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The PDEs

Boussinesq-Abbott model with varying bottom:{
∂tζ + ∂xq = 0
(1 + hbT )∂t q + ∂x f (ζ, q) = −gh∂xb

in (0, `)

(BA)

with hb = H0 − b (depth at rest) and

f(ζ, q) =
q2

h
+

gh2

2
, hbT (·) = −

1
3
∂x (h2

b∂x ·) + lower order terms

z

Free surface

Rigid bottom

h(t, x) = H0 + ζ − bq(t, x)

−H0

0

ζ(t, x)

b(x)
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The PDEs

Initial-boundary value problem:{
∂tζ + ∂xq = 0
(1 + hbT )∂t q + ∂x f (ζ, q) = −gh∂xb in (0, `) (BA)

completed with

(ζ, q)|t=0 = (ζ0, q0), ζ(t , 0) = g0(t), ζ(t , `) = g`(t)

How to recover q|x=0,` (t)? (missing data)

Hyperbolic case (hbT ≡ 0): Riemann invariants

Dispersive case: need to invert (1 + hbT )→ requires knowledge on ∂t q|x=0,`
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Reformulation of the model (flat bottom)

Flat bottom case (b ≡ Cst): discharge eq. simplifies to

(1 − κ2∂2
xx )∂t q + ∂x f (ζ, q) = 0 in (0, `)

Fix 0 ≤ t ≤ T, then y(x) = ∂t q(t , x) satisfies an ODE of the formy − κ2y ′′ = φ(x)
y(0) = q̇|0 , y(`) = q̇|`

Equivalently: y = yh + yb with

yh − κ
2y ′′h = 0

yh(0) = q̇|0 , yh(`) = q̇|`
and

yb − κ
2y ′′b = φ(x)

yb (0) = yb (`) = 0

Define R0 as the inverse of (1 − κ2∂2
xx ) with homogeneous Dirichlet conditions at x = 0, `

⇒ ∂t q = −R0∂x f︸  ︷︷  ︸
yb

+ s(0)(x)q̇|x=0 + s(`)(x)q̇|x=`︸                       ︷︷                       ︸
yh

where
{

(1 − κ2∂2
xx )s(0) = 0

s(0)(0) = 1, s(0)(`) = 0
and

{
(1 − κ2∂2

xx )s(`) = 0
s(`)(0) = 0, s(`)(`) = 1

. (1)
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Reformulation of the model (flat bottom)

Note R1 the inverse of (1 − κ2∂2
xx ) with homogeneous Neumann conditions at x = 0, `

⇒ R0∂x = ∂xR1

Proposition 1 (D. Lannes, R.)

Let (ζ, q) be such that the compatibility conditions hold:ζ|t=0 (0) = g0(0)
−∂xq|t=0 (0) = ġ0(0)

,

ζ|t=0 (`) = g`(0)
−∂xq|t=0 (`) = ġ`(0)

.

Then the two assertions are equivalent:

1 The pair (ζ, q) satisfies the IBVP (BA) with ζ(·, 0) = g0 and ζ(·, `) = g`
2 The pair (ζ, q) satisfies the IVP∂tζ + ∂xq = 0

∂t q + ∂x (R1f ) = s(0)q̇|0 + s(`)q̇|`
in (0, `), (2)

with the trace equations(
s′(0)(0) s′(`)(0)
s′(0)(`) s′(`)(`)

) (
q̇|0
q̇|`

)
=

1
κ2

(
(R1 − id)|0 f
(R1 − id)|` f

)
−

(
g̈0

g̈`

)
(3)
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Reformulation of the model (flat bottom)

Proof: ⇒ ∂tζ + ∂xq = 0

∂x

(

∂t q + ∂x (R1f ) = s(0)q̇|0 + s(`)q̇|`

⇒ −∂ttζ+ = s′(0)q̇|0 + s′(`)q̇|`

By construction
(1 − κ2∂2

xx )R1 = id ⇒ ∂2
xxR1 = κ−2(R1 − id)

Taking the trace at x = 0, ` and using that ζ|x=0,` = g0,`:
−g̈0 +

1

κ2
(R1 − id)|x=0 f (ζ, q) = s′(0)(0)q̇|0 + s′(`)(0)q̇|`

−g̈` +
1

κ2
(R1 − id)|x=` f (ζ, q) = s′(0)(`)q̇|0 + s′(`)(`)q̇|`
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Reformulation of the model (flat bottom)

Proof: ⇐ We now assume that
−g̈0 +

1

κ2
(R1 − id)|x=0 f (ζ, q) = s′(0)(0)q̇|0 + s′(`)(0)q̇|`

−g̈` +
1

κ2
(R1 − id)|x=` f (ζ, q) = s′(0)(`)q̇|0 + s′(`)(`)q̇|`

&

ζ|t=0 (x = 0, `) = g0,`(0)
−∂xq|t=0 (x = 0, `) = ġ0,`(0)

Following previous steps we also have
−ζ̈|0 +

1

κ2
(R1 − id)|x=0 f (ζ, q) = s′(0)(0)q̇|0 + s′(`)(0)q̇|`

−ζ̈|` +
1

κ2
(R1 − id)|x=` f (ζ, q) = s′(0)(`)q̇|0 + s′(`)(`)q̇|`

⇒

ζ̈|0 = g̈0

ζ̈|` = g̈`

Compatibility conditions⇒ solution given by (ζ|0 , ζ|` ) = (g0, g`)

Mathieu Rigal General boundary conditions for the Boussinesq-Abbott model with varying topography 8 / 15



Reformulation of the model (flat bottom)

Proof: ⇐ We now assume that
−g̈0 +

1

κ2
(R1 − id)|x=0 f (ζ, q) = s′(0)(0)q̇|0 + s′(`)(0)q̇|`

−g̈` +
1

κ2
(R1 − id)|x=` f (ζ, q) = s′(0)(`)q̇|0 + s′(`)(`)q̇|`

&

ζ|t=0 (x = 0, `) = g0,`(0)
−∂xq|t=0 (x = 0, `) = ġ0,`(0)
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Following previous steps we also have
−ζ̈|0 +

1

κ2
(R1 − id)|x=0 f (ζ, q) = s′(0)(0)q̇|0 + s′(`)(0)q̇|`

−ζ̈|` +
1

κ2
(R1 − id)|x=` f (ζ, q) = s′(0)(`)q̇|0 + s′(`)(`)q̇|`

⇒

ζ̈|0 = g̈0

ζ̈|` = g̈`

Compatibility conditions⇒ solution given by (ζ|0 , ζ|` ) = (g0, g`)

Mathieu Rigal General boundary conditions for the Boussinesq-Abbott model with varying topography 8 / 15



Reformulation of the model (flat bottom)

Proof: ⇐ We now assume that
−g̈0 +

1

κ2
(R1 − id)|x=0 f (ζ, q) = s′(0)(0)q̇|0 + s′(`)(0)q̇|`

−g̈` +
1

κ2
(R1 − id)|x=` f (ζ, q) = s′(0)(`)q̇|0 + s′(`)(`)q̇|`

&

ζ|t=0 (x = 0, `) = g0,`(0)
−∂xq|t=0 (x = 0, `) = ġ0,`(0)
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More general boundary conditions

Possibility to enforce general boundary conditions

ξ+0 (ζ|0 , q|0 )(t) = g0(t), ξ−` (ζ|` , q|` )(t) = g`(t). (4)

For instance, ξ± given by q or Saint-Venant Riemann invariants

R±(U) =
q
h
± 2

√
gh

Adapt trace ODE in terms of missing data (outgoing information ξ−0 and ξ+` )

(
s′(0)(0) s′(`)(0)
s′(0)(`) s′(`)(`)

)
d

dt

(
q(ξ+0 , ξ

−
0 )

q(ξ+` , ξ
−
` )

)
=

1

κ2

(
(R1 − id)|0 f
(R1 − id)|` f

)
−

d2

dt2

(
ζ(ξ+0 , ξ

−
0 )

ζ(ξ+` , ξ
−
` )

)

0 `

ξ+0 ξ−0 ξ+` ξ−`
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Case of a varying topography (b . Cst)

(1 + hbT )∂t q + ∂x f (ζ, q) = −gh∂xb

where hbT (·) = − 1
3∂x (h2

b∂x ·) + lower order terms

Note R0
b the inverse of (1 + hbT ) with homogeneous Dirichlet cond. and{

(1 + hbT )s(b ,0) = 0
s(b ,0)(0) = 1, s(b ,0)(`) = 0

{
(1 + hbT )s(b ,`) = 0
s(b ,`)(0) = 0, s(b ,`)(`) = 1

⇒ ∂t q = −R0
b∂x f − gR0

b (h∂xb) + s(b ,0)q̇|0 + s(b ,`)q̇|`
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@R1
b =
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)−1

such that R0
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Case of a varying topography (b . Cst)

Proposition 2 (D. Lannes, R.)

Let (ζ, q) be such that the compatibility conditions hold:ζ|t=0 (0) = g0(0)
−∂xq|t=0 (0) = ġ0(0)

,

ζ|t=0 (`) = g`(0)
−∂xq|t=0 (`) = ġ`(0)

.

Then the two assertions are equivalent:
1 The pair (ζ, q) satisfies the IBVP (BA) over nonflat bottom with ζ|0,` = g0,`

2 The pair (ζ, q) satisfies the IVP∂tζ + ∂xq = 0
∂t q + ∂x (R1

b f ) = B(ζ, q) + s(b ,0)q̇|0 + s(b ,`)q̇|`
in (0, `), (5)

with the trace equations(
s′(b ,0)(0) s′(b ,`)(0)
s′(b ,0)(`) s′(b ,`)(`)

) (
q̇|0
q̇|`

)
+ Vboundary(ζ|0,` , q|0,` ) = Vinterior[ζ, q] −

(
g̈0

g̈`

)
(6)

where Vboundary, Vinterior are known.
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Numerical experiment

Standard finite differences for nonlocal terms and trace equations

Finite volumes for interior equations (Lax-Friedrichs or MacCormack)

Asymptotic stability

Question: starting from a wrong initial condition, can we recover the reference solution by
enforcing appropriate boundary conditions?
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Numerical experiment
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Figure: Sine over bump
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Numerical experiment
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Conclusion

Boussinesq-Abbott model is accurate, but boundary conditions are challenging

Reformulation strategy allows to recover missing data

Extension to varying bathymetries & general boundary conditions

Numerical validation and experiments (asymptotic stability)

Perspectives: high order DGFEM code, improved dispersion relation

Thank you for your attention!
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