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Long term goal: study extreme waves in littoral area
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@ The model & problematic
@ Nonlocal reformulation for flat bottom
© Extention to varying bottom

© Numerical experiment
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The PDEs

Boussinesqg-Abbott model with varying bottom:

at{"'axq:o (BA)
(1+hy7)6:q + 9xf(¢, q) = —ghdxb

with h, = Hy — b (depth at rest) and

g gh® 1
f(Z,q) = m + - hy7 () = —§ax(h§(?x-) + lower order terms
z

Free surface

h(t,z) = Ho+¢—b

Rigid bottom
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The PDEs

Initial-boundary value problem:

at{ + axq =0 .
{ (1 + hoT)ohq + 1. q) = —ghdb " (00 (BA)

completed with

(£, Qo = (L0, q),  L(1.0) = go(t), (1. €) = ge(t)
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The PDEs

Initial-boundary value problem:

at{ + axq =0 .
{ (1 + hoT)ohq + 1. q) = —ghdb " (00 (BA)

completed with

(£, Qo = (L0, q),  L(1.0) = go(t), (1. €) = ge(t)

How to recover g, _,,(t)? (missing data)

@ Hyperbolic case (h,7 = 0): Riemann invariants
@ Dispersive case: need to invert (1 + hy,7") — requires knowledge on d.q,_,,
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Reformulation of the model (flat bottom)

Flat bottom case (b = Cst): discharge eq. simplifies to

(1-K02,)01q + 8,f(£,q) =0 in(0,¢)

Fix 0 <t < T, then y(x) = d:q(t, x) satisfies an ODE of the form
y = 12y" = $(x)
y(0) =g, y(6) =q,

Yn— &2y =0 Yo — K2y) = ¢(X)

Equivalently: y =y, +yp, with : . an
o Yh(0) = dos Va0 = G, ¥6(0) = ¥5(6) = 0
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Reformulation of the model (flat bottom)

Flat bottom case (b = Cst): discharge eq. simplifies to

(1 - 950+ 0:f(£,q) =0 in(0,0)

Fix 0 <t < T, then y(x) = d:q(t, x) satisfies an ODE of the form

y -y = ¢(x)
y(©0) =G, Yy =4q,

— 2y = _ 2y —
Equivalently: y =yn+Yy, with Yo = 1) v and {PTFW $(x)
¥n(0) = Q. Yn(6) = G, ¥6(0) = y5(£) = 0

Define R° as the inverse of (1 — k292,) with homogeneous Dirichlet conditions at x = 0, £

= 0:q = —R%0,f +50) (X)), + 5(0(X)@,.,

Yo Yh
(1 - K28, )50) =0 { (1 -#20%)s5¢) =0
where xx and xx . 1
{ 500 =1, 50(f)=0 50(0) =0, sy(0) = 1 M
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Reformulation of the model (flat bottom)

Note R’ the inverse of (1 — «?62,) with homogeneous Neumann conditions at x = 0, ¢

= R%, = o,R'
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Reformulation of the model (flat bottom)

Note R’ the inverse of (1 — «?62,) with homogeneous Neumann conditions at x = 0, ¢
= R%, = 3R’

Proposition 1 (D. Lannes, R.)

Let (¢, q) be such that the compatibility conditions hold:

Qr;o (0) = go(o) é’h:o (5) = g[(o)
~0x0),(0) = Go(0) —0xQ, (€) = 9¢(0)

Then the two assertions are equivalent:
@ The pair (£, q) satisfies the IBVP (BA) with £(-,0) = go and £(-,£) = g,
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Reformulation of the model (flat bottom)

Note R’ the inverse of (1 — «?62,) with homogeneous Neumann conditions at x = 0, ¢
= R%, = 3R’

Proposition 1 (D. Lannes, R.)

Let (¢, q) be such that the compatibility conditions hold:

{120(0) = 90(0) Lo (€) = 9e(0)
~0xG15(0) = 9o(0) —0xGi () = 3:(0)

Then the two assertions are equivalent:
@ The pair (¢, q) satisfies the IBVP (BA) with £(-,0) = go and £(-,€) = g¢
@ The pair (£, q) satisfies the IVP

{6’5 *0xq=0 in (0, ), @)

019 + 9x(R'f) = 50)@, + 504,

with the trace equations

(5&»(0) séMO))(a\o): 1 ((R1 —id>|of)_(go) -
00 spON\a,) 2 \(R" —id), f] \g
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Reformulation of the model (flat bottom)

Proof:

0l +0xqg=0
919 + 0x(R'f) = 510G, + 504,
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Reformulation of the model (flat bottom)

Proof:

0l +0xg=0
3x(5zq +0x(R'f) = 50)Q + S(t’)Clllzz)

=  -0xl+ 6;2<X(R1 f) = 520)‘:7\0 + szf)q\(
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Reformulation of the model (flat bottom)

Proof:

0l +0xg=0
ﬁx(ﬁzq +0x(R'f) = 50)Q + S(t’)Clllzz)

= -0yl + 05 (R'f) = 5{0)‘:7\0 + szf)q\(
—_———

1 (R1 =i
L (R -id)f

By construction
(1-k?®2)R' =id = # R' =« 23R -id)
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Reformulation of the model (flat bottom)

Proof:

0l +0xg=0
ﬁx(ﬁzq +0x(R'f) = 50)Q + S(t’)Clllp)

= -0yl + 05 (R'f) = 5{0)‘:7\0 + szf)q\(
—_———

(R
L (R -id)f

By construction
(1-k?®2)R' =id = # R' =« 23R -id)

Taking the trace at x = 0, £ and using that {j,_,, = go.:
R o,
—0o + E(R - |d)|x=0 f(§, CI) = 5(0)(0)QIO + 5([)(0)q\i

1 . .
_g! + K_Z(R1 - id)\x:[ f(é” q) = SEo)(g)cno + SE{)(f)qv
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Reformulation of the model (flat bottom)

Proof: We now assume that

= go,(0)
1 —=0xQo (X = 0,€) = §o.(0)

.- 1 .
—0o + E(F\” —id),,f(£, q) = 5()(0)q, + 5, (0)G, . {§z=o(x ~0,0)
-0 + K_2(R i), (£, Q) = 510, (O) Gt + 50, (),
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Reformulation of the model (flat bottom)

Proof: We now assume that

{io(X = 0,€) = go,:(0)

1 —0xQ)o (X = 0,€) = §o.¢(0)

1
~Go + —(R" —id),,_,f(£, q) = 510)(0)G, + 5(,(0)4,

K o {
-0 + K_2(R i), (£, Q) = 510, (O) Gt + 50, (),

Following previous steps we also have

. 1
—do * K—Z(R' —id),, f(£, Q) = 54)(0)q, + 5(,(0)q;,

. 1
i+ (RT=id) F(¢. Q) = 5o (D + 5 (DG,
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Reformulation of the model (flat bottom)

Proof: We now assume that

{io(X = 0,€) = go,:(0)

1 —0xQ)o (X = 0,€) = §o.¢(0)

1
~Go + —(R" —id),,_,f(£, q) = 510)(0)G, + 5(,(0)4,

K o {
-0 + K_2(R i), (£, Q) = 510, (O) Gt + 50, (),

Following previous steps we also have

1

~Go + K—Z(R' —id), (£, Q) = 5, (0)q;, + 5, (0)q, {{0

o 5 -
L+ R =i, A,0) = 500 (0, + 5,03, |
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Reformulation of the model (flat bottom)

Proof: We now assume that

= go.(0)

1
-0 + E(W —id), (£, Q) = 5(,(0)q, + 5{,(0)q, . fia(x=0.0)
—0xQ,o (X = 0,£) = 9o,(0)

1
-0+ —(R" —id),_f(£,q) = 510)(O) o + 55 ()
K

Following previous steps we also have

. 1
_é‘lo + K_Z(R1 - id)lxzo f({, q) = 5 ( )CI|0 + s ( )q‘[ N {Zo =

. 1 4 . Z\[ = gl’
=G + (R = id), (£, q) = 5 (D) + 5 (O

Compatibility conditions = solution given by (¢, ¢},) = (o, 9¢)
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More general boundary conditions

Possibility to enforce general boundary conditions

é‘a(éo’ Q|0)(t) = gO(t)» ftj(é/l(v q\/)(t) = g{’(t) (4)

For instance, £* given by g or Saint-Venant Riemann invariants

R(U)= ] +2/gh
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More general boundary conditions

Possibility to enforce general boundary conditions

§6(8o- ) (1) = 9o(), &7 (Zj,» G ) (1) = ge(t). (4)

For instance, £* given by g or Saint-Venant Riemann invariants

R.(U) = % +2/gh

\. J

Adapt trace ODE in terms of missing data (outgoing information &, and &)

(szm(m sz¢><0)) d (q(fs,fa))z 1 (<R1 —id)‘of)_ @ (4@;,55))
so(0) 5,0 dt\q.&)) T @\(R' —id), 1]~ ar \¢(E.£,)

& & & &
—_— — —_—
| I
0 £
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Case of a varying topography (b # Cst)

(14 hoT)3,q + 9f(¢.q) = ~ghd,b |

where h,7(-) = —3,(h2d,-) + lower order terms
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Case of a varying topography (b # Cst)

(14 hoT)3,q + 9f(¢.q) = ~ghd,b |

where h,7(-) = —3,(h2d,-) + lower order terms

Note Rg the inverse of (1 + h,7") with homogeneous Dirichlet cond. and

{ (1 + hbT)B(b’o) =0 { (1 + hbT)S(b’() =0
56,0(0) =1, sp(f)=0 s.0(0) =0, spn(l) =
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Case of a varying topography (b # Cst)

(14 hoT)3,q + 9f(¢.q) = ~ghd,b |

where h,7(-) = —3,(h2d,-) + lower order terms

Note Rg the inverse of (1 + h,7") with homogeneous Dirichlet cond. and

{ (1 + hbT)B(b’o) =0 { (1 + hbT)S(b’() =0
56,0(0) =1, sp(f)=0 s.0(0) =0, spn(l) =

= 6,q = —Rgaxf - gRg(haxb) + S(b’o)qo + S(b,é’)q,
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Case of a varying topography (b # Cst)

|90 = —R0,1 — gR2(hAD) + 560/ + S0,

Next step: generalisation of R%9, = d,R'?
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Case of a varying topography (b # Cst)

|90 = —R0,1 — gR2(hAD) + 560/ + S0,

Next step: generalisation of R%9, = d,R'?

2 -1
AR, = (Z c,ﬁ;) such that R0y = 0xR}
i=0
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Case of a varying topography (b # Cst)

|90 = —R0,1 — gR2(hAD) + 560/ + S0,

Next step: generalisation of R%9, = d,R'?
2 -1
AR, = (Z cia;) such that R29, = d,R]
i=0
However we can construct R; verifying for some (a, 8)(x)

R2(0x +a) = (3« + )R,

= 8tq = —3XR;f —ﬁR;f + Fig(a'f - ghBXb) +5(b,0)éI|0 + S(b’g)q”
B¢, 9)
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Case of a varying topography (b # Cst)

Proposition 2 (D. Lannes, R.)
Let (£, ) be such that the compatibility conditions hold:

{% (0) = go(0) {4 (©) = 9:(0)

_axq\H) (0) = gO(O) _6Xq|t=0 ([) = gt’(o)
Then the two assertions are equivalent:
@ The pair (£, q) satisfies the IBVP (BA) over nonflat bottom with £, = go.
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Case of a varying topography (b # Cst)

Proposition 2 (D. Lannes, R.)
Let (£, ) be such that the compatibility conditions hold:

{a,-o (0) = go(0) {4 (©) = 9:(0)

—0x0,,5(0) = o(0) —0xGj(0) = 9¢(0)
Then the two assertions are equivalent:

@ The pair (£, q) satisfies the IBVP (BA) over nonflat bottom with dioe = 0.t
@ The pair (£, q) satisfies the IVP

{ag+mq=o

) , _ in (0, 0), (5)
01q + 0x(R,f) = B(L, ) + 56,0 Gl + 6.0 4
with the trace equations
S5,0)(0) SEb,Z)(O)) (%) v Vo B (Qo) 6
(Bib,O) ([) Szb_l) ([) . ) + boundary(é]o,(’ q\o,() interiorl q] g[ (6)

where Vioundary, Vinterior are known.
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Numerical experiment

@ Standard finite differences for nonlocal terms and trace equations
@ Finite volumes for interior equations (Lax-Friedrichs or MacCormack)
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Numerical experiment

@ Standard finite differences for nonlocal terms and trace equations
@ Finite volumes for interior equations (Lax-Friedrichs or MacCormack)

Asymptotic stability

Question: starting from a wrong initial condition, can we recover the reference solution by
enforcing appropriate boundary conditions?
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Numerical experiment

051 1
— 0 -
E,
NS
c
iel i
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% Reference init. cond.|
© == \Nrong init. cond.
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)
Q .15 1
[

2+ 4

|
L 0 L 2L

x position (L = 25 [m], Ax = 3.26E-02 [m])

Figure: Sine over bump
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Numerical experiment
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Figure: L2 error
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Conclusion

@ Boussinesq-Abbott model is accurate, but boundary conditions are challenging

@ Reformulation strategy allows to recover missing data
@ Extension to varying bathymetries & general boundary conditions
@ Numerical validation and experiments (asymptotic stability)

Perspectives: high order DGFEM code, improved dispersion relation
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Conclusion

@ Boussinesq-Abbott model is accurate, but boundary conditions are challenging

@ Reformulation strategy allows to recover missing data
@ Extension to varying bathymetries & general boundary conditions
@ Numerical validation and experiments (asymptotic stability)

Perspectives: high order DGFEM code, improved dispersion relation

Thank you for your attention!
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