5.43: Osillating Manometer Problem: Comparison with the Exat Solution. Left:201 nodes - CFL = 1, Right: 201 nodes - CFL = 10
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Figure 5.44: Osillating Manometer Problem: Comparison with the Exat Solution. Left:201 nodes - CFL = 20, Right: 401 nodes - CFL = 20The omparison between analytial solution and the solutions omputed at di�erent CFLnumbers is shown in �gure 5.43 and on the left in �gure 5.44. Common feature of all the solu-tions is a very small numerial damping of the amplitude of the osillation and an advaningphase error. Surprisingly, the smaller the CFL number, and hene the value of the time-step,the larger the phase error. This somehow ontradits the fat that for smaller time-steps onewould expet a better time auray of the solution. The omputation made with CFL = 20is indeed the best one, although a phase error is still visible. This an be attributed to theaumulation of the phase error in the omputations made with smaller CFL numbers, dueto the larger number of iterations needed to reah a �xed time with a smaller time-step.70
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Figure 5.45: Osillating Manometer Problem: Comparison with the Exat Solution. Left:201 nodes - inuene of CFL number, Right: CFL = 20 - Inuene of grid resolutionThe advaning phase shift observed here seems to be onsistent to the one observed in theomputations of the transoni hannel with utuating bak-pressure. Whether the spae-time treatment itself ould introdue a phase error, when applied to non-linear equations, isnot lear at the moment and further investigation of this aspet has to be done in the future.The omputation at CFL = 20 was repeated on a �ner mesh ontaining 401 nodes. Theresult is reported on the right in �gure 5.44. The agreement with the exat solution is verygood, but a phase shift starts to be visible already at the beginning of the fourth yle. Figure5.45 summarizes the analysis made. As a matter of fat, the results obtained are not too bad,although the reasons of the advaning phase error should be investigated. Another importantpoint is to perform some omputations using the onservative formulation of the equationsoupled with the new treatment of onservation, whih will help to understand if the phaseshift is related to the non-onservative approah used.Sloshing of a Water Column in a TankThis problem has been used by several authors as a validation test for two-phase ow odes[5, 37℄ and has been also experimentally studied [36, 37℄. The problem onsists of a liquidolumn initially at rest in hydrostati equilibrium in a tank. The height of the initial waterolumn is 2L and its width is L. The tank is a square with side 4L and in the experimentsits top side is open. Figure 5.46 summarizes the geometry of the problem.At time t = 0 the water olumn is left free to move and an instability due to gravity ausesits break down. The water starts to move toward to opposite wall of the tank until it splashesagainst it and then moves bak. Some experimental data are available in literature for theposition of the leading edge of the moving liquid front. The distane of the front from the leftwall of the tank Z saled by the initial width of the water olumn L is given as a funtion ofthe redued time t� de�ned by t� = tp2g=L ;71
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Figure 5.47: Sloshing of a Water Column: Comparison with Experimental Data

Figure 5.48: Sloshing of a Water Column: Gas Void Fration. Left:t� = 0, Right:t� � 1:2On the right in �gure 5.49 the liquid front has reahed the wall and the splashing of the liquidon the wall is visible on the left in �gure 5.50. The beginning of the sloshing of the water is�nally shown on the right in �gure 5.50 and in �gure 5.51. In the aption of eah piture therelative redued time t� is indiated. 73



Figure 5.49: Sloshing of a Water Column: Gas Void Fration. Left:t� � 2:5, Right:t� � 3:8

Figure 5.50: Sloshing of a Water Column: Gas Void Fration. Left:t� � 5:2, Right:t� � 6:5The visualizations show the e�et of the numerial di�usion spreading the void fration dis-ontinuity over a region overing several triangles. Note that the disontinuity in the voidfration is a linearly degenerated disontinuity, exatly like a slip line is for the Euler equa-tions. As remarked when speaking about the Mah 3 ow over a forward step problem, thespae-time shemes, beause of the time upwinding, tend to badly smear this kind of dis-ontinuities. As a last remark, it must be mentioned that, beause the interfae betweenthe phases spreads over several ells, its position is not uniquely de�ned. In partiular, theomparison with the experimental data of �gure 5.47 was done assuming the interfae to beloated where the void frations reah the value 0:5.
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Figure 5.51: Sloshing of a Water Column: Gas Void Fration. Left:t� � 7:8, Right:t� � 9Gas Plume Test-CaseThe evolution of a gas mass injeted vertially into a liquid olumn initially at rest is on-sidered here. The water is initially in hydrostati equilibrium and the gas is injeted with aninlet vertial veloity of 0:2 m=s. At the top the liquid phase is in ontat with gas at atmo-spheri pressure. The injetion starts at t = 0 s and the entrainement of the gas phase intothe liquid due to the formation of two symmetri vorties is observed. Given the symmetryof the problem, only half of it was simulated on a isotropi Delaunay grid (see �gure 5.19)with a mesh-size h � 0:01 orresponding to one tenth of the injetion hole. System (5.6) wassolved in its spae-time formulation using the non-linear blended sheme and a CFL = 100.A similar test was performed in [5℄ with the same geometry, a higher injetion speed anda muh oarser mesh, solving system (5.6) with a �rst order residual distribution method.What is important to underline is that this test has a pure aademial meaning, given the verysimple model used8 and the geometry of the problem9. The initial evolution of the injetedgas, lose to the inlet, and the formation of the two vorties is visualized using the isolines ofthe gas void fration and the veloity vetors in �gures from 5.52 to 5.55 where the red olordenotes pure gas and the blue pure liquid. Note that the formation of the two ounter-rotatingvorties is related to the oupled e�et of the gravity and of the equal veloity of the phases.Beause of the last, in partiular, in the regions where the void fration goes from one to zerothe liquid moves with the same veloity of the gas as if an in�nite frition at the interfaewas ating10.
8Visous and surfae tension e�ets are not inluded9The injetion hole has a width of about 0:1 m whih is pratially too muh to onsider a jet of pure air10Whih is atually the basi assumption in the model75



Figure 5.52: Gas Plume Problem: Gas Void Fration at the inlet. Left: t = 0:2 s, Right:t = 0:4 s

Figure 5.53: Gas Plume Problem: Gas Void Fration at the inlet. Left: t = 0:6 s, Right:t = 0:8 s
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Figure 5.54: Gas Plume Problem: Gas Void Fration at the inlet. Left: t = 1:0 s, Right:t = 1:2 s

Figure 5.55: Gas Plume Problem: Gas Void Fration at the inlet. Left: t = 1:4 s, Right:t = 1:6 s
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Chapter 6Conlusions, Final Remarks andFuture Perspetives
Ahievements and ConlusionsThe main goal of this projet was to investigate the apabilities of a new Spae-Time for-mulation of the Residual Distribution shemes and eventually to show its appliation to thesimulation of unsteady two-phase ows on unstrutured grids. The starting point was a odein whih the basi method was implemented. The strategy adopted to reah the objetive hasbeen that of implementing step by step all the utilities and features needed to run more om-plex simulations and in parallel to develop the neessary theoretial bakground. Followingthis path the main ahievements of the projet an be summarized as followsValidation of the Code and of the MethodStarting already with the initial version of the ode, the new method has been intensivelytested on a large number of problems, eventually omparing the solution obtained withreferene solutions available in literature or with analytial solutions.Boundary ConditionsTo enlarge the apabilities of the ode, a set of harateristis-based boundary onditionsonsistent with the nodal variable representation of the numerial method and basedon the work done previously in [1℄ has been developed and analyzed, showing howto obtain an extension to impliit omputations without the need of omputing anynumerial jaobian.Soure Term DisretizationTo be able to perform two-phase ow simulations, there must be a way to inlude in thedisretization the soure terms present in the equations in a onsistent manner whihdoes not spoil the auray of the basi sheme and at the same time is robust enoughto handle disontinuous or sti� soures. One possible way to do this has been developedand tested on rather severe problems within this projet.New Conservative FormulationResidual Distribution shemes were born for the solution of multidimensional salar ad-79



vetion problems and then later extended to the system of the Euler equations. This waspossible thanks to their matrix formulation and to the extension of the Roe linearizationto the multidimensional upwind method. A problem ommon to anybody willing to usethe RD method to solve a di�erent system of equations is that, if no Roe linearizationexists for the system, the method is not able to guarantee full onservation. The MHDequations, the equations of a hemially reating ows and the two-phase Two-Fluidmodels are examples of systems for whih no onservative linearization of the jaobiansexists. Here, a new formulation of the RD shemes has been proposed whih guaranteesfull onservation without the need of any Roe-type linearization. The new approah hasbeen tested and ompared with the traditional formulation of the shemes.Appliation to Two-Phase FlowsThe last item of this projet was the appliation of the spae-time approah to the simu-lation of two-phase ows. The model used is one of the simplest present in the literature,but still very interesting two-phase problems ould be solved. The new theoretial re-sults onerning soure term disretization and onservation are of ourse of primaryinterest beause they allow to disretize the two-phase ow equations in a onsistent,aurate and onservative manner. Unfortunately, beause of the time restritions, thenew onservative formulation ould not be implemented, hene only the new treatmentof the soure term oupled with the spae-time approah has been used.The main ahievements of the projet are ertainly the new developments relative to soureterms and onservation. The results presented indeed prove their robustness although moretesting is needed. The two-phase ow simulations have shown very promising results, besidesthe simple model used. As far as the spae-time shemes are onerned, at the momentthey are indeed the most robust and aurate formulation of the RD shemes for unsteadysimulation. As a matter of fat, in their present formulation, they are by far more expensivethan a �nite volume method oupled with a Runge-Kutta time integrator and their extensionto three spatial dimensions1 would probably not be ompetitive enough espeially in termsof memory requirements. Nevertheless they ould still be optimized and be very useful fortwo dimensional and axisymmetri omputation. Aording to the author, the spae-timeshemes do not represent the ultimate way of performing aurate unsteady simulations usingthe RD method.Future PerspetivesSeveral topis related to the work done deserve further attention1. The strong node-wise boundary ondition treatment used here, that allows a true ontrolof the nodal value of the unknowns on the boundaries, should be implemented in animpliit solver and ompared with the ghost-nodes approah used now in most of theRD odes. In partiular, the advantage of being able of omputing analytially the newjaobian entries should be exploited.1Apart from the trouble in extending the onstrained spae-time meshing to 4D80



2. The new onservative formulation of the shemes enables to extend the use of the u-tuation splitting shemes to any system of equations. Of ourse one of the �rst itemsto take into onsideration is to use it to solve the two-phase problems onsidered here.Further appliation to hemially reating ows and to the MHD equations should bealso tried.3. A di�erent use of the possibility of omputing the ell residual through a numerialontour integration ould be to build more aurate shemes. In fat, sine the ontourintegral and hene the ell residual an be omputed with any auray just by hangingthe quadrature rule, third order or even even more aurate shemes ould be built.Two important issues have to be dealt with: how to de�ne the residual distributionstrategy and how to retain positivity when higher order polynomial representations ofthe variables are used. Help might ome for the seond issue from the work done in the�eld of the disontinuous Galerkin method [30℄.4. Being able to perform 3D aurate unsteady omputations using residual distributionshemes still remain a hallenge, sine the spae-time approah would probably be tooexpensive. A way to go ould be to go bak to the �nite elements formulation of theshemes, oupling it with the ideas at the basis of stabilized �nite elements methods.A blending of the onsistent mass matrix with the lumped one ould be one of the �rstthings to try. Following the work of Sidilkover [38℄ the omputation of the blendingoeÆient should be based on the time variation of the unknown. Investigation of theappliation to the time derivative of the same tehnique used for the disretization ofthe soure terms and for the treatment of onservation ould be also interesting5. Even for two dimensional and axisymmetri ows, the spae-time shemes are veryexpensive and a long omputational time an be required also for simple problems. Theexpliit pseudo-time iterative proedure in use at the moment ould be abandoned infavor of a Newton or quasi-Newton iterative method, but the large memory requirementsassoiated to the method have to be kept in mind.6. Cheaper spae-time meshing tehniques, like the one proposed in [22℄, should be on-sidered.7. The dual time loop intrinsi in the spae-time method of solution ould be easily usedto perform inompressible ow simulation by the use of the arti�ial ompressibilityapproah.8. Dual time preonditioning tehniques ould be easily oupled with the spae-time method,thanks to its intrinsi dual time-stepping formulation.
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Appendix AConsisteny of the NS Sheme in 1DIt is known that the 1D upwind �nite volume Roe sheme an be rewritten as a RD sheme(see [1, 26℄). In partiular, with referene to �gure A.1, sheme (3.6) an be rewritten as(�ei )UP = Â�e (Ui+1 � Ui)� I�sgn(Âe)2 �x2 (Si + Si+1)��e�1i �UP = Â+e�1(Ui � Ui�1)� I+sgn(Âe�1)2 �x2 (Si + Si�1) ;and similarly for the nodes i+ 1 and i� 1.
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Figure A.1: RD formulation of a 1D Finite Volume ShemeIn order to derive the 1D version of sheme (3.4) onsider the following relations:8>>>>>>>>><>>>>>>>>>:
Kei = �A ! K�i = �A�jAj2 = �A+ = � I+sgn(A)2 A! K+i = �A+jAj2 = �A� = �I+sgn(A)2 A! I+i = K+i (Kei )�1 = ��I+sgn(A)2Kei+1 = A ! K�i+1 = A� = I�sgn(A)2 A! K+i+1 = A+ = I+sgn(A)2 A! I+i+1 = K+i+1 �Kei+1��1 = I+sgn(A)2! Pj2eK+j = �Pj2eK�j = jAj ; Pj2e I+j = I : (A.1)
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Note that the subsript e has been dropped for learness.The soure term utuation (3.5) is given by�S = S�i + S�i+1 = �x2 Si + �x2 Si+1 ;and the inow states an be proven to beS�in = I�sgn(A)2 S�i + I+sgn(A)2 S�i+1 + �SUin = I+sgn(A)2 Ui + I�sgn(A)2 Ui+1 :Then, aording to (3.4) and using relations (A.1), the element-to-node ontribution for nodei from element e is (�ei )N;S = �A� (Ui � Uin) + I � sgn(A)2 (S�i � S�in) : (A.2)For the �rst term in the last equation one has� A� (Ui � Uin) =� A�Ui + I � sgn(A)2 AI + sgn(A)2 Ui + I � sgn(A)2 AI � sgn(A)2 Ui+1 =� A�Ui + A�1A�A+Ui + 14 (A� jAj) (I � sgn(A))Ui+1 = �A�Ui + A�Ui+1 ; (A.3)and �nally �A� (Ui � Uin) = A� (Ui+1 � Ui) :Note that in equation (A.3) the relation A�A+ = 0, the de�nition of the sign of a matrix(equation (3.8)) and the fat that sgn(A) = sgn(A�1) has been used. For the seond termin equation (A.2) one hasI � sgn(A)2 (S�i � S�in) =I � sgn(A)2 �S�i � I � sgn(A)2 S�i + I + sgn(A)2 S�i+1 � �S� =� I � sgn(A)2 �S + I � sgn(A)2 �I + sgn(A)2 S�i � I + sgn(A)2 S�i+1� =� I � sgn(A)2 �S + I � sgn(A)2 I + sgn(A)2 �S�i � S�i+1� =� I � sgn(A)2 �S + A�1A�A+A�1 �S�i � S�i+1� = �I � sgn(A)2 �S :Assembling the two ontributions and writing expliitly the soure term utuation one endswith (�ei )N;S = Â�e (Ui+1 � Ui)� I � sgn(Âe)2 �x2 (Si + Si+1) = (�ei )UP :Similarly one an prove that ��e�1i �N;S = ��e�1i �UP .84



Appendix BThe New N Sheme is ISTConsider the sheme given by the ombination of the NS and the N  shemes introdued inhapter 3: �j = I+j �KTj (Uj � U) + S�j � S�in� ;beingS�in =  Xl2T I+l !�1 Xl2T I+l S�l + �S! ; U =  Xj2T K+j !�1 Xj2T K+j Uj � �T! ;and �T = I�T ~F � ~n dl ; �S = ZT S d
 :What we would like to do is to extend the proof of the IST property also to this sheme. Inorder to do this, onsider two sets of variables U and W , linked by the relation�W = �W�U �U :It is easy to prove that KUj = �U�W KWj �W�U ;and hene K�Wj = �W�U K�Uj �U�W ; I+Wj = �W�U I+Uj �U�W : (B.1)Suppose U is the vetor of onserved variables, of ourse �T must be omputed using theonservative uxes, hene �T = �T;U . Suppose that also �S is omputed in onservativevariables, onsistently with what is done for the uxes. So we also have �S = �S;U . De�nenow the following quantities�T;W = �W�U �T;U ; �S;W = �W�U �S;U ; S�;Wi = �W�U S�i ; Wi = �W�U Ui : (B.2)The nodal residual of the new sheme will be omputed in the W variables as�Wj = I+Wj hKWj (Wj �W) + S�;Wj � S�;Win i ;85



withS�;Win =  Xl2T I+;Wl !�1 Xl2T I+;Wl S�;Wl + �S;W! ;W =  Xj2T K+;Wj !�1 Xj2T K+;Wj Wj � �T;W! :Using relations (B.1) and (B.2) one an easily hek thatS�;Win = �W�U S�in ; W = �W�U U ;and hene, using again (B.2)�Wj = I+Wj �KWj �W�U (Uj � U) + �W�U �S�j � S�in�� :Applying one last time (B.1) to last equation, one an write�Wj = �W�U I+Uj � �U�W �W�U KUj �U�W �W�U (Uj � U) + �U�W �W�U �S�j � S�in�� ;and �nally �Wj = �W�U I+Uj �KUj (Uj � U) + S�j � S�in� = �W�U �Uj ;hene the new sheme is IST .
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Appendix CFlux Computations
C.1 Seond Order Flux IntegrationThe proof of relation (3.12) will be given here, �rst in the ase of a triangle and then for atetrahedron. Consider then the triangle of �gure C.1; applying the trapezium rule one obtainsI�T ~F � ~n dl = �12 � ~F0 + ~F1� � ~n2 � 12 � ~F1 + ~F2� � ~n0 � 12 � ~F2 + ~F0� � ~n1 =� 12 ~F0 � (~n1 + ~n2)� 12 ~F1 � (~n0 + ~n2)� 12 ~F2 � (~n0 + ~n1) :Using the relation ~n0 + ~n1 + ~n2 = ~0, one ends withI�T ~F � ~n dl = 12 � ~F0 � ~n0 + ~F1 � ~n1 + ~F2 � ~n2� ;that is exatly what (3.12) says.
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Figure C.1: Contour Integration with Trapezium Rule87



In the ase of a tetrahedron the trapezium rule beomesI�T ~F � ~n dl =� � ~F0 + ~F1 + ~F2�3 � ~n3� � ~F1 + ~F2 + ~F3�3 � ~n0� � ~F0 + ~F2 + ~F3�3 � ~n1� � ~F0 + ~F1 + ~F3�3 � ~n2= � ~F0 � ~n1 + ~n2 + ~n33 � ~F1 � ~n0 + ~n2 + ~n33 � ~F2 � ~n0 + ~n1 + ~n33 � ~F3 � ~n0 + ~n1 + ~n23 :Using the relation ~n0 + ~n1 + ~n2 + ~n3 = ~0, one ends withI�T ~F � ~n dl = 13 � ~F0 � ~n0 + ~F1 � ~n1 + ~F2 � ~n2 + ~F3 � ~n3� ;as we wanted to prove.C.2 Third Order Flux IntegrationUsing the notation of �gure C.2, Simpson's rule ontour integration reads:I�T ~F � ~n dl =� 13 �12 ~F0 + 2 ~Fm2 + 12 ~F1��~n2� 13 �12 ~F1 + 2 ~Fm0 + 12 ~F2��~n0� 13 �12 ~F2 + 2 ~Fm1 + 12 ~F1��~n1 =�13 �12 ~F0 � (~n1 + ~n2) + 12 ~F1 � (~n0 + ~n2) + 12 ~F2 � (~n0 + ~n1) + 2 ~Fm0 � ~n0 + 2 ~Fm1 � ~n1 + 2 ~Fm2 � ~n2� :
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Figure C.2: Contour Integration on a Triangle with Simpson's Rule88



Using the relation ~n0 + ~n1 + ~n2 = ~0 one ends withI�T ~F � ~n dl = 13 �12 ~F0 � 2 ~Fm0� � ~n0 + 13 �12 ~F1 � 2 ~Fm1� � ~n1 + 13 �12 ~F2 � 2 ~Fm2� � ~n2 ;exatly as stated by equation (3.13).
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Appendix DBoundary ConditionsConsider the following update formula:Un+1i = Uni � ki�Ri ;where the oeÆient ki� is a funtion of the time-step and of the loal geometry, for exampleki� = �t=Si. The orretion related to the boundary treatment will be of the typeÆU� = X�ik>0 �krk ;where rk is the right eigenvetor relative to the k-the positive eigenvalue of the jaobian ofthe di�erential system �ik (see setion 4.1). The �nal update formula beomesUn+1i = Uni � ki�Ri + ÆU� = Uni � ki� (Ri +R�i )! R�i = � 1ki� X�ik>0 �krk :Sine the eigenvetors rk are known analytially, the only information missing is the onerelative to the �k oeÆient. As already explained, they are omputed from the imposition ofthe required boundary ondition on Un+1i . Instead of giving the general proedure to omputethe oeÆients, here the way they were omputed for the Euler equations will be reportedas an example. In a seond setion the value of the �k oeÆient for imposing the boundaryonditions for the Two-Fluid model are also given. For their omputation one an refer to [5℄.D.1 Euler EquationsInvisid Wall Condition for the 2D Euler equationsThe ondition we want to impose is either �u? = 0 or un+1? = 0. What we need to omputeis the provisional inrement ÆUi of our variables and then derive an equation for �w. Indiatewith P = [�; u; v; p℄t the vetor of primitive variables, one has in a �rst order approximationÆPi = ��P�U �ni ÆUi = �ki���P�U �ni Ri ;91



where the jaobian �P=�U is known analytially (see appendix E). The last expression givesfor the provisional inrement of the primitive variablesÆ� = �ki� (Ri)1Æu = �ki� (Ri)2�uni (Ri)1�niÆv = �ki� (Ri)3�vni (Ri)1�niÆp = ( � 1) [�ki� (Ri)4 � kneiÆ�� �ni (uni Æu+ vni Æv)℄ ;where knei is the kineti energy per unit mass. In the ase of wall boundary onditions, thereis only one ingoing wave assoiated to the eigenvalue ~u �~ni+a, with relative eigenvetor givenin primitive variables as follows (see appendix E)rw = 2664 �ni =aninixniy�ni ani 3775 :Writing the �nal update in primitive variables, one obtains for the veloity omponentsun+1i = uni + Æu+ �wnixvn+1i = vni + Æv + �wniy ;and �nally multiplying the �rst equation by nix, the seond by niy and remembering thatn2ix + n2iy = 1, one obtains for un+1? and �u?un+1? = un? + Æu? + �w ! �u? = Æu? + �w ;being Æu? = Æunix + Ævniy. Finally the value of �k is obtained simply by setting un+1? = 0 or�u? = 0: un+1? = 0 ! �w = � (un? + Æu?)�u? = 0 ! �w = �Æu? :Note that �w an be written as the following linear ombination of the values of the nodalresidual:�w = Dw(Ui) �Ri + w(Ui) ; Dw(Ui) = ki�� [ �un? nx ny 0 ℄t ; w(Ui) = �un? :Subsoni Outlet Condition for the 1D Euler equationsProeeding exatly as in the previous ase, one obtains for the provisional inrement of theprimitive variables Æ� = �ki� (Ri)1Æu = �ki� (Ri)2�uni (Ri)1�niÆp = ( � 1) [�ki� (Ri)3 � kneiÆ�� �ni uni Æu℄ :Also in this ase the only ingoing wave is assoiated to the eigenvalue ~u � ~ni+ a, with relativeeigenvetor given in primitive variables as (see appendix E)ra = 24 �ni =aninx=jnxj�ni ani 35 :92



Writing the �nal update in primitive variables one obtains for the pressurepn+1i = pni + Æp+ �a�ni ani ;and �nally �a is obtained either imposing pn+1i = pout(tn+1) or �p = 0:pn+1i = pout(tn+1) ! �a = 1�ni ani (�Æp + pout(tn+1)� pni )�p = 0 ! �a = � Æp�ni ani :Note that the expression of �a is exatly the same for the 2D Euler equations. Making useof the de�nition of Æp, �a an be easily expressed as �a = Da(Ui) �Ri + a(ui). In partiularone an easily show that in the 2D aseDa(Ui) =  � 1�ni ani ki� [ knei � uni � vni 1 ℄t ; a = pout(tn+1)� pni�ni ani :Subsoni Inlet Condition for the 2D Euler equationsBeause of the lengthy algebra, only the general proedure will be explained and the �nalresults will be given. In this ase there are three positive eigenvalues given by ~u � ~ni + a and~u � ~ni two times. The eigenvetors assoiated to these eigenvalues are written in primitivevariables as (see appendix E)r1 = 2664 �ni =aninixniy�ni ani 3775 ; r2 = 2664 1000 3775 ; r3 = 2664 0�niynix0 3775 :As in the ase of the wall boundary onditions, one an easily derive the provisional inrementfor the primitive variables:Æ� = �ki� (Ri)1Æu = �ki� (Ri)2�uni (Ri)1�niÆv = �ki� (Ri)3�uni (Ri)1�niÆp = ( � 1) [�ki� (Ri)4 � kneiÆ�� �ni (uni Æu+ vni Æv)℄ :The variables we are interested in are the total temperature T0, the total pressure p0 and thetangent of the ow angle tg� = v=u. The idea is to write the inrement of these variables asa linear ombination of the inrements of the primitive variables. This an be obtained asfollows:T n+10i � T n0i = ÆT0 + ÆT �0 =�T0�� (Æ�+ Æ��) + �T0�u (Æu+ Æu�) + �T0�v (Æv + Æv�) + �T0�p (Æp+ Æp�) ; (D.1)pn+10i � pn0i = Æp0 + Æp�0 =�p0�� (Æ� + Æ��) + �p0�u (Æu+ Æu�) + �p0�v (Æv + Æv�) + �p0�p (Æp+ Æp�) ; (D.2)93



tgn+1�i � tgn�i = Ætg� + Ætg�� =�tg��� (Æ� + Æ��) + �tg��u (Æu+ Æu�) + �tg��v (Æv + Æv�) + �tg��p (Æp+ Æp�) ; (D.3)where the vetor of the orretive inrements of the primitive variables is given by2664 Æ��Æu�Æv�Æp� 3775 = �1r1 + �2r2 + �3r3 : (D.4)Substituting the expression of the eigenvetors in (D.4) and then inserting the expressionsof the orretive inrements of the primitive variables in equations (D.1), (D.2) and (D.3)one obtains a linear system for the unknowns �k oeÆients whih an be solved as soon asinformations are given on the time inrements of T0, p0 and tg�. The �nal results are:�3 = vni Æuun? � uni Ævun? � �1 unkun?�2 = �2�=0 +��2�1 = �1�=0 +��1 ;where uk = uniy�vnix, �1�=0 and �2�=0 are the values of �1 and �2 obtained requiring �T0 = 0and �p0 = 0 and are given by�1�=0 = � Æp=(�ni ani )+2Æu?knei=(ani un?)1+2knei=(ani un?)�2�=0 = Æp(ani )2 � Æ� :By imposing a required value of T n+10 and ~pn+10 (see setion 4.1), one an ompute the addi-tional terms ��1 and ��2 whih are given by��1 = �p0=knei+�ni �T0=(ani )2�ni ani ��(1+2knei=(ani un?))��2 = ( � 1) �niani �1 + 1kneiani un?���1 � �ni(ani )2�T0 ;with �� = 1knei + �1(ani )2�T0 = R (T �0 � T n0 )�p0 = � pn0pni �� 1 (p�0 � pn0) ;where T �0 and p�0 are the required total temperature and pressure required at the inlet.Although less easy to prove, �1, �3 and �3 an be written, as in the previous ases, as�k = Dk �Ri + k.
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D.2 Two-Phase Equilibrium ModelInvisid Wall Condition for the 2D Mehanial Equilibrium ModelOnly one positive eigenvalue is present in this ase and it is given by ~u �~ni. The orrespondentright eigenvetor is rw = 2664 �ni aninixniy�ni =ani 3775 :The oeÆient �w required for the wall boundary ondition �u? = 0 is given by�w = Æu? :Subsoni Outlet Condition for the 2DMehanial EquilibriumModelAlso in this ase the only positive eigenvalue is given by ~u � ~ni with the orrespondent righteigenvetor ra = 2664 �ni aninixniy�ni =ani 3775 :The oeÆient �a required for the wall boundary ondition �p = 0 is given by�a = � Æp�ni ani :Subsoni Inlet Condition for the 2D Mehanial Equilibrium ModelIn this ase three positive eigenvalues are present: ~u�~ni and ~u�~ni two times. The orrespondentright eigenvetors arer1 = 2664 �ni aninixniy�ni =ani 3775 ; r2 = 2664 0�niynix0 3775 ; r3 = 2664 0001 3775 :The oeÆients needed to impose the onditions �(�u) = 0, �(�v) = 0 and ��g = 0 are�1 = �24��nlia2l + �ngi(angi)2�u?Æp+�ni Æu?�ni +��nlia2l + �ngi(angi)2�u?�ni ani 35�2 = �24��nlia2l + �ngi(angi)2�ukÆp+�ni Æuk�ni +��nlia2l + �ngi(angi)2�uk�ni ani 35�3 = �Æ�g � �1 �niani :
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For all the boundary onditions related to the Two-Fluid Model is also very easy to hek that�k = Dk �Ri. In partiular, note that sine the omputations were atually run in primitivevariables, the provisional inrements were simply omputed asÆp = �ki� (Ri)1Æu = �ki� (Ri)2Æv = �ki� (Ri)3Æ�g = �ki� (Ri)4 :
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Appendix EEquations, Jaobians and EigenvalueDeompositions
E.1 2D Euler EquationsFor the Euler equations, two di�erent sets of variables are used in the omputations: theonservative variables given by U = 2664 ��u�v�E 3775 ;and the primitive variables, given by P = 2664 �uvp 3775 :The transformations jaobian matries between the two sets of variables are�U�P = 2664 1 0 0 0u � 0 0v 0 � 0ke �u �v 1�1 3775 ; �P�U = 2664 1 0 0 0�u� 1� 0 0�v� 0 1� 0( � 1)ke �( � 1)u �( � 1)v  � 1 3775 ;being ke the kineti energy per unit mass. In primitive variables the jaobian of the systemis given by C = 26664 ~V � ~n �nx �ny 00 ~V � ~n 0 nx�0 0 ~V � ~n ny�0 �a2nx �a2ny ~V � ~n

37775 ;
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where ~V �~n = ~u �~n in the steady omputations, while ~V �~n = unx+vny+nt for the spae-timeomputations. The eigenvalues and eigenvetors of C an be omputed as�1 = ~V � ~n ; r1 = 2664 1000 3775 ;
�2 = ~V � ~n ; r2 = 2664 0�nynx0 3775 ;
�3 = ~V � ~n+ a ; r3 = 2664 �anxny�a 3775 ;
�4 = ~V � ~n� a ; r4 = 2664 �a�nx�ny�a 3775 :For the boundary onditions the knowledge of the eigenvetors in onservative variables isneeded. If rU indiates the generi eigenvetor in onservative variables and rP indiates thegeneri eigenvetor in primitive variables, one an easily prove thatrU = �U�P rP :Using the previous relation one obtainsr1U = 2664 1uvke 3775 ; r2U = 2664 0��ny�nx��uny + �vnx 3775 ;

r3U = 26664 �a�(nx + ua)�(ny + va)��kea + a�1 + unx + vny� 37775 ; r4U = 26664 �a�(�nx + ua )�(�ny + va)��kea + a�1 � unx � vny� 37775 :Note that all the previous matries have been omputed with the hypothesis n2x + n2y = 1E.2 1D Euler EquationsAlso for the 1D Euler equations, two di�erent sets of variables are used in the omputations:the onservative variables given by U = 24 ��u�E 35 ;98



and the primitive variables, given by P = 24 �up 35 :The transformations jaobian matries between the two sets of variables are�U�P = 24 1 0 0u � 0ke �u 1�1 35 ; �P�U = 24 1 0 0�u� 1� 0( � 1)ke �( � 1)u  � 1 35 ;being ke the kineti energy per unit mass. Sine in 1D only spae-time omputations havebeen performed, it is the spae-time jaobian that is reported here. In primitive variables itreads C = 24 unx + nt �nx 00 unx + nt nx�0 �a2nx unx + nt 35 ;The eigenvalues and eigenvetors of C an be omputed as�1 = ~V � ~n ; r1 = 24 100 35 ;�2 = ~V � ~n + ajnxj ; r2 = 24 �anx=jnxj�a 35 ;�3 = ~V � ~n� ajnxj ; r3 = 24 �a�nx=jnxj�a 35 :For the boundary onditions the knowledge of the eigenvetors in onservative variables isneeded. If rU indiates the generi eigenvetor in onservative variables and rP indiates thegeneri eigenvetor in primitive variables, one an easily prove thatrU = �U�P rP :Using the previous relation one obtainsr1U = 24 1uke 35 ; r2U = 264 �a�( nxjnxj + ua )��kea + a�1 + u nxjnxj� 375 ; r3U = 264 �a�(� nxjnxj + ua)��kea + a�1 � u nxjnxj� 375 ;
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E.3 2D Two-Phase Equilibrium ModelThe omplete jaobian of the system reads in primitive variablesC = 26664 ~V � ~n �a2nx �a2ny 0nx=� ~V � ~n 0 0ny=� 0 ~V � ~n 00 �nx �ny ~V � ~n 37775 ;where in the ase of spae-time omputations ~V �~n = unx+vny+nt. The following eigenvaluedeomposition an be proven: C = R�L ;with R = 2664 �a �a 0 0nx �nx �ny 0ny �ny nx 0�=a �=a 0 1 3775 ; L = 26664 12�a 12nx 12ny 012�a �12nx �12ny 00 �ny nx 0� ��a2 0 0 1 37775 ;and � = 26664 ~V � ~n + a 0 0 00 ~V � ~n� a 0 00 0 ~V � ~n 00 0 0 ~V � ~n 37775 :Note that all the previous matries have been omputed with the hypothesis n2x + n2y = 1E.4 1D Two-Phase Equilibrium ModelThe 1D spae-time jaobian of the system reads in primitive variablesC = 24 unx + nt �a2nx 0nx=� unx + nt 00 �nx unx + nt 35 :The following eigenvalue deomposition an be proven:C = R�L ;with R = 24 �a �a 0nx=jnxj �nx=jnxj 0�=a �=a 1 35 ; L = 264 12�a nx2jnxj 012�a � nx2jnxj 0� ��a2 0 1 375 ;and � = 24 unx + nt + ajnxj 0 00 unx + nt � ajnxj 00 0 unx + nt 35 :100
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