Corrigé du devoir surveillé

Exercice 1

Écrire $P=X^2Y^2+X^2Z^2+Y^2Z^2$ comme polynôme en les polynômes symétriques élémentaires.

Solution : Appliquons l'algorithme : le monôme le plus grand (pour l'ordre lexicographique) qui apparaît est X^2Y^2 . Cela implique que P contient le monôme σ_2^2 . Développons ce dernier : on a

$$\sigma_2^2 = (XY + XZ + YZ)^2 = X^2Y^2 + X^2Z^2 + Y^2Z^2 + 2X^2YZ + 2XY^2Z + 2XYZ^2$$
$$= P + 2XYZ(X + Y + Z) = P + 2\sigma_1\sigma_3$$

ce qui montre que $P = \sigma_2^2 - 2\sigma_1\sigma_3$.

Exercice 2

- (1) Montrer que le **Z**-module **Q** n'est pas de type fini.
- (2) Posons $A = \{ P \in \mathbf{Q}[X] ; P(0) \in \mathbf{Z} \} \text{ et } I = \{ P \in \mathbf{Q}[X] ; P(0) = 0 \}.$
 - (a) Montrer que A est un sous-anneau de $\mathbb{Q}[X]$, et que I est un idéal de A.
 - (b) Montrer que I n'est pas de type fini comme idéal de A (utiliser la question (1)). En particulier A n'est pas noethérien.

Solution: (1) Supposons \mathbf{Q} de type fini: il existe $x_1, \ldots, x_r \in \mathbf{Q}$ tels que $\mathbf{Q} = \langle x_1, \ldots, x_r \rangle$. Soit $d \in \mathbf{N}_{>0}$ tel que $dx_k \in \mathbf{Z}$ pour tout $k \in \{1, \ldots, r\}$: on a $d\langle x_1, \ldots, x_r \rangle \subset \mathbf{Z}$, d'où $\mathbf{Q} \subset \frac{1}{d}\mathbf{Z}$, ce qui est absurde (on a $\frac{1}{2d} \in \mathbf{Q} \setminus \frac{1}{d}\mathbf{Z}$).

- (2) (a) On a $0,1 \in A$, et si $P,Q \in A$, alors $(P-Q)(0),(PQ)(0) \in \mathbf{Z}$ (parce que $P(0),Q(0)\in \mathbf{Z}$), ce qui montre que A est un sous-anneau de $\mathbf{Q}[X]$.
- On a bien sûr $I \subset A$, et comme I est un idéal de $\mathbf{Q}[X]$, c'est a fortiori un idéal de A. (b) Supposons I de type fini comme idéal de A: on peut écrire $I = \langle P_1, \dots, P_r \rangle$ avec $P_1, \dots, P_r \in I$. Pour chaque $k \in \{1, \dots, r\}$, écrivons $P_k = \lambda_k X + X^2 Q_k$ avec $\lambda_k \in \mathbf{Q}$ et $Q_k \in \mathbf{Q}[X]$ Si $\lambda \in \mathbf{Q}$ on a $\lambda X \in I$: il existe $f_1 = f_r \in A$ tels que $\lambda X = \sum_{i=1}^{r} f_k P_k$.

 $Q_k \in \mathbf{Q}[X]$. Si $\lambda \in \mathbf{Q}$, on a $\lambda X \in I$: il existe $f_1, \dots, f_r \in A$ tels que $\lambda X = \sum_{k=1}^r f_k P_k$,

de sorte que $\lambda = \sum_{k=1}^r f_k(\lambda_k + XQ_k)$. En évaluant en 0, il vient $\lambda = \sum_{k=1}^r f_k(0)\lambda_k \in \sum_{k=1}^r \mathbf{Z} \lambda_k$. Comme c'est vrai pour tout $\lambda \in \mathbf{Q}$, cela montre que $\lambda_1, \ldots, \lambda_r$ engendrent le **Z**-module **Q**, contredisant la question (1).

Exercice 3

Soit A un anneau. Un A-module P est dit projectif si pour toute application A-linéaire surjective $\pi: M \to N$ et toute application A-linéaire $f: P \to N$, il existe une application

A-linéaire $\widehat{f} \colon P \to M$ tel que $f = \pi \circ \widehat{f}$, i.e. telle que le diagramme

$$\begin{array}{c}
\widehat{f} & P \\
\downarrow f \\
M & \xrightarrow{\pi} N
\end{array}$$

commute.

(1) Montrer qu'un A-module libre de rang fini est projectif.

Rappelons que si M est un A-module, un facteur direct de M est un sous-module N tel qu'il existe un sous-module N' tel que $M = N \oplus N'$ (i.e. N et N' sont supplémentaires dans M).

- (2) Soit $f: M \to M'$ une application A-linéaire surjective. Montrer que si f admet une section, c'est-à-dire s'il existe $s: M' \to M$ tel que $f \circ s = \operatorname{Id}_{M'}$, alors M' est isomorphe à un facteur direct de M (indication : penser au novau de f).
- (3) Montrer que si $P \simeq M/M'$ est projectif, alors P est isomorphe à un facteur direct de M. En déduire qu'un A-module de type fini est projectif si et seulement s'il est isomorphe à un facteur direct d'un A-module libre de rang fini.
- (4) Soit $e \in A$ un élément idempotent (*i.e.* tel que $e^2 = e$). Montrer que $A = Ae \oplus A(1-e)$, et en déduire que Ae et A/Ae sont projectifs.
- (5) Donner un exemple de **Z** /6 **Z**-module projectif non libre.
- (6) Facultatif : montrer qu'un A-module P monogène (i.e. engendré par un seul élément) est projectif si et seulement si $P \simeq Ae$ avec $e \in A$ idempotent.

Solution : (1) Soient L un A-module libre de rang fini, $\mathfrak{B} = (e_1, \ldots, e_r)$ une base de L sur A et $f: L \to N$, $\pi: M \to N$ des applications A-linéaires telles que π soit surjective. Choisissons $m_1, \ldots, m_r \in M$ tels que $\pi(m_i) = f(e_i)$ pour $i \in \{1, \ldots, r\}$. Notons $\widehat{f}: L \to M$ l'unique application A-linéaire définie par $\widehat{f}(e_i) = m_i$ pour $i \in \{1, \ldots, r\}$. Les applications f et $\pi \circ \widehat{f}$ coïncident sur la base \mathfrak{B} par construction : elles sont égales.

- (2) Soit $s \colon M' \to M$ une section. Comme $f \circ s = \mathsf{Id}_{M'}$ est injectif, s est injectif, donc s induit un isomorphisme $M' \overset{\sim}{\to} \mathsf{Im}(s)$: il suffit de montrer que $\mathsf{Im}(s)$ est un facteur direct de M. Prouvons que $M = \mathsf{Ker}(f) \oplus \mathsf{Im}(s)$. Si $x \in M$, posons $y = (s \circ f)(x)$: on a $y \in \mathsf{Im}(f)$, et $f(x-y) = f(x) f(s(f(x))) = (\mathsf{Id}_{M'} f \circ s)(f(x)) = 0$, soit $x-y \in \mathsf{Ker}(f)$. Cela montre que $M = \mathsf{Ker}(f) + \mathsf{Im}(f)$. Par ailleurs, si $x \in \mathsf{Ker}(f) \cap \mathsf{Im}(s)$, on peut écrire x = s(z) avec $z \in M'$: on a $0 = f(x) = (f \circ s)(z) = z$, d'où x = s(z) = 0, ce qui montre que $\mathsf{Ker}(f) \cap \mathsf{Im}(s) = \{0\}$ et conclut.
- (3) Notons $\pi \colon M \to M/M'$ la surjection canonique et f la composée $M \xrightarrow{\pi} M/M' \simeq P$. C'est une application linéaire surjective : comme P est projectif, l'identité Id_P se relève une section $s \colon P \to M$ de f. D'après la question précédente, cela montre que P est isomorphe à un facteur direct de M.
- Soit P un A-module projectif de rang fini. Choisissons $x_1, \ldots, x_n \in P$ une partie génératrice, et notons $f \colon A^n \to P$ l'application A-linéaire qui envoie le i-ème vecteur de la base canonique sur x_i . C'est une application A-linéaire surjective : on a $A^n/\operatorname{Ker}(f) \simeq P$. D'après ce qui précède, la projectivité de P implique que P est isomorphe à un facteur direct de A^n .

Réciproquement, supposons que P est isomorphe à un facteur direct d'un A-module libre de rang fini : montrons qu'il est projectif. Cette propriété étant clairement stable par isomorphisme, on peut supposer que P est un facteur direct d'un A-module libre de type fini L: on peut écrire $L = P \oplus P'$. Soient $f: P \to N$, $\pi: M \to N$ des applications A-linéaires telles que π soit surjective. Prolongeons f en $f_L: L \to N$ par 0 sur P'. Comme

L est libre de rang fini donc projectif en vertu de la question (1), il existe une application A-linéaire $\widehat{f}_L: L \to M$ telle que $f_L = \pi \circ \widehat{f}_L$. Notons \widehat{f} la restriction de \widehat{f}_L à P: on a $f = \pi \circ \widehat{f}$, et P est projectif sur A.

- (4) Si $a \in A$, on a $a = a(e+1-e) = ae + a(1-e) \in Ae + A(1-e)$, ce qui montre que A = Ae + A(1-e). Par ailleurs, si $a \in Ae \cap A(1-e)$, il existe $\alpha \in A$ tel que $a = \alpha(1-e)$, de sorte que $a = ae = \alpha(1-e)e = 0$, et donc $Ae \cap A(1-e) = \{0\}$: on a $A = Ae \oplus A(1-e)$. Cela implique que Ae et $A(1-e) \simeq A/Ae$ sont facteurs directs du A module libre A: ils sont projectifs d'après la question (3).
- (5) D'après le théorème des restes chinois, on a $\mathbf{Z}/6\mathbf{Z}\simeq(\mathbf{Z}/2\mathbf{Z})\times(\mathbf{Z}/3\mathbf{Z})$: le sous-module $(\mathbf{Z}/2\mathbf{Z})\times\{0\}$ est facteur direct du $\mathbf{Z}/6\mathbf{Z}$ -module libre $\mathbf{Z}/6\mathbf{Z}$, mais il n'est pas libre pour des raisons de cardinalité. Autre argument : la classe de 3 est un idempotent non trivial de $\mathbf{Z}/6\mathbf{Z}$.
- (6) Comme P est monogène, on peut l'écrire P = Ax. Soit

$$\pi \colon A \to P$$
$$a \mapsto ax$$

c'est une application A-linéaire surjective. Posons $f = \mathsf{Id}_P$: comme P est projectif, il existe une application $\widehat{f} \colon P \to A$ telle que $\pi \circ \widehat{f} = \mathsf{Id}_P$

Posons $e = \widehat{f}(x) \in A$. On a $\pi(\widehat{f}(x)) = \pi(e) = ex$ donc x = ex, d'où $\widehat{f}(x) = e\widehat{f}(x)$, i.e. $e^2 = e$. L'application π induit alors un isomorphisme $Ae \xrightarrow{\sim} P$, d'inverse l'application induite par \widehat{f} . La réciproque résulte de la question (4).